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COMMON LOCAL SPECTRAL PROPERTIES FOR THE
OPERATORS AC AND BD

Soufiane HADJI∗,1,2

Abstract

In [6], Chen and Abdolyousefi studied the common spectral properties of
operators AC and BD satisfying

(AC)2A = ACDBA = DBACA = (DB)2A;

(AC)2D = ACDBD = DBACD = (DB)2D.

In this note, we continue studying the common local spectral properties of
these operators. We show that AC and BD shared the single-valued exten-
sion property, the Bishop property (β), the property (βϵ), the decomposition
property (δ), and decomposability. Furthermore, we investigate the closed-
ness of the analytic core and the quasinilpotent part. We also examine the
Dunford’s property (C) and the property (Q).
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1 Introduction

For Banach bounded linear operators A and B, Jacobson’s Lemma asserts the
equality

σ(AB) \ {0} = σ(BA) \ {0} (1)

where σ(·) represents the ordinary spectrum. This equality (1) has been a subject

of extensive study aimed at demonstrating that AB and BA also share various
local spectral properties see [2, 3, 22, 10, 12, 20, 18, 16, 15, 5] and the references
therein. In their work, Benhida and Zerouali [5] established the sharing of prop-
erties such as the Single-Valued Extension Property (SVEP), Bishop property
(β), the property (βϵ) , the decomposition property (δ) and decomposability for
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operators AB and BA. Additionally, Zeng and Zhong in their work [20], further
extended the shared local spectral properties for operators for AC and BA where
A, B and C are bounded linear operators under the equality

ABA = ACA. (2)

For operators A,B,C and D satisfying

ACD = DBD and BDA = ACA, (3)

Yan and Fang showed the local spectral properties for operators AC and BD in
their study [18]. More recently, Yan et al. introduced conditions in their work
[19]

BAC = BDB and CDB = CAC. (4)

to further investigate the common local spectral theory for operators I −AC and
I −BD under these conditions.

[6] presented and studied common spectral properties for operators BD and
AC under following condition

(AC)2A = ACDBA = DBACA = (DB)2A;

(AC)2D = ACDBD = DBACD = (DB)2D.
(5)

In this study, we focus on operators AC and BD under assumption (5) and

explore their shared local spectral properties. Our findings reveal that AC and
BD have the Single-Valued Extension Property, Bishop property (β), property
(βϵ) , decomposition property (δ) and decomposability. Additionally, we delve the
closedness of the analytic core and the quasinilpotent part of these operators.

2 Background from local spectral theory

Throughout this paper B(X) denotes the set of all bounded linear operators
acting on a complex Banach space X. For T ∈ B(X), the local resolvent set ρT (x)
of T at a vector x in X is the union of all open subsets U ⊂ C for which there
exists an analytic function f : U → X such that

(T − µ)f(µ) = x, for all µ ∈ U.

The local spectrum σT (x) is defined by σT (x) = C\ρT (x). The local spectrum
σT (x) is a closed, possibly empty, subset of σ(T ).

The operator T ∈ B(X) is said to have the single valued extension property
(SVEP, for short) at µ ∈ C provided that there exists an open disc Uµ centered
at µ such that for every open subset V ⊂ Uµ, the constant function f ≡ 0 is the
only analytic solution of the equation

(T − µ)f(µ) = 0 ∀µ ∈ V.
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We denote by σSV EP (T ) the set where T fails to have the SVEP and we say that
T has the SVEP if σSV EP (T ) = ∅. In the case where T has the SVEP, σT (x) = ∅
if and only if x = 0 . The local spectral radius of T at x is given by

rT (x) = lim sup
n→+∞

∥Tnx∥
1
n

and if We assume that σT (x) ̸= ∅ then max{µ ∈ σT (x)} ≤ rT (x), moveover the
last inequality becomes equality when T has the SVEP [13, Proposition 3.3.13].

For a subset F ⊆ C, let XT (F ) denote the local spectral subspace defined by

XT (F ) = {x ∈ X : σT (x) ⊆ F} .

Clearly, XT (F ) is a linear (not necessarily closed) subspace of X.

