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EXPONENTIAL KANTOROVICH-STANCU OPERATORS

Stefan-Lucian GAROIU*!

Abstract

In this paper we will obtain some Bernstein-Kantorovich operators mod-
ified in Stancu sense which preserve exponential function e**, where u > 0.
Concerning these operators we prove they verify Korovkin’s theorem condi-
tions and also that they approximate functions from a weighted LP space.
Moreover, we will obtain a Voronovskaya theorem and some quantitative es-
timates of approximation using the first order modulus of continuity. Also,
we will prove some estimates concerning the approximation of functions from
a weighted L? space using Peetre’s K-functional. Finally, we will obtain an
estimate which involves the first order modulus of continuity and the second
order modulus of smoothness by using the equivalence relation between these
moduli and the corresponding K-functionals.
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1 Introduction

In recent research, there have been studied approximation properties of some
exponential variants of certain classical operators such as Bernstein operators,
Szasz-Mirakjan operators, Kantorovich operators and many more.

Our aim is to introduce a new class of operators of exponential type, obtained
as a modification in Stancu sense of Bernstein-Kantorovich exponential operators
and prove some important approximation results concerning these operators.

In order to state our results, let us recall some of the most important operators
in Approximation Theory related to the subject of the paper.

In order to provide a proof of Weierstrass’s approximation theorem, S.N. Bern-
stein introduced the following operators (see [8]):

Buf(@) =Y pasl)f () Fe o, wea] nen,
k=0
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where p, () = (Z)xk(l —z)" % ke€{0,1,...,n} and by C(]0,1]) we mean the
set of all continuous functions on [0,1]. These operators have been intensively
studied since they have a lot of approximation properties.

After Bernstein operators were introduced, many generalizations of these op-

erators arose. Among them we mention Bernstein-Stancu operators introduced in
[12]:

k+ «
n+ 3

Bsﬁfm—zpn,k(x)f( ),fecqo,u),xe[o,u,neN, (@)
k=0

where 0 < a < 8, and p,, ;, are defined as above
Another generalization of operators B,, is due to L.V. Kantorovich who intro-
duced in paper [11] the following operators:

k+1

Kof (@) = (4 1) Y pusta) [ (Ot fe L0, 20,1 neN, (3)
k=0

_k_

n+1
where p,, . are defined as above and by L([0, 1]) we mean the set of all integrable
functions on [0, 1]. These operators provide a very useful tool in approximation of
integrable functions on [0, 1]. Also, a Stancu variant of the operators above was
introduced (see [7]).

In recent literature a lot of studies regarding approximation by positive linear
operators which preserve one or two exponential functions, for example €2%*, ¢ > 0
(see [2], where a varianat of Szdsz-Mirakjan operators which preserve the said
function is introduced). In this direction, there have been introduced exponential
variants of Bernstein operators ([5]), of Szasz-Mirakjan operators ([1]) and also of
Kantorovich operators ([6]). More studies related to approximation by operators
which preserve the exponential functions mentioned above and their properties
can be found in [3] and [9].

The aim of our paper is to provide a Stancu modification of the exponential
variant of operators X,, introduced by Angeloni and Costarelli in [4]:

Knf(@) = Y e prslana(@)n+1) [T peat (@
k=0 n+1

s
where > 0, f € C([0,1]) z € [0,1], n € N, and a,(z) := “3—L are increasing,

en —1

continuous and convex functions on [0, 1] such that a,(0) =0 and a,(1) = 1.

This paper is divided in four sections. In Section 2 we provide the definition
of our operators, some convergence results for continuous functions on [0, 1] via
Korovkin’s theorem and a convergence result for functions in L? spaces. In Sec-
tion 3 we prove a Voronovskaya estimate of approximation by our operators and
finally we provide some quantitative estimates using moduli of smoothness and
K- functionals.
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2 Definition and convergence results

Let us introduce the following operators for functions f € C([0, 1]):

n k+a+1
nFBF1
K f(@) = (n+ 8+ 0 Y puslanna(@) [ e j@d,  (5)
k=0 n+B+1
_pz_
where z € [0,1] and 0 < a < B, > 0, ay(x) = %, n € N. In order to obtain
enth —1

a Korovkin type approximation theorem for these operators we will check their
convergence for test functions eg(x) = 1, exp,(z) = e** and expi(m) = e for
x € [0, 1], which form a Chebyshev set. First, it is obvious that

Kf{’ﬁ’“expﬂ(:c) = expu(x), = €[0,1]. (6)
In order to obtain our approximation results we will need the following Lemma.

