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Abstract

The conjugate gradient (CG) method is a widely employed algorithm for
solving large-scale unconstrained optimization problems due to its fast con-
vergence and efficient memory usage. In this paper, we suggest a new hybrid
nonlinear conjugate gradient method, which the conjugate gradient coeffi-
cient βk is a convex combination of βNPRP

k and βDY
k . The parameter θk is

computed in such a way that the conjugacy condition is satisfied. With the
strong Wolfe line search, the descent property and global convergence of the
new hybrid method are proved. The numerical results also show that our
method is robust and efficient.
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1 Introduction

The conjugate gradient method is a very important and efficient technique for
solving large-scale nonlinear optimization due to the simplicity of their iteration,
very low memory requirements, and good convergence analysis In this work, we
consider the unconstrained optimization problem

min {f(x) : x ∈ Rn} , (1.1)

where f : Rn → R is a continuous and differentiable function bounded from below.
The conjugate gradient method to solve the problem (1.1) starts from an initial
point x0 ∈ Rn. It generates a sequence {xk}k≥0, such that:
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xk+1 = xk + αkdk, (1.2)

where xk is the current iteration point, the stepsize αk is a positive scalar deter-
mined by some line search, and dk is the search direction defined by the following
formula

d0 = −g0; dk+1 = −gk+1 + βkdk, (1.3)

where gk+1 = ∇f(xk+1) is the gradient of f at xk+1 and the parameter βk is a
known as the conjugate gradient coefficient.

The steplength αk is very important for global convergence of conjugate gradi-
ent methods. The most used line search conditions for the stepsize determination
are the so called standard Wolfe line search conditions:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (1.4)

gTk+1dk ≥ σgTk dk, (1.5)

where 0 < δ < σ < 1. The first condition (1.4), called the Armijo condi-
tion, ensures a sufficient reduction of the objective function value, while the sec-
ond condition (1.5), called the curvature condition, ensures unacceptable short
stepsizes. It is worth mentioning that a stepsize computed by the Wolfe line
search conditions (1.4) and (1.5) may not be sufficiently close to a minimizer
of f(xk + αdk), α > 0. In these situations, the strong Wolfe line search con-
ditions may be used, which consist of (1.4), and instead of (1.5), the following
strengthened version

∣∣gTk+1dk
∣∣ ≤ −σgTk dk, (1.6)

is used. From (1.6), we see that if σ → 0, then the stepsize which satisfies (1.4)
and (1.6) tends to be the optimal stepsize. Observe that if a stepsize αk satisfies
the strong Wolfe line search, then it satisfies the standard Wolfe conditions. Now,
we denote yk = gk+1 − gk and ∥.∥ the Euclidean norm. In Table 1, we will give
some famous formulas of the parameter βk:
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Parameter βk References Properties

βHS
k =

gTk+1yk

yTk dk

βPRP
k =

gTk+1yk

∥gk∥2

βLS
k =

gTk+1yk

−gTk dk

Hestenes-Stiefel [14]

Polak-R-Polyak
[19, 20]

Liu -Storey [18]

In general, may not be
convergent, but usually
they have better
numerical results.

βFR
k =

∥gk+1∥2

∥gk∥2

βCD
k =

∥gk+1∥2

−gTk dk

βDY
k =

∥gk+1∥2

yTk dk

Fletcher-Reeves [12]

Conjugate Descent [13]

Dai-Yuan [8]

They have strong
convergent properties,
but they may not
performwell in

practicedue to jamming
[3] and [4].

Table 1 List of the conjugate gradient coefficients famous

Dai and Yuan [8] proved that the DY method always generates descent di-
rections and converges globally with the standard Wolfe line conditions (1.4) and
(1.5). On the other hand, the PRP method has erratic global convergence prop-
erties. If function f is strongly convex and the line search is exact, then Polak
and Ribière [19] and Polyak [20] established the global convergence of the PRP
method. If gTk+1gk > 0 and ∥gk+1∥2 > gTk+1gk we have 0 ≤ βPRP

k ≤ βFR
k and the

PRP method has good convergence and theoretical properties. In 1992, Gilbert
and Nocedal [15] established a convergence result for a modified PRP method
with the following parameter

βPRP+
k = max

{
0, βPRP

k

}
.