For an open set U of C, let O(U,X) be the Fréchet space of all X-valued
analytic function on U endowed with the topology defined by uniform convergence
on every compact subset of U . An operator T ∈ B(X) is said to satisfy the
Bishop’s property (β) on an open set U ⊆ C provided that for every open subset
V of U and for any sequence (fn)n of analytic X-valued functions on V

(T − µ)fn(µ) → 0 in O(V,X) =⇒ fn(µ) → 0 in O(V,X).

Let ρβ(T ) be the largest open set on which T has the property (β). Its complement
σβ(T ) = C\ρβ(T ) is a closed, possibly empty, subset of σ(T ). Then T is said to
satisfy the Bishop’s property (β) , precisely when σβ(T ) = ∅, [16]. It is well known
that the following implications hold

Bishop’s property (β) ⇒ SVEP.

For a closed subset F in C, the glocal spectral analytic space XT (F ) is the set
of vectors x ∈ X for which there exists an analytic function f : C\F → X such
that

(T − µ)f(µ) = x, for all µ ∈ C\F.

XT (F ) is a linear subspace contained in XT (F ). Moreover, the equality XT (F ) =
XT (F ) holds for all closed sets F ⊆ C precisely when T has the SVEP [13,
Proposition 3.3.2].

An operator T ∈ B(X) is said to have the decomposition property (δ) on U
provided that for all open sets V,W ⊆ C for which C\U ⊆ V ⊆ V ⊆ W,

XT (C\V ) + XT (W ) = X.

Let ρδ(T ) be the largest open set on which the operator T has the property (δ).
Its complement σδ(T ) = C\ρδ(T ) is a closed, possibly empty, subset of σ(T )
[16, Corollary 17]. Then T has the decomposition property (δ) if σδ(T ) = ∅.
Properties (β) and (δ) are known to be dual to each other in the sense that T has
(δ) on U if and only if T ∗ satisfies (β) on U [13, 16]. Moreover

σβ(T ) = σδ (T
∗) and σδ(T ) = σβ (T

∗)
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The operator T ∈ B(X) is said to be decomposable on U provided that for every
finite open cover {U1, . . . , Un} of C, with σ(T )\U ⊆ U1, there exists X1, . . . , Xn

closed T -invariant subspaces of X for which

σ (T |Xi) ⊆ Ui for i = 1, . . . , n and X1 + · · ·+Xn = X

Let ρdec(T ) be the largest open set U ⊆ C on which T is decomposable. Its
complement σdec(T ) = C\ρdec(T ) is a closed, possibly empty, subset of σ(T ). We
say that T is decomposable if σdec(T ) = ∅. The class of decomposable operators
contains all normal operators and more generally all spectral operators. Operators
with totally disconnected spectrum are decomposable by the Riesz functional
calculus. In particular, compact and algebraic operators are decomposable. It is
also known that T has (β) on U precisely when it is similar to the restriction to a
closed invariant subspace of an operator that is decomposable on U , while T has
the property (δ) on U precisely when it is similar to the quotient of a decompsable
operator on U by a closed invariant subspace [13]. And we have

σdec(T ) = σβ(T ) ∪ σδ(T ) = σβ(T ) ∪ σβ (T
∗) = σdec (T

∗) .

3 Common decomposability properties

This section commences with the following result, illustrating that for condi-
tion (5), we have AC and BD share the property (β).

Theorem 1. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC possesses the property (β) on an open set W of C.
ii) BD possesses the property (β) on an open set W of C.

In particular,

σβ(AC) = σβ(BD).

Proof. i) ⇒ ii) : Suppose that BD satisfies the property (β) on W . Let V be an
open subset of W and let (fn)n be a sequence of X-valued analytic functions such
that

(AC − µ) fn(µ) → 0 inO(W,X). (6)

Hence

(CA− µ)Cfn(µ) → 0 inO(W,X).

Then

BDBA (CA− µ)Cfn(µ) → 0 inO(W,X).

Using the fact, DBACA = (DB)2A, we obtain(
(BD)2BA− µBDBA

)
Cfn(µ) → 0 inO(W,X).

(BD − µ)BDBACfn(µ) → 0 inO(W,X).
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Since BD satisfies property (β) on W and BDBACfn(µ) is analytic on W , then

BDBACfn(µ) → 0 inO(W,X).

Then
(DB)2ACfn(µ) = DBDBACfn(µ) → 0 inO(W,X).

By equalities (5) we get

(AC)3fn(µ) → 0 inO(W,X).