Lemma 1. For z € [0,1] we have that:

Kﬁ’ﬁ’“eo(x) — Lﬁ—i_lelm(l _ e‘ﬁ) —if/fff (1 _ en+,8+1 + en+ﬂ+1) (7)
I
KO"B’“em’p ( ) n+ BL 1 en+6+1 (en+ﬁ+1 — ]_)enigil (8)
7]

n —+ B —+ 1 2pua 2p

Kﬁ"ﬁ’“expi(:c) — Teu:re‘nJrBH (en+ﬂ+1 _ 1) (9)
< p(zt1) p )”
X | entB+1l 4 ent+B+1 — €n+6+1 ,
1 Spa

Kf;’ﬁ’“(i%pﬁ(x) — % en«lf,[;«l»l (en+5+1 — 1) (10)

3p

p(z+2) p(z+1) pz 25 "
X | entB+1l 4 ent+B+1 4 ent+p+l — ent+f+1 — @n+6+1 .

Proof. In order to prove (7) we have that:

n k4+a+1
n+pB+1
K2Ptey(z) = (n+ B+ 1)eM” an,k(anJrl(:U)) - e Mt

k=0 n+p+1

n e Ht v

= (n+ B+ 1)e" > poplanii(z)—
— k+a
k=0 A+
1 n _ _ kta+1
= BEL e S (g () (e R e
K k=0
= Lﬁ“e“‘x(ei‘uﬁlﬂrl — nig}rl ank an+1 ) “%{Hlj

I
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but,

" k " n —p
> puplans(x))e T =7 (k> (ans1(@)em ) (1 = anga(2)" ™"
k=0 k=0

PR
= (ant1(z)e” T + 1 — anga(z))"
1 TA "
[e— en
= <an+1($)u + 1>
en+p+1
= (e_ﬁﬁﬂ — e_zgrziﬁjrl; + 1)"
=e BT (1-— €n+ﬂl§+1 + en+f§+1 )",
therefore

= Eyyp— __un _pz _n
D Prs(@ns1())e T = TR (1 — WA 4oL (1)
k=0

Now, replacing (11) in the above formula for Ky Bt eo(z) and after some calcula-
tions we get (7).
Next, we have that

n kdtatl
nBt1
KS’B’“e:L"pi(x) =(n+ 6+ 1) anVk(an+1(l')) fia ettt
k=0 n+p+1
n k+a+1
eMt | nypy1
=(n+ B+ 1)t an,k(anﬂ(m))‘
H k+a
k=0 n+B+1
1 n k+a+1 k+a
=P E L e S ki () (M ER )
H k=0
n+p6+1 "

= 7e“z(eunigﬂ{1 — eunJraBJrl) g P k(an+1($))e“n+§+1.
M b
k=0

In the following, by proceeding as in (11) we can show that
- k nx
an,k(anJrl(»’L'))BMT/H‘1 = e“rﬁ-l—l’
k=0

which can be replaced in the expression for K B ea:pi, which yields (8). Also, it
is easy to see that:

n+p5+1 2p(at1) 2pa

n
k
Kg’ﬁ’“eaﬂpz(x) — o el (et — entitT) E pn,k(an+1($))32un+ﬁ+1,
k=0

(12)
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and
4
K,OZ"B’“e;UpM(:U) (13)
n 1 3u(a+1) 3mua n k
= ie’m(e :-p-ﬂ-;-l — entB+1 ) an k(an+1($))e2lt7+5+1‘
3'UJ k=0 ’

Using a similar approach as in (11), we get

n u(z;-2) ;5 MBQU 25 n
2 k en+B8+1 4+ entf+l — en+B+1 — entf+1
> Paplanii(@))e T = z ;o (14)
k=0 entB+1 — 1
and
n SEE 4 e = AW
2u k en+B+1 + entp+l — en+B+1 — entf+1
> Pup(ang(x))e THTT = z (15)
=0 entB+l — 1

By replacing (14) and (15) in (12) and (13) we will get the last two identities from
our Lemma. [

Having in mind Lemma 1 and the fact that eg, exp, and expi form a Cheby-

shev set we can prove that operators K2°#

f e C(o,1]).

uniformly converge to functions

Theorem 1. For f € C|0,1] we have that Kf{’ﬁ’“ converges uniformly to f on
[0, 1].

