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Abstract

In this paper, we study CR-hypersurfaces of a conformal Kenmotsu man-
ifold with a ξ-parallel or Lie ξ-parallel normal Jacobi operator.
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1 Introduction

In [9], Kenmotsu defined and studied a new class of almost contact manifolds
called Kenmotsu manifolds.
Let (M,J, g) be an almost Hermitian manifold of dimension 2n, where J denotes
the almost complex structure and g the Hermitian metric. Then (M,J, g) is called
a locally conformal Kaehler manifold if for each point p of M there exists an open
neighborhood U of p and a positive function fU on U so that the local metric
gU = exp(−f)g|U is Kaehlerian. If U = M , then manifold (M,J, g) is said to be
a globally conformal Kaehler manifold. The 1-form ω = df is called the Lee form
and its metrically equivalent vector field ω] = grad f , where ] means the rising
of the indices with respect to g, namely g(X,ω]) = ω(X) for all X tangent to M ,
is called Lee vector field [8]. Submanifolds of locally conformal Kaehler manifolds
with parallel Lee form have been studied by several authors (see, for instance,
[11]).
We have introduced conformal Kenmotsu manifolds by using an idea of globally
conformal Kaehler manifolds. Also, we have given an example of a conformal
Kenmotsu manifold that is not Kenmotsu. Hence the category of conformal Ken-
motsu manifolds and Kenmotsu manifolds is not the same.
The definition of a conformal Kenmotsu manifold is as follows.
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A (2n + 1)-dimensional smooth manifold M with almost contact metric struc-
ture (ϕ, η, ξ, g) is called a conformal Kenmotsu manifold if there exists a positive
smooth function f : M → R so that

g̃ = exp(f)g, ξ̃ = (exp(−f))
1
2 ξ, η̃ = (exp(f))

1
2 η, ϕ̃ = ϕ

is a Kenmotsu structure on M (see [1]-[3]).
In fact, manifold M with almost contact metric structure (ϕ, η, ξ, g) is not Ken-
motsu, but with a conformal change of the metric g, that is, g̃ = exp(f)g is
Kenmotsu. Thus, there exist two structures (ϕ, η, ξ, g) and (ϕ, η̃, ξ̃, g̃) on M . Let
∇̃ and ∇ be the Riemannian connections of M with respect to metrics g̃ and g,
respectively and R̃ and R denote the curvature tensors of ∇̃ and ∇, respectively.
We have calculated the relation between R̃ and R as

exp(−f)g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W )

+
1

2
{B(X,Z)g(Y,W )−B(Y, Z)g(X,W )

+ B(Y,W )g(X,Z)−B(X,W )g(Y, Z)}

+
1

4
‖ω]‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )}

for all vector fields X,Y, Z,W on M , where

B := ∇ω − 1

2
ω ⊗ ω.

In [10], Kobayashi has proven: let M be a submanifold of a Kenmotsu manifold
M̃ such that the structural vector field ξ |M is tangent to M , then

∇Xξ = X − η(X)ξ, h(X, ξ) = 0

for each vector field X tangent to M , where ∇ and h are the Riemannian connec-
tion and the second fundamental form of M , respectively.
In this paper as a generalization of these results, we state Lemmas 3.1 and 3.2 for
a submanifold of a conformal Kenmotsu manifold.
In quaternionic space forms Berndt [5] has introduced the notion of normal Jacobi
operator R̄N (X) = R̄(X,N)N ∈ End TxM , x ∈ M for every real hypersurface
M in a quaternionic projective space QPm or in a quaternionic hyperbolic space
QHm, where R̄ denotes the curvature tensor of the ambient space. He has also
shown in [5] that the curvature adaptedness, that is, the normal Jacobi opera-
tor R̄N commuting with the shape operator of M , is equivalent to the fact that
distributions D and D⊥ = Span{ξ1, ξ2, ξ3} are invariant by the shape operator,
where TxM = D⊕D⊥, x ∈M . Motivated by this study, we present the following
problem:
Can we characterize CR-hypersurfaces in conformal Kenmotsu manifolds with a
ξ-parallel or Lie ξ-parallel normal Jacobi operator such that the structural vector
field ξ is tangent and the Lee vector field ω] is either tangent or normal to the
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CR-hypersurface?
Before considering the answer of the above question, an example for the existence
of CR-hypersurfaces in conformal Kenmotsu manifolds tangent to ξ and either
tangent or normal to ω] is constructed.
Corresponding to the above problem, we give the following theorems.

• Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M with a
ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is normal to Ḿ . Then

Ḿ is totally umbilic with scalar shape operator 1
2 id iff R̃N is ξ-parallel.

• Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M with a
Lie ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is normal to Ḿ .

Then Ḿ is totally umbilic with scalar shape operator 1
2 id iff R̃N is ξ-parallel.

• Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M with a
ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is tangent to Ḿ and

parallel on Ḿ . Then ω] is an eigen vector field with eigen value − exp(f)
for R̃N and − exp(f)− 1

2(ω(∇NN)− 1
2 ‖ ω

] ‖2) for RN and R̃N cannot be
ξ-parallel.

One can find the above results in Theorems 1, 2 and 3 and Corollary 1.
The present paper is organized as follows. In Section 2, we recall some defini-
tions and notions about conformal Kenmotsu manifolds. Section 3 gives some
preliminary lemmas on submanifolds of a conformal Kenmotsu manifold. Also,
we present an example for the existence of submanifolds in conformal Kenmotsu
manifolds tangent to ξ and either tangent or normal to ω]. Section 4 deals with
the study of submanifolds in conformal Kenmotsu manifolds with a ξ-parallel or
Lie ξ-parallel normal Jacobi operator.

2 Conformal Kenmotsu manifolds

A (2n+ 1)-dimensional differentiable manifold M is an almost contact metric
manifold, if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of
a tensor field ϕ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric
g satisfying the following properties:

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

ϕξ = 0, ηoϕ = 0, η(X) = g(X, ξ)

for all vector fields X,Y on M [6].
An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is said to be a Kenmotsu
manifold and an α-Kenmotsu manifold if the following relations

(∇Xϕ)Y = −g(X,ϕY )ξ − η(Y )ϕX (1)

and

(∇Xϕ)Y = α{−g(X,ϕY )ξ − η(Y )ϕX} (2)
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hold on M , respectively, where ∇ denotes the Riemannian connection of g and α
is a constant function on M . From (1) for a Kenmotsu manifold, we have

∇Xξ = X − η(X)ξ. (3)

For a Kenmotsu manifold, we also have

R(X,Y )ξ = η(X)Y − η(Y )X (4)

for all vector fields X,Y tangent to M , where R is the curvature tensor of M (see
[9]).
A (2n + 1)-dimensional smooth manifold M with almost contact metric struc-
ture (ϕ, η, ξ, g) is called a conformal Kenmotsu manifold if there exists a positive
smooth function f : M → R so that

g̃ = exp(f)g, ξ̃ = (exp(−f))
1
2 ξ, η̃ = (exp(f))

1
2 η, ϕ̃ = ϕ

is a Kenmotsu structure on M (see [1]-[3]).
Let M be a conformal Kenmotsu manifold, with ∇̃ and ∇ denoting the Rieman-
nian connections of M with respect to metrics g̃ and g, respectively. Using the
Koszul formula, one can simply obtain the following relation between ∇̃ and ∇:

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω]} (5)

for all vector fields X,Y on M , where ω(X) = g(grad f,X) = X(f). Note that the
vector field ω] = grad f is called the Lee vector field of the conformal Kenmotsu
manifold M . Then from η(X) = g(X, ξ), we have the equality η(ω]) = ω(ξ). Al-
though ω(ω]) = ‖ω]‖2, it is not necessarily ‖ω]‖2 = 1, that is, ω] is not necessarily
a unit vector field.
Assuming that R̃ andR are the curvature tensors of (M,ϕ, η̃, ξ̃, g̃) and (M,ϕ, η, ξ, g),
respectively. We have the following relation between R̃ and R:

exp(−f)g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) (6)

+
1

2
{B(X,Z)g(Y,W )−B(Y, Z)g(X,W )

+ B(Y,W )g(X,Z)−B(X,W )g(Y, Z)}

+
1

4
‖ω]‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )}

for all vector fields X,Y, Z,W on M , where B satisfies

B := ∇ω − 1

2
ω ⊗ ω. (7)

Obviously, B is a symmetric tensor field of type (0,2). On the other hand, from
equations (1), (3) and (5), we get

