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FEKETE-SZEGO PROBLEM FOR SUBCLASSES OF
ANALYTIC FUNCTIONS ASSOCIATED WITH
QUASI-SUBORDINATION
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Abstract

In this paper, we define certain subclasses of analytic and univalent func-
tions associated with quasi-subordination and we derive the bounds for the
Fekete-Szego functional |a3 — va%‘ for functions belonging to these subclasses.
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1 Introduction and definitions

Let A denote the class of functions f of the form
f(2) =24 anz" (z€V) (1)
n=2

which are analytic in the open unit disk U = {z:|z| < 1}, let S denote the
subclass of A consisting of analytic and univalent functions f in U. Let g and f be
two analytic functions in U then function g is said to be subordinate to f if there
exists an analytic function w in the unit disk U with w(0) = 0 and |w(z)| < 1
such that g(z) = f(w(z)) in U.

We denote this subordination by g < f. In particular, if the f is univalent
in U, the above subordination is equivalent to ¢(0) = f(0) and g(U) C f(U).
In the year 1970, Robertson [18] introduced the concept of quasi-subordination.
The function g is said to be quasi-subordinate to f in the unit disk U if there
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exist the functions w (with constant coefficient zero) and ® which are analytic
and bounded by one in the unit disk U such that g(z) = ®(2)f(w(z)) and this is
equivalent to g)(é)) < f(z)in U.

We denote this quasi-subordination by g <, f. Observe that when ®(z) =1,
then g(z) = f(w(z)), so that g(2) < f(z) in U. Also notice that if w(z) = z, then
g(z) = ®(2)f(2) and it is said that g is majorized by f and written g(z) < f(2)
in U.

Some typical problems in geometric function theory are to study functionals
made up of combinations of the coefficients of f. In 1933, Fekete and Szegé [4]
obtained a sharp bound of the functional Aa3 — a3, with real A(0 < A < 1) for a
univalent function f. Since then, the problem of finding the sharp bounds for
this functional of any compact family of functions or f € A with any complex A
is known as the classical Fekete-Szeg6 problem or inequality. Lawrence Zalcman
posed a conjecture in 1960 that the coefficients of S satisfy the sharp inequality
‘a% — agn_l‘ <(n-12n>2.

More general versions of Zalcman conjecture have also been considered ([3],
[12]-[14]) for the functional such as Aa2 — ag,—1 and Aam,an — @min—1 for certain
positive value of A\. These functionals can be seen as generalizations of the Fekete-
Szegd functional Aa3 —a3. Several authors including [1]-[3], [9]-[15], [17], [20] have
investigated the Fekete-Szeg6 and Zalcman functionals for various subclasses of
univalent functions ® and h analytic in U. Also let

B(z) = Ag+ A1z + A2? + .. (|®(2)| <1, z€U) (2)

and
h(z) =14 B1z + Baz* + ... (B; > 0). (3)

Motivated by earlier works in ([5]-[7], [15], [17], [19]) on quasi-subordination, we
introduce here the following subclass of analytic functions:

Definition 1. For 0 < <A <1 and b e C\ {0}, a function f € A given by (1)
is said to be in the class K4 (X, 5,b, h) if the folowing condition are satisfied:

1 ( ABZf"(2) + (2AB + A = B)22f"(2) + 2f'(2)
b A\AB22f"(2) + (A = B)zf"(2) + (1 = A+ B)f(2)
where h is given by (3).

- 1) < h(2)-1 (z€U) (4)

It follows that a function f is in the class K, (X, 3,b,h) if and only if there
exists an analytic function ® with |®(z)| < 1, in U such that

1 (Mfz3f”’(Z)+(2/\6+>\—6)22f”(3)+3f’(Z) 1
b \ AB22 () +(A=B)=] () H(I-AFB) [ (2)

d(2)

)-<h(z)1 (zeU)

where h is given by (3).
If we set ®(z) = 1, then the class K, (X, 3,b, h) is denoted by K (X, 3,b,h)
satisfying the condition that

41 < B (2) + (208 + A — B)22f"(2) + 2f(2)
b \XNBZ2f7(2) + (A= Bl (2) + (L - A+ B)J (2)

—1> < h(z) (z€U).
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In the present paper, we find sharp bounds on the Fekete-Szeg6 functional for
functions belonging in the class K, (X, 8,b,h). Several known and new conse-
quences of these results are also pointed out. In order to prove our results, we
have to recall here the following well-known lemma:

Let € be class of analytic functions of the form

w(z) = wiz 4+ wez® + ... (5)
in the unit disk U satisfying the condition |w(z)| < 1.
Lemma 1. (/8/, p.10) If w € Q, then for any complex number v:
lwy| <1, |w2 —vw1’ <1+ (jv-1) ’wﬂ < max{1,|v|}.