Proof. From Lemma 1 it follows that K$"7 eq(z) — 1, Kf{’ﬂ’“expl%(:v) — expi(ac)
uniformly for z € [0,1] as n — oo, and Kﬁ’ﬁexpu(x) = expu(x), = € [0,1].
Since operators Ko®* are linear and positive and e, expy and exp’, form a
Chebyshev set, we have that our operators satisfy the conditions of the well-known

Theorem of Korovkin, therefore we obtain that K7 f(z) — f(z) uniformly
[0,1], f € C[0,1]. O

Now, we will provide an approximation result for functions belonging to a
weighted version of LP spaces.
In the following, by the space LL,(]0,1]) we mean the space of all functions f

that satisfy:
1
1 D
IUMMZ{AIKWN@MV} < oo.

Also, it can be seen that if f € L,(]0,1]), then f € LP([0,1]) and reciprocally.
Theorem 2. For f € L}([0,1]) and n € N, we have that:

“ 1
B\ enFAT —1\7
HKS’B’#]CHP,M < ((1 + I |f

n+1 n+B+1

Jun

lps (16)
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and consequently,
HKS’ﬁ’ufnp,u < Ousllfllpw (17)

1

where ©, 3 = ((1 + g) %)5 Moreover,

||K,‘3f’ﬂ’“f — fllpp =0, asn — oo. (18)

Proof. First, if we apply Jensen’s inequality twice we get:

1
(Kb g = /0

1 n
< /0 Z pn,k‘(an-i-l (55))

k=0

p
dx

kta+1l
ntp+1

(n+B+1) ) purlansa(z) [ e f(t)dt

k=0 n+pB+1
k+a+1

) [ e

n+p+1

P
dx

k+a+1
n+p+1

nool
< kzo/o pn,k(an—i-l(x))(n + ,8 + 1)dl’/k+a e*upt’f(tﬂpdt‘

n+pB+1

Next, we denote I, ;3 = fol DPnk(ant1(x))(n + B + 1)dz. After the change of
variable:
nx
e — 1 1

123
; [t(en+a+1 1)+ 1} ,
N p

K
n+p8+1  entB+l 1
T
Ho g(enFBFT —1)+1

we get dx = dt, the integral I, ; 3 becomes:

©w
n+pB+1 (! entaI — 1
Lnkp=—"""— / (n+ B+ 1)pnip(t) ——= dt
H 0 t(en+tpirl — 1) +1
23
enthri —1 1
< “/ (n+ B+ Dpn ()t
wrer Jo
en T — 1 (n
e — m+p+1)Bk+1,n—k+1)
n+p+1
B enTATT — 1 n+p/+1
7n+‘é+1 n+1
where B(z,y) is Euler’s beta function.
We have:
_® n k+a+1
enthtl —1 n+pB+1 nFBHL
e e > e ML f()[Pdt.
n+p+1 n+l k=0 75T

Since e #Pt| f(¢)|P > 0, after the summation of the integrals we obtain the inequal-
ity below:
k+a+1

n n+B+1 !
> / e P f(t)|Pdt < / e M f)Pdt < | £},
=0 _kta 0 ’

ntB+1
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which implies that:

"
en A — 1 8
|KeBngpp < L (1 ; ) 1B

" P n-if/;)-i-l n+1 P
I et—1

Now, because aTErT < M, M E N, and u(t) = %= is an increasing function for

t €10,1] and u,, = n € N, is a decreasing sequence we have that

B\ et —1
ol < (145) s

B
n+1’

p
p’u.
Next, in order to prove relation (18), let us take g € C([0, 1]) and write:

o T K9 = gllpu+ g = fllpee (19)