In recent years, based on the above six formulas and their hybridization, many
works have devoted their time and effort to come up with new formulae to increase
the efficiency and effectiveness of the PRP method. Wei et al. [22] gave a variant
of the PRP method, the WYL method, where the parameter βk is yielded by

βWY L
k =

∥gk+1∥2 − ∥gk+1∥
∥gk∥ gTk+1gk

∥gk∥2
.

Huang et al. [16] proved that the WLY method satisfies the sufficient descent
condition and converges globally under the strong Wolfe line search with the
parameter σ < 1

4. . Zhang [23] took a little modification to the WYL method and
constructed the NPRP method as follows

βNPRP
k =

∥gk+1∥2 − ∥gk+1∥
∥gk∥

∣∣gTk+1gk
∣∣

∥gk∥2
.

The NPRP method satisfies the sufficient descent condition and converges globally
if the strong Wolfe line search is used and the parameter σ is restricted in

(
0, 12

)
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[23]. The hybrid conjugate gradient method considered is to combine the standard
conjugate gradient methods in a tow distinct ways. The first class is based on the
projection concept. Recently, Touati-Ahmed and Storey [21] introduced the first
hybrid conjugate gradient algorithm, where the parameter βk is computed as

βTaS
k = min

{
βFR
k , βPRP

k

}
.

The authors proved that βTaS
k has good convergence properties and numerically

outperforms both the βFR
k and βPRP

k algorithms. Soon afterward, Hu and Storey
[17] introduced another hybrid conjugate gradient method with the βk computed
as

βHuS
k = max

{
0, min

{
βFR
k , βPRP

k

}}
.

Also, Gilbert and Nocedal [15] proposed a combination of PRP and FR methods
is computed as

βGN
k = max

{
−βFR

k , min
{
βFR
k , βPRP

k

}}
.

Since βFR
k is always nonnegative, it follows that βGN

k can be negative. The method
of Gilbert and Nocedal [15] has the same advantage of avoiding jamming. Dai and
Yuan [9] combined the DY method with the HS method, proposing the following
two-hybrid methods

βhDY
k = max

{
−cβDY

k , min
{
βHS
k , βDY

k

}}
,

βhDY z
k = max

{
0, min

{
βHS
k , βDY

k

}}
,

where c = 1−σ
1+σ . For the standard Wolfe conditions (1.4) and (1.5), under the

Lipschitz continuity of the gradient, Dai and Yuan [9] established the global con-
vergence of these hybrid computational schemes.

The second class of hybrid conjugate gradient methods is based on the convex
combination of the standard methods. Recently, Andrei [2] introduced the first
hybrid conjugate gradient methods based on HS and DY methods (denoted as
HYBRID method) for solving unconstrained optimization problems (1.1), calcu-
lating the parameter βc

k as a convex combination of βHS
k and βDY

k i.e:

βc
k = (1− θk)β

HS
k + θkβ

DY
k ,

where θk is a scalar parameter satisfying 0 ≤ θk ≤ 1. Convergence with the
standard Wolfe conditions was established and numerical results show that this
hybrid computational scheme outperforms the Hestenes-Stiefel and the Dai-Yuan
conjugate gradient algorithms. In 2009, this author also studied the global con-
vergence of the CCOMB method [5] under strong Wolfe line search, such that the
parameter βk as a convex combination of βPRP

k and βDY
k i.e:

βN
k = (1− θk)β

PRP
k + θkβ

DY
k .

Djordjevic in [10] introduced the hybridization of LS and CD by their convex
combination, which calls the HLSCD method, such that
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βHLSCD
k = (1− θk)β

LS
k + θkβ

CD
k .