(∇Xϕ)Y = (exp(f))
1
2 {−g(X,ϕY )ξ − η(Y )ϕX} (8)

− 1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω] − g(X,ϕY )ω]},

∇Xξ = (exp(f))
1
2 {X − η(X)ξ} − 1

2
{ω(ξ)X − η(X)ω]} (9)
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for all vector fields X,Y on M .
Note that if function f is constant on the conformal Kenmotsu manifold M , i.e.
ω] = 0, then M is an α-Kenmotsu manifold in view of (2) and (8). In this paper,
we suppose that the conformal Kenmotsu manifold M is non-α-Kenmotsu (and
hence non-Kenmotsu), that is, f is non-constant, so ω] is a non-zero vector field
on M .

3 Submanifolds of conformal Kenmotsu manifolds

Let (Ḿ, ǵ) be an m-dimensional submanifold into a (2n+ 1)-dimensional con-
formal Kenmotsu manifold (M, g). The Gauss and Weingarten formulas are given
by

∇XY = ∇́XY + h(X,Y ), ∇XN = −ANX +∇⊥
XN

for all vector fields X,Y tangent to Ḿ and each vector field N normal to Ḿ , where
∇́ is the Riemannian connection of Ḿ determined by the induced metric ǵ and
∇⊥ is the normal connection on T⊥Ḿ of Ḿ . It is known that g(h(X,Y ), N) =
ǵ(ANX,Y ), where AN is the shape operator of Ḿ with respect to unit normal
vector field N .
In this paper, we assume that ξ |Ḿ is tangent to Ḿ .

3.1 Example

In this subsection, we construct an example of a five-dimensional conformal
Kenmotsu manifold which is not Kenmotsu. Also, we present two submanifolds
M1 and M2 in M such that the structural vector field ξ is tangent to both M1

and M2 and the Lee vector field ω] is tangent to M1 and normal to M2.
We consider the five-dimensional manifold

M = {(x1, x2, y1, y2, z) ∈ R5 | x1 > 0, z 6= 0},

where (x1, x2, y1, y2, z) are the standard coordinates in R5. We choose the vector
fields

e1 = exp(−z) ∂

∂x1
, e2 = exp(−z) ∂

∂x2
, e3 = exp(−z) ∂

∂y1
,

e4 = exp(−z) ∂

∂y2
, e5 = (exp(x1))

1
2
∂

∂z
,

which are linearly independent at each point of M . Let g be the Riemannian
metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = exp(−x1), g(e5, e5) = 1

and the remaining g(ei, ej) = 0, i, j : 1, · · · , 5. Let η be the 1-form defined by
η(X) = g(X, e5) for each vector field X on M . Thus, we have

η(e1) = 0, η(e2) = 0, η(e3) = 0, η(e4) = 0, η(e5) = 1.



204 Roghayeh Abdi

We define the (1, 1)-tensor field ϕ as

ϕe1 = e3, ϕe2 = e4, ϕe3 = −e1, ϕe4 = −e2, ϕe5 = 0.

Then using the linearity of ϕ and g, we have

ϕ2X = −X + η(X)e5, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M . Thus, for e5 = ξ, (ϕ, ξ, η, g) defines an almost con-
tact metric structure on M . Moreover, by the definition of bracket on manifolds
we get

[e1, e5] = (exp(x1))
1
2 e1 +

1

2
exp(−z)e5, [e2, e5] = (exp(x1))

1
2 e2,

[e3, e5] = (exp(x1))
1
2 e3, [e4, e5] = (exp(x1))

1
2 e4

and the remaining [ei, ej ] = 0, i, j : 1, · · · , 5. The Riemannian connection ∇ of
metric g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),

which is known as Koszul formula. By using this formula, we obtain

∇e1e1 = −1

2
exp(−z)e1 − (exp(−x1))

1
2 e5, ∇e1e2 = −1

2
exp(−z)e2,

∇e1e3 = −1

2
exp(−z)e3, ∇e1e4 = −1

2
exp(−z)e4,

∇e1e5 = (exp(x1))
1
2 e1, ∇e2e1 = −1

2
exp(−z)e2,

∇e2e2 =
1

2
exp(−z)e1 − (exp(−x1))

1
2 e5, ∇e2e5 = (exp(x1))