Now, let € > 0 be fixed. From Theorem 1 there exists n. € N, such that for all
n > ne, we have that

IE P4 f = fllpp < N K f — Ky Ptg

g
K&t g — gllpp < |KSP g — gll, < |K2PHg — glls < 3

Also, because the set C([0,1]) is dense in L%,([0,1]) we can choose g € C([0,1])
such that

g
— D
Hf ngaH — 2(®u,ﬁ + 1)

Using (17) and the linearity of K$* we have that

I f = K2 gl < Opsllf = gllp

Hence, going back to (19), we obtain:

€
HKﬁ’ﬁ’“f — fllpp < Ousllf = gllpp + lg = fllpu + )

€
< @+ OIS~ gllp+ & <2,
which proves (18). O

Remark 1. The inequalities in Theorem 2 can be rewritten using norm ||-||,, and

also we have that:
| Kgﬂ,u

lp < €"Opup. (20)

3 Voronovskaya Theorem

In this section we will prove a Voronovskaya type theorem in order to get the
rate of approximation by our operators. In what follows, because the Chebyshev
set considered is {eq, expy, exp’}, we will write our function f € C?([0,1]) as
f(x) = (f olny)(expy), = € [0,1] where In,(z) = log..(x) is the inverse of
expu(z). Here, by C?([0,1]) we mean the set of all continuously differentiable
functions whose second derivative is also continuous on [0, 1].

For such functions, the following Voronovskaya formula holds.
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Theorem 3. Let f € C?[0,1]. The following limit

lim n(KgO#f — () = | ~3 —a+ (L4 B+ e — pa?| (uf(@) — () (21)

n—oo

z(1— )

+ I (@) + (@),

holds uniformly for x € [0,1].

Proof. Let f € C?[0,1] and f(x) = (f o In,)(exp,), = € [0,1]. Let us write the
Taylor polynomial with Peano remainder associated to this function:

F(t) = (f oIny)(ewpy)(t) = (f o Iny)(e"”) + (f o Iny)' (") e — €]

(7 0 ) () [ek — 2 + (D) — e,

where hy(t) = h(t — x) is a globally continuous function on [0, 1] x [0, 1], hence
hy(t) — 0 uniformly as t — =.
Further, we have:

ft) = fa)+ fl(@)p~ e o[ — &)

g (2 ) — (@) — T o ()] — e

Now, applying operator K AH £ the formula above we obtain:
KPg(8) = @) eo(a) + /(@) e K eap, (@) = K e (a)]
1 _ _ _
+35e (T2 [ (@) — p (@) [ P exp] (x) — 264 Ky Pl expy, ()
RN ()] + K (ha(expy — ) ()

B

which, after taking into account that K" *exp,(z) = exp,(x) becomes:

KGO F(8) = F@)Kg M eo(w) + /(@) [~ KipHWeq(o)]
—i—%e_Q“x(u_zf”(a:) — u_lf’(x))[Kﬁ‘”B’“expi(x) — 26217 1 @218 [Pt e ()]
+EKPH (ha(expy — e")?(x)) .

Therefore, we get:

Tim (KPR — f)() = (22)
Tim n{ F@) K eo(w) — 1]+ (o) (1~ KPeo()
g ) f ) K el () — 267

e g (@)] + KE (hyeap, — o)) }.
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Next, using the software Wolfram Mathematica we obtained:

1
lim n[K&PHeg(z) =1 =p|—= —a+ (1 + B+ px — pz?|,

n—00 2
and

lim n[K%% “exp (z) — 2e2H% 4 2T KOBle (1)) = 2(1 — x) e,

n—o0

Now, we will prove prove limy, oo nKS" (hy(exp, — €'*)?(z)) = 0. Using Cauchy
- Schwarz inequality we have:

anz,B,u (hx(exp,u, _ eu:v)Z) < \/Kﬁ’ﬁ’“hg(x)\/nszL"B’“(expﬂ — eux)zl(x),

where, by using the approximation result proved in Theorem 1, we have that
Kf{’ﬁ’”h%(x) — hZ(x) — 0. Using Wolfram Mathematica we have that:

lim nQKﬁ’ﬁ’“(expu — el ()

n—o0

— lim n{Kaﬁvﬂemp (z) — 4" K PHexpd ()

n—oo

[N

+662“foj’B’“expi(x) — 4P KBt egp  (z) + 64“:”Kf{’ﬁ’“eo(x)}
= V322 (1 — ),

which means that nKg ™" (ho(exp, — €%)?) — 0 uniformly on [0,1], as n — oco.
Returning to (22) we obtain the asymptotic result in (21). O

4 Quantitative estimates

In what follows we will provide some characterizations of the rate of conver-
gence of our operators to functions from C([0,1]). The results are obtained in
terms of certain K-functionals, first order modulus of continuity and second or-
der modulus of smoothness which will be defined along the way. Some of these
results are obtained using the equivalence between K-functionals and the moduli
presented.

To obtain the estimates mentioned in the beginning of this section we will
need the following auxiliary result.

Lemma 2. Fory € [0, 1] we have that

ank

V(B+1)2+n/4 _

ntp+1

k+ «
n+B+1

y‘ < (23)

where Q, g =
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Proof. Using Cauchy-Schwarz inequality we have that:

k+a & k+a \? k+ o
< — ) —2y———— +42|.
E:m* ntpB+1 yw— z;mw@)<n+ﬁ+1> Ynypr1Y
Now, let

k+0( 2 k+0€ 2
A = —_—m — —_—mm
) <n+6+1> Ynrpr1 Y
k(k —1) 20+ 1 2y ) )
pu— k —
CEES A Qn+B+D2 ntpt1) Y
« OZQ

Vi B+l Bt e

Then, we have:
- —1) 2n
Y parm)A(y) =y nin — +1)
kﬂp*@)@) y(m+6+u2 n+ B+l

( (20+)n 2« ) n a?
N+ pr1)? n+prl) mtBr1)2

which, after some computations becomes:

an,k(y)A(y) = W{QQ[(B +1) —n] +y[n — 2a(8 + 1)] + ?}
_ B+ 12— o)’ +ny(1 —y)
N n+p4+1
< (max{a, B+ 1 —a})? +ny(l —y)
- n+B8+1
(B +n/4
n+B+1
hence, we obtain (23). O

Now, we can state our first quantitative result which involves the first order
modulus of continuity defined as:

wi(f,6) =sup{[f(t) — f(z)], t,z € [0,1], [t — x| <4}, f € C([0,1]), 6 > 0. (24)
To this purpose, the following theorem holds.
Theorem 4. Let f € C([0,1]). Then, for n € N we have that:

Cl
K20 f (2) = ()] < |f (@) =22 4 e (eap, f,70) (25)

1 1
" el AL I & (TS o W
+€M<m%‘ﬁ n+6+1>{+2n+ﬂ+1+ J%’
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where
n — n ) 26
Tn = m[a’)i |ap+1(x) — 2 (26)

and 001[75’# is a constant depending on «, B, .

Proof. First we will prove that sequence 7,, n € N, converges to 0.

Note, that functions |a,+1(z) — z| achieve their maximum at point z, =

n+ﬁ+11n n+
m
to the limit, then it immediately follows that lim,, . 7, = 0.

Now, we can see that:
K0t f () = fo) = KPP (f = f(@)eo) (@) + [ (@) (K P eo(x) — 1) (27)

ST TEIY o

n+p+1
k=0 n+B8+1

+f () (K Heo () — 1),

5“ (en+g+1 —1)| . Hence, if we replace x from (26) by x,, and pass

[e™f(t) — 7" f ()]t

for every fixed x € [0, 1]. Hence,

(K2 H f (@) = f ()]

kta+l
n+B+1

< (4 B+ 1Y puslania(@)) [T wilean; 1t - al)dt

k=0 n+B+1

+H f ()] - [ eo(x) — eo()].