The compilation of parameter θk in βHLSCD
k is in such a way that the conjugacy

condition is satisfied. The global convergence of this method is proved under the
strong Wolfe line search without convexity assumption on the objective function.
The aim of this paper is to propose new hybrid conjugate gradient as a convex
combination of NPRP and DY conjugate gradient algorithms. We establish, under
a strong Wolfe line search, convergence properties of the proposed CGM. Numer-
ical results show that the new method is efficient and robust, and outperforms as
six CGMs algorithms famous. Now, we will organize our work as follows. In the
next section, we consist of a new hybrid method and determine the parameter
θk. Also, we present the specific algorithm and we prove the sufficient descent
condition. In section 3, we prove the global convergence of the proposed method
with a strong Wolfe line search. The numerical results are contained in section 4.
Finally, we make a summary of our paper.

1.1 Convex combination method

In this section, we combine NPRP and DY methods to get hNPRPDY method.
The parameter βk in the presented method, denoted as βhNPRPDY

k , is computed
as a convex combination of βNPRP

k and βDY
k , i.e :

βhNPRPDY
k = (1− θk)β

NPRP
k + θkβ

DY
k , (2.1)

where θk is a scalar parameter satisfying 0 ≤ θk ≤ 1, which follows to be deter-
mined. It is obvious that if θk = 0, then βhNPRPDY

k = βNPRP
k and if θk = 1, then

βhNPRPDY
k = βDY

k . On the other hand, if 0 < θk < 1, then βhNPRPDY
k is a convex

combination appropriate parameters βNPRP
k and βDY

k . The search direction dk of
our algorithm is computed by

d0 = −g0, dk+1 = −gk+1 + βhNPRPDY
k dk. (2.2)

The traditional conjugacy condition dTk+1yk = 0 plays an important role in the
convergence analyses and numerical calculation. The coefficients θk is chosen in
such a way that the conjugation condition dTk+1yk = 0 is satisfied. Indeed, we

multiply the two sides of the relation (2.2) through yTk , we obtain so

θk =
(yTk gk+1 − βNPRP

k yTk dk)

βDY
k yTk dk − βNPRP

k yTk dk
.

After simplification, we find

θk =
ε− η

µ− η
, (2.3)

where
ε = ∥gk+1∥2 yTk gk+1, µ = ∥gk+1∥2 ∥gk∥2 and η =

(
∥gk+1∥2 − ∥gk+1∥

∥gk∥
∣∣gTk+1gk

∣∣) yTk dk.
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Observe that the parameter θk given by (2.3) can be outside the interval
[0, 1] . However, in order to have a real convex combination in (2.1) the following
rule is considered:

if θk < 0, then set θk = 0 in (2.1) , i.e. βhNPRPDY
k = βNPRP

k ; if θk > 1,
then set θk = 1 in (2.1) , i.e. βhNPRPDY

k = βDY
k . Therefore, under this rule for

θk selection, the direction dk+1 in (2.2) combines the properties of NPRP and DY
algorithms. Using βhNPRPDY

k and dk+1 as defined in (2.1) and (2.2) respectively,
we now present hNPRPDY algorithm.

Step 1: Initialization:

Choose an initial point x0 ∈ Rn and the parameters 0 < δ < σ < 1
2 . Compute

f(x0) and g0. Set d0 = −g0.

Step 2: Test for a continuation of iterations.

Si ∥gk∥∞ ≤ 10−6, then stop. Otherwise, go to the next step.

Step 3: Line search:

Calculate αk satisfies the linear search conditions of strong Wolfe (1.4) and
(1.6) and update the variables

xk+1 = xk + αkdk.

Step 4: Compute θk
If µ− η = 0, then set θk = 0, else find θk from (2.3).

Step 5: βhNPRPDY
k conjugate gradient parameter computation

If 0 < θk < 1, then calculate βhNPRPDY
k as in (2.1). If θk ≥ 1, then set

βhNPRPDY
k = βDY

k . If θk ≤ 0, then set βhNPRPDY
k = βNPRP

k .