The result is sharp for the functions w(z) = z or w(z) = 2.

2 Main results

In this section, we shall obtain Fekete-Szego inequality for functions in the
class K4 (A, B,b,h).

Theorem 1. Let 0 < S <A <1andbe C\{0}. If f € A of the from (1) belong
to the class Kq (X, 3,b,h), t

|b| By
DB+ A—fB+1

(6)

oo

(8)

lag| <

and for any v € C

‘ag - UCLQ’ b By max 4 1
T 2(6A8+2X—-20+1) ’

Bo
By

- QB

where

o (20(6A8+20-28+1)
Q_b< 2AB+ A —B+1)2 1>’

The results are sharp.

Proof. Let f € K, (X, B3,b,h). In view of Definition 1, there exist a Schwarz
function w and an analytic function ® such that, for z € U:

1 ( NBZRS(2) + (2AB+ A — B)22F(2) + 2f(2)
AB22f"(2) + (A = B)zf'(2) + (1 = A+ B) f(2)
Series expansions for f given by (1) and its successive derivatives give us
1 ( ABZ2 " (2) + AB+ X = B)2°f"(2) + 2f'(2) 1)
AB22f"(2) + (A = B)zf'(z) + (L = A+ B)f(2)
2AB+ A =B+ 1)azz

- 1) = () (hw(2)-1). (9)

—

1
b
+- (2(6A8+2X =28+ 1)ag — (2AB+ A — B+ 1)%a3) 2* + ... (10)
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Similarly from (2), (3) and (5), we obtain
h(w(z)) — 1 = Bywyz + (Byws + Bow?)2? + ...
and
®(2)(h(w(2)) — 1) = AgBiwiz + [A1Biwi + Ag(Biws + Bow?)] 2% + ... (11)
Equating (10) and (11) in view of (9) and comparing the coefficients of z and 22,

we get

. bAoBl'wl
2B+ A —-pB+1

a (12)

and

B bB;
C2(6AB+2)—2B8+1

as

B
) |:A1w1 + Ap {wz + <B2 + bA()Bl> w%}] . (13)
1
Thus, for any v € C, we have

a3 — vas
bB;
20608+ 2A — 28 + 1)

B, ) b2 A2 B2 02
A A — Ao B —
X[ 1wy + 0{’LU2+<B1+() 0 1>w1}] U(Q)\,B—i-)\—ﬁ—i-l)Q

bB,
2(6A3 + 2\ — 28 + 1)

B 2(6X 2\ — 2 1)b
X [Alwl—i— (wg—i—Qw%) A0—< (6A8 + A+1) v—b) A%Blwﬂ

B @B+ A—B+1)?
bBy By o 2 2
= A — Ay — QB A 14
3608+ 2h—25 1) { 1w1 + <w2+B1w1> 0 — @B1Ajwi (14)

where @ is given by (8).
Since ®(z) = Ag + A1z + Az2? + ... is analytic and bounded by one in U,
therefore we have (see [16], p. 172)
|Ag] <1land A = (1— A3y (y<1). (15)

Since |w1| <1 and |Ap| < 1, from (12) we have

|b] By
|ag| < :
N+ A—fB+1
From (14) and (15), we obtain
bB B
2 1 2 92 2 2
— = — Ay — (@B Azl .

as—va; S6NF 2N 2851 [ywl + <w2 + Blw1> 0 (Q 1wy —|—yw1) 0

(16)
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If Ag =0 1in (16), we at once get

‘a —va2’ < ‘b‘ B
SR = A 20— 28+ 1)

But if Ag # 0, let us then suppose that

B
G(Ag) = ywi + (wg + B?w%) Ao — (QB1wi + ywy) Aj

which is a quadratic polynomial in Ay and hence analytic in |Ag| < 1 and maxi-
mum value of |G(Ag)| is attained at Ay = e (0 < 6 < 27), we find that

— 10
max |G(Ag)| = omax G(e )‘ =|G(1)]
B
= |wy — (QBl — j) w%

Therefore, it follows from (16) that

b| B B
agfva%‘ b By ‘wg <QB12> w%

S S6AF 223+ 1)

which on using Lemma 1, shows that

< |b| By max< 1
T 2(6A8+2X2—28+1) ’

as — va%}

B,
22 _QB
B, 9B

b

and this last above inequality together with (17) establish the results. The results
are sharps for the function f given by

b \AB22f"(2) + (A = B)2f'(2) + (1 = A+ B) f(2) ’
b \AB22f"(2) + (A = B)zf'(2) + (1 = A+ B) f(2) ’
1 ABZf"(2) + @AB+ A= B)22f"(2) + 2f'(2) ) _
e e vs 1 Bl BRI UCRY)
This completes the proof of Theorem 1. O

Remark 1. i) For A\=0, =0 and b =1 in Theorem 1, we obtain result of [15,
Theorem 2.1].

ii) For A\=1, =0 and b =1 in Theorem 1, we obtain result of [15, Theorem
2.4].