Thus, using equation (1.3), we can conclude that µfn(µ) → 0 in O(W,X). Since
fn are analytic on W , the maximum modulus principle implies that the sequence
(fn)n converges to zero on compact sets in V . Consequently, fn(µ) → 0 in
O(V,X), which establishes that BD satisfies (β).

The converse implication is similar.

Because T satisfies property (β) on W if and only if T ∗ satisfies property (δ)
on W , this duality relationship leads us to the following result.

Theorem 2. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC possesses the property (δ) on an open set W of C .
ii) BD possesses the property (δ) on an open set W of C.

In particular,
σδ(AC) = σδ(BD).

A weaker version of property (δ) was introduced in [21]: an operator U is said
to possess the weak spectral property (δw) if, for any finite open cover {V1, . . . , Vn}
of C, we have

XU (V1) + · · ·+ XU (Vn) is dense in X.

If U has the weak property (δw) then U∗ has the SVEP. If G is an locally compact
abelian group, then every convolution operator in L1(G) has the weak property
(δw), [21].

Proposition 1. If A,B,C,D ∈ L(X) satisfy (5), and if D and B have dense
ranges, then the following are equivalent:

i) AC possesses the property (δw).
ii) BD possesses the property (δw).

Proof. Suppose that BD has the property (δw). Let{V1, V2, ..., Vn} be a finite
open cover of C. Then

XBD(V1) + XBD(V2) + ...+ XBD(Vn) is dense in X.

It is easy to see that DBD(XBD(Vi)) ⊆ XAC(Vi), ∀i = 1, 2, ..., n. Since B and D
are dense range then DBD is dense in X. Then

XAC(V1) + XAC(V2) + ...+ XAC(Vn) is dense in X.
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Therefore, AC satisfies the property (δw).
Conversely, suppose that AC has the property (δw). Let {V1, V2, ..., Vn} be a

finite open cover of C. Then

XAC(V1) + XAC(V2) + ...+ XAC(Vn) is dense in X.

It is easy to see that BDBAC(XAC(Vi)) ⊆ XBD(Vi), ∀i = 1, 2, ..., n. Since B and
D is dense range then BDBAC is also dense range, hence

XBD(V 1) + XBD(V 2) + ...+ XBD(V n) is dense in X

Therefore, BD satisfies the property (δw).

Since decomposability is equivalent to both (β) and (δ), then :

Corollary 1. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC is decomposable on an open set W of C.
ii) BD is decomposable on an open set W of C.

In particular,
σdec(AC) = σdec(BD).

The operator U is said to satisfy the property (βϵ) at µ ∈ C provided that
there exists an open disc W centered at µ such that for every open subset V ⊂ W
and for any sequence (fn)n of infinitely differentiable X-valued functions on V, we
have

(U − µ)fn(µ) → 0 in E(V,X) =⇒ fn(µ) → 0 in E(V,X);

where E(V,X) is the Fréchet space of all X-valued C∞-functions on V . Let σβϵ(T )
be the set of all points where U fails to satisfy the property (βϵ) . Then U is said
to satisfy the property (βϵ) , precisely when σβε(U) = ∅ ([8]).

Theorem 3. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC possesses the property (βϵ) at µ.
ii) BD possesses the property (βϵ) at µ.

In particular,
σβϵ(AC) = σβϵ(BD).

Proof. By the same argument as in the proof of Theorem 1 and using [5, Lemma
2.1].

An operator T satisfies (βϵ) if and only if T is subscalar, is the sense that it has
a generalized scalar extension. An operator T is said to be generalized scalar if
there exists a continuous homomorphism algebra Φ : E(C) → B(X) with Φ(1) =
I and Φ(z) = T [8, 13].

Corollary 2. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC is subscaler.
ii) BD is subscalar.
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4 Local spectral subspaces

Theorem 4. If A,B,C,D ∈ L(X) satisfy (5) and µ ∈ C then the following
statements are equivalent:

i) AC has the SVEP at µ.
ii) BD has the SVEP at µ.

In particular,

σSV EP (AC) = σSV EP (BD).

Proof. It is similar to the proof of Theorem 1.

Theorem 5. If A,B,C,D ∈ L(X) satisfy (5), then for x ∈ X
i) σAC(Dx) ⊆ σBD(x) ⊆ σAC(Dx) ∪ {0} for all x ∈ X;
ii) σBD(BACy) ⊆ σAC(y) ⊆ σBD(BACy) ∪ {0} for all y ∈ Y .