Step 6. Compute the search direction.

Generate dk+1 = −gk+1 + βhNPRPDY
k dk.

Step 7: Set k = k + 1 and go to Step 2.

1.2 Sufficient descent condition

Now, we prove that the search direction dk obtained by the new hybrid conju-
gate gradient method satisfies in some conditions the sufficient descent condition.

Theorem 1. Let the sequences {dk} and {gk} be generated by hNPRPDY algo-
rithm. Then, the search direction dk satisfies the sufficient descent direction.

gTk dk ≤ −c ∥gk∥2 , ∀ k ⩾ 0. (2.4)

This proof is based on the following intermediate results.

Lemma 1. Suppose that the conjugate gradient NPRP is implemented with the
strong Wolfe line search (1.4) and (1.6) where 0 < σ < 1

2 . Then, the NPRP
method generates descent directions dk satisfying the following inequalities:

gTk dk ≤ −c1 ∥gk∥2 , ∀k ≥ 0. (2.5)

where c1 =
1−2σ
1−σ .
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Proof. The proof of this lemma is similar to the proof of theorem 2.2 of Zhang
[23].

Lemma 2. Consider any method (1.2) and (1.3) , where βk = βDY
k with the strong

Wolfe line search (1.4) and (1.6) where 0 < σ < 1
2 . We get

gTk dk ≤ −1− 2σ

1− σ
∥gk∥2 , for all k ≥ 0. (2.6)

Proof. The proof is given by induction as follows. For k = 0, gT0 d0 = −∥g0∥2 , we
conclude that the sufficient descent condition holds for k = 0. Now, we assume
(2.6) holds for k and prove that for k + 1. The search direction dk of method DY
( see Dai and Yuan [8]) is computed by

dDY
k+1 = −gk+1 + βDY

k dk. (2.7)

Multiplying (2.7) by gTk+1 from the left, we get

gTk+1d
DY
k+1 = −∥gk+1∥2 + ∥gk+1∥2

gTk+1dk

yTk dk
.

From (1.6) , we have

dTk yk ≥ (1− σ)
(
−gTk dk

)
. (2.8)

Using the line search condition (1.6) and (2.8) , we obtain

gTk+1d
DY
k+1 ≤ −c1 ∥gk+1∥2 .

The result can be achieved.

Proof of Theorem 1. From (2.1) and (2.2) , we have

dk+1 = −gk+1 + ((1− θk)β
NPRP
k + θkβ

DY
k )dk.

Thus, we can obtain

dk+1 = (1− θk) d
NPRP
k+1 + θkd

DY
k+1. (2.9)

Multiplying (2.9) by gTk+1 from the left, we get

gTk+1dk+1 = (1− θk) g
T
k+1d

NPRP
k+1 + θkg

T
k+1d

DY
k+1. (2.10)

Now, we assume that 0 < θk < 1, i.e. there are two constants a1 and a2 positive
such as: 0 < a1 ≤ θk ≤ a2 < 1. By two relations gTk+1d

DY
k+1 ≤ −c1 ∥gk+1∥2 ≤ 0 and

gTk+1d
NPRP
k+1 ≤ −c1 ∥gk+1∥2 ≤ 0, we obtain

a2g
T
k+1d

DY
k+1 ≤ θkg

T
k+1d

DY
k+1 ≤ a1g

T
k+1d

DY
k+1,
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and

(1− a1) g
T
k+1d

NPRP
k+1 ≤ (1− θk) g

T
k+1d

NPRP
k+1 ≤ (1− a2) g

T
k+1d

NPRP
k+1 .

From (2.10), we conclude:

gTk+1dk+1 ≤ a1g
T
k+1d

DY
k+1 + (1− a2) g

T
k+1d

NPRP
k+1 . (2.11)

Then, lemma 1 and lemma 2 we get

gTk+1dk+1 ≤ −c ∥gk+1∥2 ,

where c = (a1 + 1− a2) c1.