For g = 0, the Theorem 1 reduces to following corollary:
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Corollary 1. Let 0 < A <1 and be C\{0}. If f € A of the from (1) belong to
the class K4 (X,0,b,h), then

|b] B

A+17

las] <

and for some v € C

b‘ Bl B2 2’0(1 + 2)\)
—vad) < AP L1 | B2, (222N )L
|CL3 /UGJQ‘ — 2(1+2)\) ma‘X{ ’ Bl + 1 (>\+ 1)2

The results are sharp.
If we choose A =1 and b = 1 in Corollary 1, we obtain the following corollary.
Corollary 2. If f € A of the from (1) belong to the class K, (1,0,1,h), then

By

las| < 2

and for some v € C

}ag — va%‘ < B;lmax{l,

B, 3
4B (v-1)]¢.
5o (e

The next theorem gives the result based on majorization.

The results are sharp.

Theorem 2. Let 0 < S < A< 1andb e C\{0}. If f € A of the form (1)
satisfies

1 ( ABZ3f"(2) + (2AB + X — B)22f"(2) + zf'(2)

—1) < h(z)—=1 (z€U),

b \AB22f"(2) + (A = B)zf'(2) + (1 = A+ B) f(2) (19)
then
oa] < 00"
T oNBFA-—B 1
and for any v € C
|b] By

‘ag—va%‘ ,

By
By — 22
)\Ql 2

<
=26\ +2)—26+1
where Q 1is given by (8). The results are sharp.

Proof. Assume that (19) holds. From the definition of majorization, there exist
an analytic function ® such that

1 ( ABZ3 " (2) + (2AB + X = B)22f"(2) + 2f'(2)
b \AB22f"(2) + (A = B)zf'(2) + (1 = A+ B) f(2)

- 1> =®(2)(h(2)—1) (z€U).
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Following similar steps as in the proof of Teorem 1, and by setting w(z) = z, so
that wy =1, w, = 0, n > 2, we obtain

B bAyB

203+ A —-p+1

a2

and also we obtain that

bB,
2(6M8 + 2\ — 28 + 1)

B
az —va3 = A+ B—2Ao - QB A% .
1

Since |Ag| < 1 we easily obtain

|b] By
DB+ A—B+1

Substituting the value of A; from (15), we obtain

las| <

bB; By

2 2
_ — Ao — (QB Af| . 20
az — vaj 20675 + 21 — 28+ 1) y+B1 0 — (@B1+y)4; (20)
If Ap =0 in (20), we at once get
b| B
‘ag—va%‘ < 151 By (21)

T 2(6AB+20A—28+1)
But, if Ag # 0, let us then suppose that

B
T(Ag) =y + B—jAo — (@B, +y) A2,

which is a quadratic polynomial in Ag, hence analytic in |Ap| < 1 and maximum
value of |T(Ag)| is attained at Ag = € (0 < 6 < 27), we find that

max |T(Ao)| = max T(eie)‘ = 1(1)].

0<0<2n

Hence, from (20), we obtain

las — vad| < b By

By
By — —=
_2(6)\B+2)\—2ﬁ+1)‘Q )

Thus, the assertion of Theorem 2 follows from this last above inequality together
with (21). The result are sharp for the function given by

L[ ABE) + QA+ A= AR 4,
Py <Aﬁzzf”(Z) TO B+ At B)I() 1) = M),

which completes the proof of Theorem 2. O

Remark 2. i) For A\=0, 3 =0 and b =1 in Theorem 2, we obtain result of [15,
Theorem 2.3].

it) For A\=1, =0 and b =1 in Theorem 2, we obtain result of [15, Theorem
2.5].
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Theorem 3. Let 0 < <A <1 andbe C\{0}. If f € A of the form (1) belong
to the class K(\, 3,b,h), then

ag] < Ib| By
= DBFA—B+1

and for any v € C

|b] By

By
< 1,22 - oB
_2(6)\6+2)\—25+1)max{’ @B

By

{ag —va§|

where @ is given by (8), the results are sharp.