Proof. i) Let µ /∈ σBD(x) ∪ {0}, Then there exists an open neighborhood U of µ
and an X-valued analytic function f on U such that

(BD − µ)f(µ) = x ∀µ ∈ U.

Then

(DB − µ)Df(µ) = Dx ∀µ ∈ U.

Then
(
(DB)2 − µDB

)
Df(µ) = DBDx, ∀µ ∈ U . From the equalities (5) above it

follows that (AC − µ)DBDf(µ) = DBDx, ∀µ ∈ U . Since DBDf(µ) is analytic
on U , then µ /∈ σAC (DBDx) ∪ {0} then µ /∈ σCA (CDBDx) ∪ {0} by [5, Propo-
sition 3.1]. From the equalities above it follows that µ /∈ σCA (CACDx) ∪ {0}.
Hence by [5, Proposition 3.1] three times, we get µ /∈ σAC (Dx)∪{0}. Conversely,
let µ /∈ σAC(Dx) ∪ {0}, then µ /∈ σAC((AC)2Dx) ∪ {0} = σAC(ACDBDx) ∪ {0},
thus µ /∈ σAC(DBDx)∪{0} by [5, Proposition 3.1]. Let g : Vµ → Y be an analytic
function defined on some neighborhood Vµ of µ such that

(AC − µ)g(µ) = DBDx for all µ ∈ Vµ.

Therefore, g(µ) = ACg(µ)−DBDx
µ and we have

x =
[(BD)3x− ((BD)3 − µ3)x]

µ3

=
[BDB(AC − µ)g(µ)− ((BD)3 − µ3)x]

µ3

=
[(BDBAC − µBDB)g(µ)− ((BD)3 − µ3)x]

µ3

=

[
(BDBAC − µBDB)ACg(µ)−DBDx

µ − ((BD)3 − µ3)x
]

µ3
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= µ−3

[
BDBACAC

g(µ)

µ
−BDBACDBD

x

µ
− µBDBAC

g(µ)

µ

+µBDBDBD
x

µ
− ((BD)3 − µ3)x

]
= µ−3

[
B(DB)2AC

g(µ)

µ
− (BD)4

x

µ
− µBDBAC

g(µ)

µ
+ µBDBDBD

x

µ

−((BD)3 − µ3)x
]

=
(BD − µ)

(
BDBAC g(µ)

µ −BDBDBD x
µ − (BD + (BD)2 + µ)x

)
µ3

=
(BD − µ)(BDBg(µ)− (BD + (BD)2 + µ)x)

µ
.

Define

h(µ) =
BDBg(µ)− (BD + (BD)2 + µ)x

µ
for all µ ∈ Vµ.

Evidently, h : Vµ → X is analytic and (BD − µ)h(µ) = x, so µ /∈ σBD(x).
ii) By [5, Proposition 3.1], we have

σCA(Cy) ⊆ σAC(y) ⊆ σCA(Cy) ∪ {0}.

According to i) and interchangingB with C andD withA, we obtain σDB(ACy) ⊆
σCA(y) ⊆ σDB(ACy)∪{0}. By [5, Proposition 3.1], we have from these inclusions,
we conclude that σBD(BACy) ⊆ σAC(y) ⊆ σBD(BACy) ∪ {0}.

Remark 1. Let x ∈ X.

i) If D is injective, then σAC(Dx) = σBD(x).

ii) If AC is injective, then σAC(x) = σBD(BACx).
We recall that σs(T ) =

⋃
x∈X σT (x), where σs(T ) is the surjectivity spectrum of

T ([13]). Then we have

σs(AC) ∪ {0} = σs(BD) ∪ {0}.

and since σ(T ) = σs(T ) ∪ σSV EP (T ) then by Theorem 4 we retrieve equality (1)
of Jacobson’s lemma

σ(AC) ∪ {0} = σ(BD) ∪ {0}.

The operator T is said to possess the Dunford’s property (C) if XT (F ) is closed
for every closed subset F of C. The following implications are well known ([13]):

Bishop’s property (β) ⇒ Dunford’s property (C) ⇒ SVEP.