1.3 Global convergence

In this section, it is assumed that gk ̸= 0 for all k ≥ 0, otherwise a stationary
point is found To establish the global convergence of our method, we need the
following basic assumptions on the objective function.
Assumption H1. The level set

Λ = {x ∈ Rn : f(x) ≤ f(x0)},

is bounded.
Assumption H2. In some open convex neighborhood N of Λ, the function f is
continuously differentiable and its gradient is Lipschitz continuous, namely, there
exists a constant L > 0 such that:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ N. (3.1)

These assumptions imply that there exists a positive constant Γ ≥ 0, we refer the
reader to [4, 10, 13, 15, 22], such that

∥ ▽f(x) ∥≤ Γ, for all x ∈ N. (3.2)

The following lemma is necessary to prove the global convergence of our proposed
method

Lemma 3. Let assumptions H1 and H2 hold. Consider the method (1.2) and
(1.3), where dk is a descent direction, and αk is obtained by the strong Wolfe line
search. If ∑

k≥0

1

∥dk∥2
= ∞, (3.3)

then

lim
k→∞

inf ∥gk∥ = 0.
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Proof. This result was demonstrated by Dai et al in [7].

We need also this lemma to prove the convergence of our method.

Lemma 4. Let assumptions H1 and H2 hold and the sequence {xk} be obtained
by hNPRPDY method, αk satisfies the strong Wolfe conditions (1.4) and (1.6).
Then

αk ≥
(1− σ) | gTk dk |

L ∥ dk ∥2
. (3.4)

Proof. From (1.6), we have

(gTk+1dk − gTk dk) ≥ (σ − 1)gTk dk.

Using the Cauchy Schwarz inequality and (3.1), it holds that

(σ − 1)gTk dk ≤ (gk+1 − gk)
Tdk ≤ Lαk ∥ dk ∥2 .

By combining these two inequalities, the result can be achieved.

Remark 1. Assuming the beginning of this section and (2.4), it is easy to obtain
that gTk dk ̸= 0 for all k ≥ 0. Suppose αk = 0, by (1.6) and the sufficient descent
direction of hNPRPDY method, we get

−gTk dk ≤ −σgTk dk,

hence

σ ≥ 1.

This is a contradiction with 0 < σ < 1. This indicates that αk obtained in the
hNPRPDY method is not equal to zero, i.e., there exists a constant λ > 0 such
that

αk ≥ λ for all k ≥ 0. (3.5)

The following theorem establishes to global convergence of hNPRPDY method
with the strong Wolfe line search.

Theorem 2. Suppose that assumptions H1 and H2 hold. Consider any conjugate
gradient method in the form (1.2) and (1.3) , with the conjugate gradient param-
eter βk defined by (2.1), in which the steplength αk is determined to satisfy the
strong Wolfe conditions (1.4) and (1.6). If the search directions satisfy the decent
condition (2.4). Then this method converges in the sense that

lim
k→∞

inf ∥gk∥ = 0. (3.6)

Proof. We prove by contradiction and assume that there exists a positive constant
γ such that
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∥gk∥ ≥ γ for k enough large. (3.7)

We have since the definition of βNPRP
k and Cauchy Schwarz inequality, that

0 =
∥gk+1∥2 − ∥gk+1∥∥gk+1∥∥gk∥

∥gk∥

∥gk∥2
≤ βNPRP

k ≤ ∥gk+1∥2

∥gk∥2
.

Using (3.2) and (3.7) , we get

0 ≤ βNPRP
k ≤ Γ2

γ2
. (3.8)

On the other hand, by using (1.6) , (2.6) and (3.7)

dTk yk = dTk (gk+1 − gk) ≥ (1− σ)
(
−dTk gk

)
≥ c1(1− σ)γ2. (3.9)

Using the definition of βDY
k , (3.2) and (3.9), we have

0 ≤ βDY
k ≤ Γ2

c1(1− σ)γ2
. (3.10)

Since 0 ≤ θk ≤ 1, from (2.1), (3.8) and (3.10) we have

0 ≤ βhNPRPDY
k ≤ βNPRP

k + βDY
k ≤ E,

where

E =
Γ2

c(1− σ)γ2
+

Γ2

γ2
.

