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Abstract

In this paper, we study C' R-hypersurfaces of a conformal Kenmotsu man-
ifold with a &-parallel or Lie &-parallel normal Jacobi operator.
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1 Introduction

In [9], Kenmotsu defined and studied a new class of almost contact manifolds
called Kenmotsu manifolds.
Let (M, J, g) be an almost Hermitian manifold of dimension 2n, where J denotes
the almost complex structure and g the Hermitian metric. Then (M, J, g) is called
a locally conformal Kaehler manifold if for each point p of M there exists an open
neighborhood U of p and a positive function fiy on U so that the local metric
gu = exp(—f)gjr is Kaehlerian. If U = M, then manifold (M, J,g) is said to be
a globally conformal Kaehler manifold. The 1-form w = df is called the Lee form
and its metrically equivalent vector field w! = grad f, where § means the rising
of the indices with respect to g, namely g(X,w#) = w(X) for all X tangent to M,
is called Lee vector field [8]. Submanifolds of locally conformal Kaehler manifolds
with parallel Lee form have been studied by several authors (see, for instance,
11]).
We have introduced conformal Kenmotsu manifolds by using an idea of globally
conformal Kaehler manifolds. Also, we have given an example of a conformal
Kenmotsu manifold that is not Kenmotsu. Hence the category of conformal Ken-
motsu manifolds and Kenmotsu manifolds is not the same.
The definition of a conformal Kenmotsu manifold is as follows.
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A (2n + 1)-dimensional smooth manifold M with almost contact metric struc-
ture (¢,n, &, g) is called a conformal Kenmotsu manifold if there exists a positive
smooth function f: M — R so that

G=exp(f)g,  E=(exp(=f)2&  ii=(exp(f))

D=

Uz ¥

|
©

is a Kenmotsu structure on M (see [1]-[3]).

In fact, manifold M with almost contact metric structure (¢,7,&, g) is not Ken-
motsu, but with a conformal change of the metric g, that is, § = exp(f)g is
Kenmotsu. Thus, there exist two structures (¢, 7, &, g) and (¢,7,£,§) on M. Let
V and V be the Riemannian connections of M with respect to metrics § and g,
respectively and R and R denote the curvature tensors of V and V, respectively.
We have calculated the relation between R and R as

exp(~NIRX,V)ZW) = g(R(X,Y)Z,W)
SB(X, 2)g(Y, W) — B(Y, Z)g(X, W)
B(Y,W)g(X, Z) ~ B(X, W)g(¥, 7)}
AP, 2)g(¥, ) — g(¥, Z)g(X, W)}

+ o+ o+

for all vector fields X,Y, Z, W on M, where
1
B:=Vw— iw Q@ w.

In [10], Kobayashi has proven: let M be a submanifold of a Kenmotsu manifold
M such that the structural vector field & |5 is tangent to M, then

VX§=X—77(X)57 h(X7£):0

for each vector field X tangent to M, where V and h are the Riemannian connec-
tion and the second fundamental form of M, respectively.

In this paper as a generalization of these results, we state Lemmas 3.1 and 3.2 for
a submanifold of a conformal Kenmotsu manifold.

In quaternionic space forms Berndt [5] has introduced the notion of normal Jacobi
operator Ry(X) = R(X,N)N € End T,M, x € M for every real hypersurface
M in a quaternionic projective space QP™ or in a quaternionic hyperbolic space
QH™, where R denotes the curvature tensor of the ambient space. He has also
shown in [5] that the curvature adaptedness, that is, the normal Jacobi opera-
tor Ry commuting with the shape operator of M, is equivalent to the fact that
distributions D and D+ = Span{€y, &, €3} are invariant by the shape operator,
where T,M = D@ D+, x € M. Motivated by this study, we present the following
problem:

Can we characterize C R-hypersurfaces in conformal Kenmotsu manifolds with a
E-parallel or Lie £-parallel normal Jacobi operator such that the structural vector
field & is tangent and the Lee vector field w' is either tangent or normal to the



C R-hypersurfaces of conformal Kenmotsu manifolds 201

C R-hypersurface?

Before considering the answer of the above question, an example for the existence
of C'R-hypersurfaces in conformal Kenmotsu manifolds tangent to £ and either
tangent or normal to w! is constructed.