Theorem 6. Let A,B,C,D ∈ L(X) satisfy (5), then the following statements
are equivalent:

i) AC possesses Dunford’s property (C).
ii) BD possesses Dunford’s property (C).
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The proof of Theorem 6 will be given by the following two lemmas.

Lemma 1. Let A,B,C,D ∈ L(X) satisfy (5). Let F be a closed subset of C such
that 0 ∈ F , then the following statements are equivalent:

i) XAC(F ) is closed.
ii) XBD(F ) is closed.

Proof. Suppose that XAC(F ) is closed and let (xn)n be a sequence in XBD(F )
which converge to some x inX. Then σBD (xn) ⊂ F and 0 ∈ F, hence σAC (Dxn)∪
0 ⊂ F . Thus by theorem 5 i), we have σAC (Dxn) ⊂ F and Dxn ∈ XAC(F ).
Since XAC(F ) is closed and Dxn converge to Dx, then Dx ∈ XAC(F ). Hence
σAC (Dx) ⊂ F and again by theorem 5 i) we have σBD(x) ⊂ F . Thus x ∈
XBD(F ). Therefore XBD(F ) is closed. The converse implication is similar.

Lemma 2. Let A,B,C,D ∈ L(X) satisfy (5). Let F be a closed subset of C such
that 0 /∈ F and BD has the SVEP.

i) if XAC(F ∪ {0}) is closed, then XBD(F ) is closed;
ii) if XBD(F ∪ {0}) is closed, then XAC(F ) is closed.

Proof. Since BD has the SVEP then it follows from Theorem 4 that AC has the
SVEP. According to [20, Lemma 2.5] the result follows at once from Lemma 1.

The analytical core of T , introduced and studied in [14, 15], is the set K(T ) of
all x ∈ X such that there exist a constant c > 0 and a sequence (xn)n ⊂ X such
that

x0 = x, Txn = xn−1 and ∥xn∥ ≤ cn∥x∥ for all n ∈ N.

Recall that ([1, Theorem 2.18] or [13, Proposition 3.3.7])

K(T − µ) = XT (C\{µ}) = {x ∈ X : µ /∈ σT (x)} .

In general, K(T ) is not need to be closed. For any non-invertible decomposable
operator T, the point 0 is isolated in σ(T ) exactly when K(T ) is closed. In
particular, if T is a compact operator, or more generally a Riesz operators, then
K(T ) is closed precisely when T has finite spectrum, [17, Corollary 6 ].

Theorem 7. Let A,B,C,D ∈ L(X) satisfy (5), then for all 0 ̸= µ ∈ C, the
following statements are equivalent:

i) K (AC − µ) is closed.
ii) K (BD − µ) is closed.

Proof. Suppose thatK(AC−µ) is closed. Let {xn}∞n=1 be a sequence inK(BD−µ)
which converges to some x ∈ X. To show that K(BD − µ) is closed, it suffices
to prove that x ∈ K(BD − µ). Since xn ∈ K(BD − µ), µ ∈ ρBD (xn) for all
n ∈ N. Hence by Theorem 5 i), µ ∈ ρAC (Dxn), that is, Dxn ∈ K(AC−µ). Since
Dxn → Dx and K(AC − µ) is closed, Dx ∈ K(AC − µ), that is, µ ∈ ρAC(Dx).
By Theorem 5 i) again, µ ∈ ρBD(x), that is, x ∈ K(BD − µ).
The converse implication follows by using Theorem 5 ii) instead of Theorem 5
i).
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The quasi-nilpotent part H0(T ) of T is defined by

H0(T ) :=
{
x ∈ X : lim

n→∞
∥Tnx∥1/n = 0

}
.

Lemma 3. Let A,B,C,D ∈ L(X) satisfy (5). Let F be a closed subset of C such
that 0 ∈ F , then the following statements are equivalent:

i) XAC(F ) is closed.
ii) XBD(F ) is closed.

Proof. Suppose that XAC(F ) is closed. Let {xn}∞n=1 be a sequence in XBD(F )
which converges to some x ∈ X. To show that XBD(F ) is closed, it suffices to
prove that x ∈ XBD(F ). Since xn ∈ XBD(F ), for every n ∈ N there exists an
analytic function fn : C\F → X such that

(BD − µ)fn(µ) = xn for all µ ∈ C\F .