Thus, it follows from (1.2), (2.2), (3.5) and (3.11) that

∥dk+1∥ ≤∥ gk+1 ∥ +βhNPRPDY
k

∥ xk+1 − xk ∥
αk

≤ M , (3.12)

where

M = Γ + E
D

λ
,

and

D = max {∥y − z∥ : y, z ∈ Λ} .

By taking the summation k ≥ 0∑
k≥0

1

∥dk+1∥2
= ∞.

So, applying lemma 3, we conclude that (3.6) is true. This is a contradiction with
(3.7), so we have proved (3.6).
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1.4 Numerical experiments

In this section, we present some numerical experiments obtained with the new
proposed conjugate gradient method with the hybridization parameter βk given
by (2.1). The test problems have been taken to the CUTE library [1, 6]. All the
algorithms have been coded in MATLAB 2013 and compiler settings on the PC
machine (2.5 GHz, 3.8 GB RAM ) with Windows XP operating system. We com-
pare the computational results of our method ( hNPRPDY method) against the
DY [8], PRP [19, 20], hDYz [9], CCOMB [5], HLSCD [10] and HuS [17] methods.
In this numerical result, all algorithms implement the strong Wolfe line search
conditions with δ = 10−3 and σ = 10−1. The iteration is terminated if one of the
following conditions is satisfied (i) ∥gk∥∞ < 10−6, where ∥.∥∞ is the maximum
absolute component of a vector, (ii) The number of iterations exceeded 2000,
(iii) The computing time is more than 500 s. We show the performance difference
clearly between our hNPRPDY method and six conjugate gradient algorithms.
We chose the performance profile introduced by Dolan and Morè [11] to compare
the performance according to the number of iterations and CPU time to rule as
follows. Let S be the set of methods and P is the set of the test problems with
np, ns is the number of the test problems and the number of the methods, respec-
tively. For each problem p ∈ P and solver s ∈ S, denote τp,s be the computing
time ( the number of iterations or CPU time) required to solve problems p ∈ P by
solver s ∈ S. Then comparison between different solvers based on the performance
ratio is given by

rp,s =
τp,s

min {τp,i, 1 ≤ i ≤ ns}
.

Suppose that a parameter rM ≥ rp,s for all problems and solvers chosen, and
rM = rp,s if and only if solver s does not solve problem p. The overall evaluation
of the performance of the solvers is then given by the performance profile function
given by

Fs (t) =
size {p : 1 ≤ p ≤ np, rp,s ≤ t}

np
,

where t ≥ 1 and size A is the number of elements in the set A.

The performance profile Fs : [1,∞[ → [0, 1] for a solver s is a nondecreasing,
piecewise constant function, continuous from the right at each breakpoint. Fs (t)
is the probability for solver s ∈ S so that the performance ratio rp,s is within
a factor t ≥ 1 of the best possible ratio. The function Fs is the cumulative
distribution function for the performance ratio. Observe that 1 − Fs (t) is the
fraction of problems that the solver cannot solve within a factor t of the best
solver. The value of Fs (1) is the probability that the solver will win the rest of
the solvers.

Figure 1 and Figure 2 give a performance comparison of the hNPRPDY
method with those methods for the CPU time and the number of iterations,
respectively. From these Figures, we can conclude that the hNPRPDY method
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performs better than DY [8], PRP [19, 20], hDYz [9], CCOMB [5], HLSCD [10]
and HuS [17] methods, for the given test problems. These obtained preliminary
results are indeed encouraging.

Conclusion

In this paper, we propose hNPRPDY hybrid conjugate gradient algorithm by
using a convex combination of NPRP and DY methods. The global convergence
properties and the sufficient descent condition of the proposed method have been
established, under the strong Wolfe line search conditions. Numerical results also
show that our method is very robust and effective.
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