Corresponding to the above problem, we give the following theorems.

e Let M be a C R-hypersurface of a conformal Kenmotsu manifold M with a
&-parallel normal Jacobi operator Ry such that w? |7 is normal to M. Then

M is totally umbilic with scalar shape operator %id iff Ry is &-parallel.

e Let M be a C R-hypersurface of a conformal Kenmotsu manifold M with a
Lie ¢-parallel normal Jacobi operator Ry such that w? |7 is normal to M.

Then M is totally umbilic with scalar shape operator %id iff Ry is &-parallel.

e Let M be a C R-hypersurface of a conformal Kenmotsu manifold M with a
¢-parallel normal Jacobi operator Ry such that w | 7 18 tangent to M and
parallel on M. Then w? is an eigen vector field with eigen value —exp(f)
for Ry and —exp(f) — 3(w(VNN) — 3 || w* ||?) for Ry and Ry cannot be
&-parallel.

One can find the above results in Theorems 1, 2 and 3 and Corollary 1.

The present paper is organized as follows. In Section 2, we recall some defini-
tions and notions about conformal Kenmotsu manifolds. Section 3 gives some
preliminary lemmas on submanifolds of a conformal Kenmotsu manifold. Also,
we present an example for the existence of submanifolds in conformal Kenmotsu
manifolds tangent to & and either tangent or normal to w®. Section 4 deals with
the study of submanifolds in conformal Kenmotsu manifolds with a &-parallel or
Lie &-parallel normal Jacobi operator.

2 Conformal Kenmotsu manifolds

A (2n + 1)-dimensional differentiable manifold M is an almost contact metric
manifold, if it admits an almost contact metric structure (¢, &,n, g) consisting of
a tensor field ¢ of type (1, 1), a vector field &, a 1-form 7 and a Riemannian metric
g satisfying the following properties:

@ =-Id+n®¢, n() =1, 9(pX,0Y) = g(X,Y) = n(X)n(Y),
& =0, noy = 0, n(X) = g(X,¢)

for all vector fields X,Y on M [6].
An almost contact metric manifold (M?" 1 p & 7, g) is said to be a Kenmotsu
manifold and an a-Kenmotsu manifold if the following relations

(Vxp)Y = —g(X, oY )§ —n(Y)pX (1)

and

(Vx@)Y = of—g(X,0Y)§ —n(Y)pX} (2)
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hold on M, respectively, where V denotes the Riemannian connection of g and «
is a constant function on M. From (1) for a Kenmotsu manifold, we have

Vx€§=X—n(X)¢E. (3)
For a Kenmotsu manifold, we also have
R(X,Y)§ =n(X)Y —n(Y)X (4)

for all vector fields X, Y tangent to M, where R is the curvature tensor of M (see
9]).

A (2n + 1)-dimensional smooth manifold M with almost contact metric struc-
ture (¢,n,&, g) is called a conformal Kenmotsu manifold if there exists a positive
smooth function f: M — R so that

g =exp(f)g, £ = (exp(—f))7¢, il = (exp(f))

is a Kenmotsu structure on M (see [1]-[3]).

Let M be a conformal Kenmotsu manifold, with V and V denoting the Rieman-
nian connections of M with respect to metrics g and g, respectively. Using the
Koszul formula, one can simply obtain the following relation between V and V:

NI

7, o=

VxY =VxY + %{w(X)Y +w(¥)X — g(X,Y)u} (5)

for all vector fields X, Y on M, where w(X) = g(grad f, X) = X(f). Note that the
vector field wh = grad f is called the Lee vector field of the conformal Kenmotsu
manifold M. Then from 7(X) = g(X, &), we have the equality n(w?) = w(€). Al-
though w(w?) = [|w||?, it is not necessarily ||w?||? = 1, that is, w* is not necessarily
a unit vector field.

Assuming that R and R are the curvature tensors of (M, o, 1, £, g)and (M, ¢,n,&,g),

respectively. We have the following relation between R and R

exp(~NIRX,V)ZW) = g(R(X,Y)Z,W) ()
£ S{B(X, 2)g(Y, W) — B(Y, Z)g(X, W)
+ BY,W)g(X,Z)—-B(X,W)g(Y,Z)}
PG, 2)g(V, W) — g7, 2)g(X, W)
for all vector fields X,Y, Z, W on M, where B satisfies
B = Vw—%w@w. (1)

Obviously, B is a symmetric tensor field of type (0,2). On the other hand, from
equations (1), (3) and (5), we get

(Vx@)Y = (exp(f))?{—g(X,oY)E —n(Y)pX} 8)
— (V)X — w(Y)pX + g(X, Y )pwt — g(X, ¥ )},

Vi€ = (ep(N)HX —n(X)E} - 5 {w(©)X —n(X)e) ©)
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for all vector fields X,Y on M.