Thus,DBD(BD−µ)fn(µ) = (AC−µ)DBDfn(µ) = DBDxn and henceDBDxn ∈
XAC(F ). Since DBDxn → DBDx and XAC(F ) is closed, DBDx ∈ YAC(F ).
Thus, there exists an analytic function g : C\F → Y such that

(AC − µ)g(µ) = DBDx for all µ ∈ C\F

As in the proof of Theorem 3 ii), we obtain x = BDBg(µ)−(BD+(BD)2+µ)x
µ for all

µ ∈ C\F . Define

h(µ) =
BDBg(µ)− (BD + (BD)2 + µ)x

µ
for all µ ∈ C\F.

Evidently, h : C\F → X is analytic and (BD − µ)h(µ) = x, so x ∈ XBD(F ).
The converse implication follows by using Theorem 5 i).

In generalH0(T ) is not closed and it coincides with the glocal spectral subspace
XT ({0}) (see [1, Theorem 2.20]). As an immediate consequence of Lemma 3, we
obtain

Theorem 8. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) H0(AC) is closed.
ii) H0(BD) is closed.

An operator T ∈ B(X) is said to have the property (Q) if H0(µI−T ) is closed
for every µ ∈ C. It is known that if H0(µI − T ) is closed then T has SVEP at µ,
thus

property (C) ⇒ property (Q) ⇒ SVEP.

Therefore, for operators T having property (Q) we have H0(µI−T ) = XT ({µ}).
In [20, Corollary 3.8] it was observed that if R ∈ L(Y,X) and S ∈ L(X,Y ) are

both injective then RS has property (Q) precisely when SR has property (Q).
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Theorem 9. If A,B,C,D ∈ L(X) satisfy (5), then the following statements are
equivalent:

i) AC has the property (Q).
ii) BD has the property (Q).

Proof. Suppose that BD has the property (Q). Then BD has SVEP and, by
Theorem 4, also AC has SVEP. Consequently, the local and glocal spectral sub-
spaces relative to the a closed set coincide for AC and BD. Let µ ∈ C. Then
by assumption H0(µI − BD) = XBD({µ}) is closed. If µ = 0, then by Lemma
1 H0 (AC) = XAC({0}) is closed. Now assume that µ ̸= 0. Since BD has the
SVEP then XBD({µ} ∪ {0}) = XBD({µ}) ⊕ XBD({0}) by [1, Theorem 2.17].
Hence XBD({µ} ∪ {0}) is closed. Thus by Lemma 2 XAC({µ}) is closed.

Conversely, it follows similarly.

We conclude this note by an example to illustrate that the results obtained in
this note are proper generalizations of the corresponding ones in [20, 19].

Example 1. We have four linear operators, A,B,C,D, all acting on the direct
sum of four vector space X and P is a non-trivial projection. These operators are
represented as matrices in this space as follows:

A = B = C =


0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 ,

and

D =


I I I 2P
0 0 P P
0 0 0 −I
0 0 0 0

 .

Then A,C,D and B leading to the equations

(AC)2A = ACDBA = DBACA = (DB)2A;

(AC)2D = ACDBD = DBACD = (DB)2D,

while (DB)2 ̸= (AC)2, DBA ̸= ACA and CDB ̸= CAC. Therefore, it’s estab-
lished that the common local spectral properties of the operators AC and BD can
only be derived directly from the results presented in the current context, rather
than being deduced from corresponding results in [20, 19].

Example 2. Let A,B,C and D be the operators defined on the separable Hilbert
space l2(N), respectively, by

A (x1, x2, x3, x4, · · · ) = (x2, x3, 0, 0, · · · ) ,
B (x1, x2, x3, x4, · · · ) = (0, x2, 0, 0, 0, · · · ) ,
C (x1, x2, x3, x4, · · · ) = (0, x2, x3, 0, 0, · · · ) ,
D (x1, x2, x3, x4, · · · ) = (x1,−x1, 0, 0, · · · ) .
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Then
(AC)2A = ACDBA = DBACA = (DB)2A;

(AC)2D = ACDBD = DBACD = (DB)2D.

while DBA ̸= ACA, (AC)2 ̸= (DB)(AC), (AC)2A ̸= A(BA)2 and CDB ̸= CAC
. Hence, the common local spectral properties of AC and CB can only be deduced
directly from the results obtained in this note, but not from the corresponding ones
in [20, 19].
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