Proof. The proof is similar to Theorem 1. Let f € K(\, 8,b,h). If ®(z) = 1, then
Ao =1, A, =0 (n € N). Therefore, in view of (12) and (14) and by application of
Lemma 1, we obtain the desired assertion. The results are sharp for the function
f given by
1/ AB23f"(2) + (A8 + X — B)22f"(2) + 2f'(2) )
b <wz2f"<z> + (A= B)f(2) + (L= A+B)f(2) >
14l < ABZ " (2) + @AB+ A= B)Z2f"(2) + 2/'(2) 1) _ ne?)
b \AB22f"(2) + (A = B)zf'(2) + (1 = A+ B) f(2) ‘

Thus, the proof of Theorem 3 is completed. O

= h(2),

Theorem 4. Let 0 < f < A < 1. If f € A of the form (1) belong to the class
Ky (N, B,b,h), then for real v and b, we have
‘ag — va%| (22)

b| B 2(6AB-+20—25+1) B
wwg—m[&b(l—mv)+3ﬂ, v <o,

|b| B
= 2(6>\B+2—>\i2m-1)’ o1 <v <o+ 2p,
|b|B 2(6A\3+2A—25+1) B
~26NF2n- 25 ) [Blb<1‘mv> +Bﬂv v =01+ 2p,
where

B, B?

LT o6ME12h—28+1)  2b(6AG+ 2\ — 28 +1)

@A+
P~ 9(6A3 +2x — 26 + 1) By
FEach of the estimates in (22) are sharp.

(2A8+ A — B+ 1) (2AB+ A — B +1)? (1 BQ>’ (23)

(24)

Proof. For real values of v and b the above bounds can be obtained from (7),
respectively, under the following cases:

By By By
Bi——<-1, -1 <QB1——=<land QB ——>1
QDB B = b < QB B, = and QB B, =

where @ is given by (8). We also note the following: O
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(i) When v < 01 or v > o1 + 2p, then the equality holds if and only if ®(z) =1
and w(z) = z or one of its rotations.

(ii) When o1 < v < 01 + 2p, then the equality holds if and only if ®(z) =1 and
w(z) = 22 or one of its rotations.

(iii) Equality holds for v = oy if and only if ®(z) = 1 and w(z) = 2 (0 < e <

1), or one of its rotations, while for v = o1 + 2p, the equality holds if and

only if (z) =1 and w(z) = —fog? (0 < e <1), or one of its rotations.

The bounds of the functional a3 —va3 for real values of v and b for the middle
range of the parameter v can be improved further as follows:

Theorem 5. Let 0 < g < XA < 1. If f € A of the form (1) belong to the class
K (X, B,b,h), then for real v and b, we arrive

6] By

268+ 2\ — 26+ 1) (o1 <v<o1+p) (25

‘ag — va%‘ + (v —01)|as]* <

and
b By
(6AG+ 2\ —28+1)

(o1+p<v<o01+2p)
(26)

‘ag —va%| + (o1 +2p—) ]ag|2 < 5

where o1 and p are given by (23) and (24), respectively.

Proof. Let f € K4(\, 8,b, h). For real v satisfying o1 + p < v < 01+ 2p and using
(12) and (18) we get

|a3 — va%} + (v —o01) ]a2|2
0] By
= 2(6M3+2)\—28+1)
210] B1(6A8 +2X—25+1)
2\B+ A — B+ 1)?

2|b| By (6A8 4 2\ — 28 + 1)
CAB+A—fB+1)2

lwa| — (v—01—p) w1

(v — o) Jun *| .

Therefore, by virtue of Lemma 1, we get

|b] B1
2(6AB 12X 25 1 1)’

‘ag — va%| + (v—o01) ]ag\g <

which yields the assertion (25).
If o1 + p < v < 01 + 2p, then again from (12), (18) and the application of
Lemma 1, we have

lag —va3| + (o1 +2p — v) |ag|?
< ‘b|Bl |w2’+ 2|b| Bl(6>\ﬁ—|—2>\—25+1)
T 26A8+2X2—-26+1) CX\B+AX—=B+1)2
2 |b| By (6A8 + 2X — 28 + 1)
A+ X =B +1)2

(v =01 = p) Jwr |

(o1 +2p —v) Jwi]?],
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|b] B
(6AB+2\—28+1)’
which estimates (26). O

|as — va3| + (o1 +2p — v) |as|? < 5
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