Note that if function f is constant on the conformal Kenmotsu manifold M, i.e.
wf =0, then M is an a-Kenmotsu manifold in view of (2) and (8). In this paper,
we suppose that the conformal Kenmotsu manifold M is non-a-Kenmotsu (and

hence non-Kenmotsu), that is, f is non-constant, so w® is a non-zero vector field
on M.

3 Submanifolds of conformal Kenmotsu manifolds

Let (M, §) be an m-dimensional submanifold into a (2n + 1)-dimensional con-
formal Kenmotsu manifold (M, g). The Gauss and Weingarten formulas are given
by

VxY = VxY +h(X,Y), VxN = —AyX + VN

for all vector fields X, Y tangent to M and each vector field N normal to M , where
V is the Riemannian connection of M determined by the induced metric § and
V-1 is the normal connection on T-M of M. It is known that g(h(X,Y),N) =
J(AnX,Y), where Ay is the shape operator of M with respect to unit normal
vector field N.

In this paper, we assume that £ |, is tangent to M.

3.1 Example

In this subsection, we construct an example of a five-dimensional conformal
Kenmotsu manifold which is not Kenmotsu. Also, we present two submanifolds
My and M5 in M such that the structural vector field £ is tangent to both M;
and My and the Lee vector field w? is tangent to M; and normal to Mo.

We consider the five-dimensional manifold

M= {(J:luanylay?wz) € R5 | ry > O,Z # 0}7

where (1, Z2, 1, y2, z) are the standard coordinates in R®. We choose the vector
fields

€] = ex (—z)i e = ex (—z)i €3 = ex (—z)i
1= p 85131’ 2 — p 81'27 3= p ay17
0 1 0
€4 = eXP(—Z)aT/Q, €5 = (eXP(xl)P&,

which are linearly independent at each point of M. Let g be the Riemannian
metric defined by

gler,e1) = g(ez, e2) = g(es, e3) = gleq, e4) = exp(—z1), g(es,e5) =1

and the remaining g(e;,e;) = 0, 4,5 : 1,---,5. Let  be the 1-form defined by
n(X) = g(X, e5) for each vector field X on M. Thus, we have

n(er) =0, nle2) =0, mnles)=0, nles) =0, nles)=1.
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We define the (1, 1)-tensor field ¢ as

per =e3, ey =e4, pe3=—ei, peq=—e3, pe;=0.
Then using the linearity of ¢ and g, we have

P?X =X +nX)es,  g(pX,pY)=g(X,Y) = n(X)n(Y)

for all vector fields X, Y on M. Thus, for es =&, (¢, £, n,g) defines an almost con-
tact metric structure on M. Moreover, by the definition of bracket on manifolds
we get

S

1, e5] = (exp(z1))Zer + %exp(—z)%, le2, 5] = (exp(z1))2es,

es, leq, e5] = (exp(:cl))%&;

(NI

le3; e5] = (exp(21))

and the remaining [e;,e;] = 0, 4,5 : 1,---,5. The Riemannian connection V of
metric g is given by

29(VXK Z) = Xg(Y, Z) +Yg(Z,X) - Zg(Xa Y)
9(X,[Y, 2])) +9(Y,[2,X]) + 9(Z, [X,Y]),

which is known as Koszul formula. By using this formula, we obtain

S

1 1
Ve €1 = D) exp(—z)e; — (exp(—x1))2es, V€2 = D) exp(—z)ea,

Ve, 3 = —% exp(—z)es, Ve €4 = —% exp(—z)ed,

Ve, €5 = (exp(xl))%el, Ve,€1 = —% exp(—z)ea,

Ve,€2 = %exp(—z)el — (exp(—xl))%%, Ve,€5 = (exp(wl))%eg,
Vese1 = —% exp(—z)es, Veze3 = %exp(—z)el — (exp(—xl))%e5,
Vegses5 = (exp(xl))%eg, Ve01 = —% exp(—z)eq,

N[

1 1
Veier = 3 exp(—2)er — (exp(—a1))Fes,  Veger = —5 exp(—z)es,

1 1
Veses = 3 exp(z1 — 2)eq, Vese5 = (exp(x1))2ey
and the remaining Vge; =0, 4,5 : 1,---,5. By the following conformal change
- ~ 1 - 1 .
g = exp(z1)g, § = (exp(—1))2¢, 7l = (exp(w1))2n, ¢ =,

it can be easily considerd that (M, @,¢,7,§) is a Kenmotsu manifold (see [7]).
Thus, (M,p,&,n,9) is a conformal Kenmotsu manifold but is not Kenmotsu,
Since we have