1
2 e2,

∇e3e1 = −1

2
exp(−z)e3, ∇e3e3 =

1

2
exp(−z)e1 − (exp(−x1))

1
2 e5,

∇e3e5 = (exp(x1))
1
2 e3, ∇e4e1 = −1

2
exp(−z)e4,

∇e4e4 =
1

2
exp(−z)e1 − (exp(−x1))

1
2 e5, ∇e5e1 = −1

2
exp(−z)e5,

∇e5e5 =
1

2
exp(x1 − z)e1, ∇e4e5 = (exp(x1))

1
2 e4

and the remaining ∇eiej = 0, i, j : 1, · · · , 5. By the following conformal change

g̃ = exp(x1)g, ξ̃ = (exp(−x1))
1
2 ξ, η̃ = (exp(x1))

1
2 η, ϕ̃ = ϕ,

it can be easily considerd that (M, ϕ̃, ξ̃, η̃, g̃) is a Kenmotsu manifold (see [7]).
Thus, (M,ϕ, ξ, η, g) is a conformal Kenmotsu manifold but is not Kenmotsu,
Since we have

(∇Xϕ)Y 6= −g(X,ϕY )ξ − η(Y )ϕX
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for some vector fields X,Y on M (for instance, (∇e4ϕ)e2 6= −g(e4, ϕe2)ξ −
η(e2)ϕe4).
Suppose M1 = {(x1, y1, y2, z) ∈ R4 | (x1, y1, y2, z) 6= 0} is a four-dimensional
submanifold of M with the isometric immersion defined by

ι1 : M1 →M

ι(x1, y1, y2, z) = (x1, 0, y1, y2, z),

where (x1, y1, y2, z) are the standard coordinates in R4. We choose the vector
fields

e1 = exp(−z) ∂

∂x1
, e3 = exp(−z) ∂

∂y1
,

e4 = exp(−z) ∂

∂y2
, e5 = (exp(x1))

1
2
∂

∂z
,

which are linearly independent at each point of M1. Then, e1, e3, e4 and e5 form
a basis for the tangent space of M1 and e2 spans the normal space of M1 in M .
Let g1 be the induced metric on M1. Thus, we have

g1(e1, e1) = g1(e3, e3) = g1(e4, e4) = exp(−x1), g1(e5, e5) = 1.

Using ω(Y ) = Y (x1), for each vector field Y on M , it can be easily calculated
that

ω(e1) = e1(x1) = exp(−z), ω(e2) = 0, ω(e3) = 0, ω(e4) = 0, ω(e5) = 0.

We see that M1 is a hypersurface of the conformal Kenmotsu manifold M such
that ω] |M1 and ξ |M1 are tangent to Ḿ .
Now, let M2 = {(x2, y1, y2, z) ∈ R4 | (x2, y1, y2, z) 6= 0} be a four-dimensional
submanifold of M with the isometric immersion defined by

ι2 : (M2, g2)→ (M, g)

ι2(x2, y1, y2, z) = (2, x2, y1, y2, z),

where (x2, y1, y2, z) are the standard coordinates in R4. We choose the vector
fields

e2 = exp(−z) ∂

∂x2
, e3 = exp(−z) ∂

∂y1
,

e4 = exp(−z) ∂

∂y2
, e5 = exp(1)

∂

∂z
,

which are linearly independent at each point of M2. Then, e2, e3, e4 and e5 form
a basis for the tangent space of M2 and e1 spans the normal space of M2 in M .
Suppose g2 is the induced metric on M2. Then, we have

g2(e2, e2) = g2(e3, e3) = g2(e4, e4) = exp(−2), g2(e5, e5) = 1.
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Thus, M2 is a hypersurface of the conformal Kenmotsu manifold M such that
ξ |M2 and ω] |M2 are tangent and normal to M2, respectively, in view of the values
ω(ei) for all i : 1, · · · , 5.
Now, we give some preliminary lemmas on the submanifold Ḿ of the conformal
Kenmotsu manifold M tangent to ξ and either tangent or normal to ω].

Lemma 1. [3] Let Ḿ be a submanifold of a conformal Kenmotsu manifold M
such that ω] |Ḿ is normal to Ḿ . Then

B(X,Y ) = −ω(h(X,Y )), (10)

h(X, ξ) =
1

2
η(X)ω], (11)

∇́Xξ = (exp(f))
1
2 {X − η(X)ξ} (12)

for all vector fields X,Y tangent to Ḿ .