However,
[t — 2| <[t = ang1(2)] + |ant1(z) — 2| <[ = any1 ()] + 7,
therefore, we have

(K28 f (@) = f ()] (28)

k4+a+1
n+pB+1

< (n+ B+ 1)k an,k(anﬂ(l‘)) - wl(eiﬂp;lﬁ [t — any1(x)|)dt

k=0 n+p+1

n
+(n+ B+ 1e" > prilansi(x)) .
k=0 nt A+l

+H f ()] - [K e (x) — eo()].

k+to+1
n+B+1

aq(6$p;1f,7h)dt

Now, for simplicity, we denote

n kta+l
n+B+1 _
L= (n+ B+ 16" Y puplann(@) [ wilexp, ', |t = ansi(@))dt,
k=0 n+B+1
and
k+a+1
n+pB+1

= (n+ B +1)e" Y pojlanti(@)) ko wi(ezp,' f,n)dt.

k=0 n+B8+1
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It is immediate that
Iy < wi(exp, ' f,mm)er. (29)

Regarding I3, using the well-known property of the modulus of continuity: wi(Ad) <
(I 4+ Nwi(0), with A, > 0, we have:

kta+1l
ntp+1

_ n+B+1
L < eﬂwl(eﬂmlfa J) <1 + % an,k(an+l(x))/k+a

k=0 n+pB+1

|t — anﬂ(ac)\dt) .

But,

k+a+1
n+p+1

|t — apy1(x)|dt

k+a

BT
kta+1 kta
A+ k+ « T | k4«
< t— —— | dt + - —
ot n+pB+1 kta n+p+1
n+pB+1 n+pB+1
1 n 1 k4«
2(n+B+1)2 n+B+1|n+8+1

— apy1(x)|dt

—-an+¢(x) .

Now,

_ n+p8+1 1

1 n
+ m kzzopn,k (ant1(z))

k+ «
n+p+1

_'an+1(x)
= e“wl(eazpﬁlf, 9) [1 + % <(1+ (31)

+8+1)
+ank ant1(x )]

k+a
an+1($)
if we go back to (30) and use (23), we obtain:

n+5+1

. _ 1
Setting § = NCETEST

1 1
m) {”zm

Next, we will need an estimate for K5 eq(z) — e(z)].

Let us denote g,(z) = n[Ky, Bty (z) — eo(x)], = € [0,1] and also Cp 5, =
E (rnaxxe[oyl] ‘—% —a+ 14+ pz— ,uxQ‘ + %) . From Theorem 3 we have the
uniform limit:

I < ety <exp;1f, + Qn”g} . (32)

z(1—z)

5 ] x € [0,1],

1
i gn(0) = |~ — k(14 8-+ o = s+

n—oo

therefore
T [lgnlloe = G
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so, there exists a constant Ccltﬁ’u > Cq B, such that gl < C’éﬁ#, for any
n € N, hence
1
Q,B”u CY,,B,}L Oa7ﬁ’p'
Kb eo(w) — eola)] < KPP — eollae < 22 (33)
Now, returning to (28), using (29), (32) and (33), we obtain (25). O

Further, we will provide an estimate for the approximation of functions f €
LP([0,1]), 1 < p < oo using Peetre’s K-functional:

Ki(f.0)p= _inf {|If —gllp+6llg'llec}, 6 >0, 1<p< o0 (34)
geC1o,1]

Theorem 5. Let f € LP([0,1]), 1 <p < co. Then:

I = fllp < =222 fllos + (O + VK | f, 5= | (35)
n Oput+1 »
for every n € N sufficiently large, where 5P = m + Q5+ 70 and Colz,ﬁ,u

is a constant depending on o, B and p.
Proof. We have that:

[P f = Fllp < A1 llool K P e0 — eolly + 1K (f = f(-)eo)llp (36)

< [If ool 55 # e — eolloo + K H(f = f(-)eo)lp-
Now, let g € C1([0,1]). It follows that:
I (f = fCeolp < K2 (F = 9)llp + 1K 7+ (g = g()eo)ll
+g = Fllp I K eollp < 11F = glloll K2 1 + K574 (g = g(eo)llp
Hlg = FIIES colloe < 1F — allp (1K1, + K55 eoll
g ool E 7 # (lex — ea (-)eol) [lp-
Next, from the definition of our operators, we have:
I | < €. (37)
Further, using (37) and (20), we get
1K f = f(eolly < €(Op + DI = gllp + 19 loo | K5 (lex = e1(-)eol) [lp,