(Vxp)Y # —g(X,pY)E —n(Y)pX
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for some vector fields X,Y on M (for instance, (V¢,p)ea # —g(eq, pea)é —
n(e2)pea).
Suppose My = {(x1,y1,y2,2) € R* | (z1,y1,y2,2) # 0} is a four-dimensional
submanifold of M with the isometric immersion defined by

L1 M1 — M

L(x17y17y27z) - (x1707y17y272)7

where (x1,%1,%2,2) are the standard coordinates in R%. We choose the vector
fields

0 0
e = exp(—z)a—xl, e3 = exp(—z)a—yl,
0 1 0

e4 = exp(—2) es = (exp(21))2 5~

dy2’

which are linearly independent at each point of M. Then, e, es,e4 and e5 form
a basis for the tangent space of M; and ey spans the normal space of M in M.
Let g1 be the induced metric on M;. Thus, we have

gi(e1,e1) = gi(es, e3) = gi(es, eq4) = exp(—x1), g1(es,e5) = 1.

Using w(Y) = Y (x1), for each vector field Y on M, it can be easily calculated
that

w(el) = 61($1) = eXp(*Z), W(GZ) =0, w(63) =0, w(64) =0, W(GS) =0.

We see that M is a hypersurface of the conformal Kenmotsu manifold M such
that w |57, and € |y, are tangent to M.

Now, let My = {(z2,v1,y2,2) € R* | (22,y1,v2,2) # 0} be a four-dimensional
submanifold of M with the isometric immersion defined by

Lo <M2792) — (M7 g)
L2($2,y1,y2,2) = (Qaw27y1a927z)7

where (z2,91,¥2,2) are the standard coordinates in R*. We choose the vector
fields

€2 = ex (—z)i €3 = ex (—z)i

2 — p 81‘2’ 3 — p aylv
0

€4 = eXp(_Z)(?T/Q’ €5 = eXP(l)g,

which are linearly independent at each point of Ms. Then, es, e3,e4 and e; form
a basis for the tangent space of Ms and e; spans the normal space of My in M.
Suppose gs is the induced metric on My. Then, we have

ga(e2,e2) = ga(e3, e3) = ga(ea, e4) = exp(—2), g2(es,e5) = 1.



206 Roghayeh Abdi

Thus, Ms is a hypersurface of the conformal Kenmotsu manifold M such that
¢ |, and w® |y, are tangent and normal to Mo, respectively, in view of the values
w(e;) foralld:1,--- 5.

Now, we give some preliminary lemmas on the submanifold M of the conformal
Kenmotsu manifold M tangent to ¢ and either tangent or normal to w?.

Lemma 1. /3] Let M be a submanifold of a conformal Kenmotsu manifold M
such that w |y s normal to M. Then

B(X,Y) = —w(h(X,Y)), (10)
M) = gn(X) (1)
Vx€ = (exp(f))2 {X — n(X)¢} (12)

for all vector fields X,Y tangent to M.

Proof. From (7) we have

B(X,Y) = (Vxw)¥ — sw(X)a(Y) = Vx(@(Y)) ~ «(VxY) ~ Lo(X)u(Y)

for all X,Y tangent to M. Since w? |7 is normal to M , the above equation can
be written as

B(X,Y) = -w(VxY)
for all X,Y on M. Then by the use of the Gauss formula we obtain (10).
Taking Y = £ in the Gauss formula and using (9), we have

V€4 h(X,€) = Vx& = (exp()HX — n(X)€} — 5{w(€)X —n(X)w)

for each X tangent to M. Since w? |7 is normal to M , comparing the tangential
part and the normal part in the above equation, we obtain (11) and (12). O

Lemma 2. [3] Let M be a submanifold of a conformal Kenmotsu manifold M
such that wt | \y is tangent to M. Then

B(X,Y) = §(Vxeh, V) — %W(X)M(Y), (13)
h(X,€) =0, (14)
V€ = (exp()HX —n(X)&) — S{wlOX —n(X)f)  (15)

for all vector fields X,Y tangent to M.