Proof. From (7) we have

B(X,Y ) = (∇Xω)Y − 1

2
ω(X)ω(Y ) = ∇X(ω(Y ))− ω(∇XY )− 1

2
ω(X)ω(Y )

for all X,Y tangent to Ḿ . Since ω] |Ḿ is normal to Ḿ , the above equation can
be written as

B(X,Y ) = −ω(∇XY )

for all X,Y on Ḿ . Then by the use of the Gauss formula we obtain (10).
Taking Y = ξ in the Gauss formula and using (9), we have

∇́Xξ + h(X, ξ) = ∇Xξ = (exp(f))
1
2 {X − η(X)ξ} − 1

2
{ω(ξ)X − η(X)ω]}

for each X tangent to Ḿ . Since ω] |Ḿ is normal to Ḿ , comparing the tangential
part and the normal part in the above equation, we obtain (11) and (12).

Lemma 2. [3] Let Ḿ be a submanifold of a conformal Kenmotsu manifold M
such that ω] |Ḿ is tangent to Ḿ . Then

B(X,Y ) = ǵ(∇́Xω], Y )− 1

2
ω(X)ω(Y ), (13)

h(X, ξ) = 0, (14)

∇́Xξ = (exp(f))
1
2 {X − η(X)ξ} − 1

2
{ω(ξ)X − η(X)ω]} (15)

for all vector fields X,Y tangent to Ḿ .

Proof. Similarly to Lemma 1, equations (13), (14) and (15) are immediate results
of (7), (9) and the Gauss formula.
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Lemma 3. [3] Let Ḿ be a submanifold of a conformal Kenmotsu manifold M
such that ω] |Ḿ is tangent to Ḿ and parallel on Ḿ . Then

ω(ξ) 6= 0. (16)

Proof. The proof of relation (16) is given by contradiction. Suppose ω(ξ) = 0.
Taking the covariant differentation of ω(ξ) = 0 with respect to ξ and using ∇́ω] =
0, we obtain

ǵ(∇́ξξ, ω]) = 0.

Using (15) in the above equation, we get

‖ω]‖2 = ω(ξ)2.

Since we have assumed that ω(ξ) = 0, from the above equation it follows that
‖ω]‖2 = 0 which contradicts the hypothesis ω] 6= 0. Hence (16) holds on Ḿ .

4 CR-hypersurfaces with a ξ-parallel normal Jacobi
operator

An m-dimensional Riemannian submanifold Ḿ of a conformal Kenmotsu man-
ifold M is called a CR-submanifold [4] if ξ is tangent to Ḿ and there exists a
differentiable distribution D : x ∈ Ḿ −→ Dx ⊂ TxḾ such that
(1) the distribution Dx is invariant under ϕ, that is, ϕ(Dx) ⊂ Dx for each x ∈ Ḿ ;
(2) the complementary orthogonal distribution D⊥ : x ∈ Ḿ −→ D⊥

x ⊂ TxḾ of D
is anti-invariant under ϕ, that is, ϕD⊥

x ⊂ T⊥
x Ḿ for all x ∈ Ḿ , where TxḾ and

T⊥
x Ḿ are the tangent space and the normal space of Ḿ at x, respectively.

Now, assume Ḿ is a hypersurface of a conformal Kenmotsu manifold M such that
the vector field ξ always belongs to the tangent space of Ḿ . Let ǵ be the induced
metric on Ḿ . Also, let N be a unit normal vector field belonging to the normal
space of Ḿ . We put ϕN = −U . Clearly U is a unit tangent vector field on Ḿ .
We denote by D⊥ = span{U, ξ} the 2-dimensional distribution generated by U, ξ
and by D the orthogonal complement of D⊥ in TḾ . Thus, we have the following
decompositions

TM = D ⊕D⊥ ⊕ span{N}, (17)

TḾ = D ⊕D⊥, (18)

hence Ḿ is a CR-hypersurface of M .
Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M . Denote by ∇
and ∇́ the Riemannian connection of M and the induced Riemannian connection
of Ḿ , respectively. By using (17) and (18), the Gauss and Wiengarten formulas
are

∇XY = ∇́XY + h(X,Y ),

∇XN = −AX
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for all X,Y tangent to Ḿ , where A is the shape operator of Ḿ with respect to
the unit normal vector field N . It is known that h(X,Y ) = ǵ(AX,Y )N , for all
vector fields X,Y on Ḿ .
In the usual way, by using (6) we derive the Codazzi equation as

ǵ((∇́XA)Y − (∇́YA)X,Z) = exp(−f)g̃(R̃(X,Y )Z,N) (19)

+
1

2
{B(X,N)ǵ(Y,Z)−B(Y,N)ǵ(X,Z)}

for all vector fields X,Y, Z tangent to Ḿ .
Let (M, g) be a Riemannian manifold. The Jacobi operator RX , for each tangent
vector field X at x ∈M , is defined by

(RXY )(x) = (R(Y,X)X)(x),

for each Y orthogonal to X at x ∈ M . It becomes a self adjoint endomorphism
of the tangent bundle TM of M , where R denotes the curvature tensor of (M, g).
Then the normal Jacobi operator RN : TḾ −→ TḾ for the unit normal vector
field N of a CR-hypersurface Ḿ in a conformal Kenmotsu manifold M can be
obtained from (6) by putting Y = Z = N . Hence, we have

ǵ(RN (X), Y ) = exp(−f)g̃(R̃N (X), Y )

+
1

2
{B(N,N)ǵ(X,Y ) +B(X,Y )}+

1

4
‖ω] ‖2 ǵ(X,Y ) (20)

for all vector fields X,Y on Ḿ . Making use of (4) and the definition of a conformal
Kenmotsu manifold, we can write

R̃Nξ = (exp(f))
1
2 R̃N ξ̃ = (exp(f))

1
2 (−g̃(N,N)ξ̃ + η̃(N)N)

= −g̃(N,N)ξ = − exp(f)g(N,N)ξ

= − exp(f)ξ. (21)

Now, we have the following results:

Theorem 1. Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold
M with a ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is normal to Ḿ .

Then Ḿ is totally umbilic with scalar shape operator 1
2 id iff R̃N is ξ-parallel.

Proof. Since ω] |Ḿ is orthogonal to Ḿ , we put ω] = N . Then from (7) and the
Weingarten formula, we have

B(N,N) = −1

2
, (22)

B(X,N) = 0, (23)

B(X,Y ) = −ǵ(AX,Y ) (24)



CR-hypersurfaces of conformal Kenmotsu manifolds 209

for all vector fields X,Y tangent to Ḿ . By the use of (10) and (22) in (20), we
obtain

RN (X) = R̃N (X)− 1

2
AX (25)

for each vector field X on Ḿ . Taking the covariant differentiation of (25) and
removing the similar sentences, we get

(∇́ξRN )X = (∇́ξR̃N )X − 1

2
(∇́ξA)X (26)

for each vector field X on Ḿ . From (19) we obtain

(∇́ξA)X = (∇́XA)ξ +
1

2
{B(X,N)ξ −B(ξ,N)X}

= ∇́XAξ −A∇́Xξ +
1

2
{B(X,N)ξ −B(ξ,N)X}. (27)

From (11) it follows that Aξ = 1
2ξ. Thus, putting (12) and (23) in (27), we find

(∇́ξA)X = (exp(f))
1
2 (

1

2
X −AX) (28)

for each vector field X on Ḿ . Since ∇́ξRN = 0, by the use of (28) in (26), we
obtain

(∇́ξR̃N )X = (exp(f))
1
2 (

1

2
X −AX)

for each vector field X on Ḿ . The above equation completes the proof of the
theorem.

Theorem 2. Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M
with a Lie ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is normal to Ḿ .

Then Ḿ is totally umbilic with scalar shape operator 1
2 id iff R̃N is ξ-parallel.

Proof. Since the normal Jacobi operator of Ḿ is Lie ξ-parallel, we have

0 = (LξRN )X = LξRNX −RN (LξX)

= (∇́ξRN )X − ∇́RN (X)ξ +RN (∇́Xξ) (29)

for each vector field X on Ḿ , where Lξ shows the Lie derivative relative to ξ.
From (12), (21) and (25), we get

−∇́RN (X)ξ +RN (∇́Xξ) = 0 (30)

for each vector field X on Ḿ . Substituting (26) and (30) in (29), it follows that

(∇́ξR̃N )X − 1

2
(∇́ξA)X = 0. (31)
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Putting (28) in (31), we get

(∇́ξR̃N )X − 1

2
(exp(f))

1
2 (

1

2
X −AX) = 0

for each vector field X on Ḿ . Hence, the above equation completes the proof of
the theorem.