Proof. Similarly to Lemma 1, equations (13), (14) and (15) are immediate results
of (7), (9) and the Gauss formula. O
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Lemma 3. [3] Let M be a submamfald of a conformal Kenmotsu manifold M
such that w" | \7 s tangent to M and parallel on M. Then

w(€) # 0. (16)

Proof. The proof of relation (16) is given by contradiction. Suppose w(§) = 0.
Taking the covariant differentation of w(¢) = 0 with respect to ¢ and using Vw? =
0, we obtain

(Ve wh) =0
Using (15) in the above equation, we get
lf|1? = w(6)*.

Since we have assumed that w(§) = 0, from the above equation it follows that
|wf||? = 0 which contradicts the hypothesis wf # 0. Hence (16) holds on M. [

4 (' R-hypersurfaces with a ¢-parallel normal Jacobi
operator

An m-dimensional Riemannian submanifold M of a conformal Kenmotsu man-

ifold M is called a C'R-submanifold [4] if { is tangent to M and there exists a
differentiable distribution D : z € M —s D, C T, M such that
(1) the distribution D, is invariant under ¢, that is, ¢(D;) C D, for each z € M;
(2) the complementary orthogonal distribution D+ : € M — D+ c T,M of D
is anti-invariant under ¢, that is, ché T xLM for all z € M , where T, M and
TmLM are the tangent space and the normal space of M at x, respectively.
Now, assume Misa hypersurface of a conformal Kenmotsu manifold M such that
the vector field £ always belongs to the tangent space of M. Let G be the induced
metric on M. Also, let N be a unit normal vector field belonging to the normal
space of M. We put ¢ N = —U. Clearly U is a unit tangent vector field on M.
We denote by D+ = span{U, £} the 2-dimensional distribution generated by U, &
and by D the orthogonal complement of D+ in TM. Thus, we have the following
decompositions

TM = D ® D+ @ span{N}, (17)
TM =D @ D+, (18)

hence M is a C R-hypersurface of M.

Let M be a C R-hypersurface of a conformal Kenmotsu manifold M. Denote by V
and V the Riemannian connection of M and the induced Riemannian connection
of M, respectively. By using (17) and (18), the Gauss and Wiengarten formulas
are

VxY =VxY +h(X,Y),
VxN = —AX
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for all X,Y tangent to M , where A is the shape operator of M with respect to
the unit normal vector field N. It is known that h(X,Y) = §(AX,Y)N, for all
vector fields X,Y on M.

In the usual way, by using (6) we derive the Codazzi equation as

(XA ~ (FyA)X,2) = ep(-NIR(X,Y)Z,N) (19)
+ BN, 2) - B, N)GX, 2)

for all vector fields X, Y, Z tangent to M.
Let (M, g) be a Riemannian manifold. The Jacobi operator Rx, for each tangent
vector field X at x € M, is defined by

(BxY)(z) = (R(Y, X) X)(x),

for each Y orthogonal to X at x € M. It becomes a self adjoint endomorphism
of the tangent bundle T'M of M, where R denotes the curvature tensor of (M, g).
Then the normal Jacobi operator Ry : TM — TM for the unit normal vector
field N of a C'R-hypersurface M in a conformal Kenmotsu manifold M can be
obtained from (6) by putting Y = Z = N. Hence, we have

JRN(X).Y) = exp(~Na(Rx(X),Y)
b S IBIV, NGX,Y) + BX,Y)) + gl |2 6(X,¥) (20)

for all vector fields X, Y on M. Making use of (4) and the definition of a conformal
Kenmotsu manifold, we can write

N
N[

Rné = (exp(f))? (—g(N, N)E + i(N)N)
— —G(N,N)E = —exp()g(N, )¢
— —ew(f)E (21)

Ry¢ = (exp(f))

Now, we have the following results:

Theorem 1. Let M be a CR-hypersurface of a conformal Kenmotsu manifold
M with a &-parallel normal Jacobi operator Ry such that w! |y s normal to M.

Then M s totally umbilic with scalar shape operator %id iff Ry is &-parallel.