Theorem 3. Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold M
with a ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is tangent to Ḿ and

parallel on Ḿ . Then ω] |Ḿ is an eigen vector field corresponding to eigen value

− exp(f) of R̃N and − exp(f)− 1
2(ω(∇NN)− 1

2 ‖ ω
] ‖2) of RN .

Proof. From (7), we can write

B(N,N) = −ω(∇NN), (32)

B(X,Y ) = −1

2
ω(X)ω(Y ) (33)

for all vector fields X,Y tangent to Ḿ . Making use of (32) and (33) in (20), we
have

RN (X) = R̃N (X)− 1

2
{ω(∇NN)X +

1

2
ω(X)ω]− ‖ ω] ‖2 X}. (34)

Taking the covariant differentiation of (34), we get

(∇́ξRN )X = ∇́ξRN (X)−RN∇́ξX = (∇́ξR̃N )X − 1

2
ω(∇́ξ∇NN)X

for each vector field X tangent to Ḿ . Since RN is ξ-parallel, the above equation
implies

(∇́ξR̃N )X =
1

2
ω(∇́ξ∇NN)X (35)

for each vector field X tangent to Ḿ . By (21), we find

ǵ((∇́ξR̃N )ξ, ξ) = ǵ(∇́ξ(R̃Nξ), ξ)− ǵ(R̃N (∇́ξξ), ξ)
= ǵ(∇́ξ(− exp(f)ξ), ξ)− ǵ(R̃N (∇́ξξ), ξ)
= − exp(f)ω(ξ)− ǵ(R̃N (∇́ξξ), ξ).

Using (15) in the above equation, it follows that

ǵ((∇́ξR̃N )ξ, ξ) = − exp(f)ω(ξ) +
1

2
ω(ξ)ǵ(R̃Nξ, ξ)−

1

2
ǵ(R̃Nω

], ξ).

As R̃N is symmetric, the above equation and (21) yield

ǵ((∇́ξR̃N )ξ, ξ) = − exp(f)ω(ξ) +
1

2
ω(ξ)ǵ(R̃Nξ, ξ)−

1

2
ǵ(R̃Nξ, ω

]).

= − exp(f)ω(ξ). (36)
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Puting X = ξ in (35) and taking the inner product of the obtained relation with
ξ and using (36), we have

1

2
ω(∇́ξ∇NN) = − exp(f)ω(ξ). (37)

substituting (37) in (35), we get

(∇́ξR̃N )X = − exp(f)ω(ξ)X (38)

for each vector field X tangent to Ḿ . Taking X = ξ in the above equation and
using (21) and (15), we can write

− exp(f)ω(ξ)ξ = (∇́ξR̃N )ξ = ∇́ξ(R̃Nξ)− R̃N (∇́ξξ)

= −∇́ξ(exp(f)ξ)− R̃N (−1

2
(ω(ξ)ξ − ω]))

= − exp(f)ω(ξ)ξ − exp(f)∇́ξξ +
1

2
ω(ξ)R̃Nξ

− 1

2
R̃Nω

]

= − exp(f)ω(ξ)ξ +
1

2
exp(f)(ω(ξ)ξ − ω])

− 1

2
exp(f)ω(ξ)ξ − 1

2
R̃Nω

].

The above equation implies

R̃Nω
] = − exp(f)ω].

The above relation shows that ω] |Ḿ is an eigen vector field of R̃N corresponding
to eigen value − exp(f). Moreover, making use of the above relation in (34) we
see that ω] is an eigen vector field of RN corresponding to eigen value − exp(f)−
1
2(ω(∇NN)− 1

2 ‖ ω
] ‖2).

Corollary 1. Let Ḿ be a CR-hypersurface of a conformal Kenmotsu manifold
M with a ξ-parallel normal Jacobi operator RN such that ω] |Ḿ is tangent to Ḿ

and parallel on Ḿ . Then R̃N cannot be ξ-parallel.

Proof. It is an immediate result of (16) and (38).
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