Proof. Since w* |,; is orthogonal to M, we put w? = N. Then from (7) and the
Weingarten formula, we have
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for all vector fields X, Y tangent to M. By the use of (10) and (22) in (20), we
obtain

Ry (X) = By (X) — %AX (25)

for each vector field X on M. Taking the covariant differentiation of (25) and
removing the similar sentences, we get

. ;= 1
(VeRN)X = (VeRN)X — i(VgA)X (26)
for each vector field X on M. From (19) we obtain

(VeA)X

(VxA)E + S {B(X, N)é — B(&, N)X}

= VxAC- AVXEF (B NE - BENXL  (20)
From (11) it follows that A¢ = ¢, Thus, putting (12) and (23) in (27), we find
(VeA)X = (exp()5 (3 X — AX) (28)

for each vector field X on M. Since ﬁgRN = 0, by the use of (28) in (26), we
obtain

(Veltn)X = (expl(f))} (5 X — AX)

for each vector field X on M. The above equation completes the proof of the
theorem. O

Theorem 2. Let M be a C R-hypersurface of a conformal Kenmotsu manifold M
with a Lie &-parallel normal Jacobi operator Ry such that w! |\ i normal to M.

Then M is totally umbilic with scalar shape operator %z’d iff Ry is E-parallel.
Proof. Since the normal Jacobi operator of M is Lie &-parallel, we have

0= (LeRn)X = LeRnX — Ry(LeX)
= (VeRN)X — Vi (x)é + Rv(Vx¢) (29)

for each vector field X on M , where L¢ shows the Lie derivative relative to &.
From (12), (21) and (25), we get

~Viayx)€+Bn(VxE) =0 (30)

for each vector field X on M. Substituting (26) and (30) in (29), it follows that

(VeRn)X — %(W)X ~0. (31)
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Putting (28) in (31), we get

NI

(Veltn)X — 5 (exp(H)}(5X — AX) =0

for each vector field X on M. Hence, the above equation completes the proof of
the theorem. ]

Theorem 3. Let M be a C R-hypersurface of a conformal Kenmotsu manifold M
with a &-parallel normal Jacobi operator Ry such that wt |\7 is tangent to M and

parallel on M. Then w |yy is an eigen vector field corresponding to eigen value
—exp(f) of Ry and —exp(f) — 5(w(VNN) — 5 || w* ||?) of Ry.

Proof. From (7), we can write

B(N,N) = —w(VyN), (32)
B(X,Y) = —%w(X)w(Y) (33)

for all vector fields X,V tangent to M. Making use of (32) and (33) in (20), we
have

- 1 1
Ry(X) = Ri(X) = S{o(VaN)X + Jo(X)wi— || P X} (34
Taking the covariant differentiation of (34), we get

. , , .~ 1 ,
(VeRn)X = VeRy(X) = RyVeX = (VeRn)X — Jw(VeVNN)X

for each vector field X tangent to M. Since Ry is &-parallel, the above equation
implies

. o~ 1 .
(VgRN)X = iw(vngN)X (35)

for each vector field X tangent to M. By (21), we find

G(VeRN)EE) = §(Ve(RnE),€) — G(RN(Ve€), )
= §(Ve(—exp(f)€),€) — G(RN(Ve), €)
= —exp(f)w(€) — §(Rn(Ve€), ©).

Using (15) in the above equation, it follows that

H(VERNEE) = —exp(Fl€) + Hw(OF(RNE.E) - Sd(Rnek,©)

As Ry is symmetric, the above equation and (21) yield

HVERNEE) = —expl(w(E) + Jo(OF(RNE,€) — (R o).
= —exp(flw(E). (36)
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Puting X = ¢ in (35) and taking the inner product of the obtained relation with
¢ and using (36), we have

S9(VEVNN) = — exp()e(€). (37)
substituting (37) in (35), we get
(VeRn)X = —exp(fw(€)X (38)

for each vector field X tangent to M. Taking X = £ in the above equation and
using (21) and (15), we can write

—exp(f)w(§)€ = (VeRN)E = Ve(RnE) — Rn(Ved)

= Velexp()E) — Rl L (@€ )

= exp(/)wlE)€ — exp(f) Vet + ze(E)RnE
— SRt

= —exp(NlOF + 5 exp(Nw(OF - o)

S ()€ — o R

The above equation implies
Rywk = — exp(f)wh.

The above relation shows that w | )7 is an eigen vector field of Ry corresponding
to eigen value —exp(f). Moreover, making use of the above relation in (34) we
see that wF is an eigen vector field of Ry corresponding to eigen value — exp(f) —

L@(VNN) = § ][t ). s

Corollary 1. Let M be a C R-hypersurface of a conformal Kenmotsu manifold
M with a &-parallel normal Jacobi operator Ry such that wt |\y 18 tangent to M

and parallel on M. Then Ry cannot be &-parallel.

Proof. 1t is an immediate result of (16) and (38). O
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