But,

n k+a+1
n+p+1
Kg”g’“ (|61 - 61(-)60’) = (n + ,3 + 1)e;wc an,k(an-‘rl(x)) kta e Mt|t - x’dt
k=0 n+p+1
" st
< (B4 D! Y puglana(@) [ [ = ania(@)] — ansa () - allat
k=0 n+p+1
n
1 k+ «
< et _
<e an,k(an—i-l(x)) [2(n+ﬁ+ 1) n+B+1 an+1(~’0) +7—n:| )

k=0
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so, after using (23) we obtain

1
K (ea = eo)) < e |5

PR Qn n b
CEESY ’“T]

which means that

I f = fOeolly < (O, + DS — gl (38)

1
Hl e |5

7—1_9” + n .
n+pB+1) B T]

Going back to (36) and using (33) and (38) we get:

Ca
|22 f = fllp < =22 flloo + ¢ (O + Dllg — Iy

relg e 5 it ).

(n+p+1)

In order to simplify our notation let us denote (5,?’5 = + €y, 3+ 7. Then:

1
2(n+pB+1)

Cl 6&,5
b} b 7ﬂ7
[B0f = Fllp < =~ e + (O, + 1) (IIf ~oly+ g Il |

where passing to the infimum yields (35). O

Now, to proceed with our last result we will need the following definitions of
K-functionals and of the second order smoothness modulus ws:

K;i(f,0) = inf {|If = gllo +&|lg9 |}, f€C(0,1]), >0, j=1,2,
geCI0,1]

and
wa(f,6) = sup  sup |AG(f,2)],
hel0,6] zef0,1- 1]
where A?(f,z) = f(x) — 2f(x + h) + f(z + 2h).
It is well-known that between these K-functionals and w; and wo the following
relations exist (see [10]): K;(f,9) < Cjw;(f,9), f € C([0,1]), 6 >0, j = 1,2,
where C; are constants depending only on j.

Theorem 6. Let f € C([0,1]). Then:

c! 1
IS = Flo < 2225 o + Co (1) + g 1, (39)

1
Vi)’
for every n € N sufficiently large, where CT and C3 are constants depending on
a, B, p.
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Proof. We have that:
IR f = Flloo < N flloo | K e0 = eolloo + K2 (f = f(-)eo)lloo- (40)
Now, let g € C?([0,1]). It follows that:

IE254(f ~ F(Jeo)lloe (41)
< IESP(f = g)lloo + 155 = g()eo)llow + 1lg = Flloc | K e o
< 11f = glloo (1K lloe + 1K e0loc ) + 15 (g = g(-)eo) o

Next, to evaluate the last term in (41) we use Taylor’s polynomial with integral
remainder up to order 2 in a point x € [0, 1] of the function g. For t € [0, 1] we
have:

g(t) = (g oIny,)(eM)

et

= (golny,)(e"”) 4 (g o In,)' (e"*)[e"" — "] + / (g 0ny,)" (u)(e" — u)du
eH®
e HT ' . et " (In,u) — pg'(In,u) et —u
—gla)+ e~ e+ [ - S

First, let us denote R(t,z) = f;ﬁ: 9" (In, “);2”9'(1“” O e“;;udu. Then by applying

Kf{’ﬁ’“ to the identity above, we get:
K4(g — g(w)eo) (2) = g(a) (K eow) — eolx))

e KT
_l’_

g (@)K eapy (o) — K eo)(x) + K PHR(-, @) (),
SO

(g = g(a)eo)(@)] < lg(a)] - | (Ka Peolx) = eoa)) |

e M
|y’ (x)| - | K Heap, — TP (2)| + KPP (IR (-, x)]) ()
=Ty +T5+T;.
Here, from (33) we have that
Cl
Ty < =22 |g]|cc. (42)

Next, regarding T> we have:
K eapy (o) —e T K P leg ()] < K0 eapy, ()= [+ K e (x) —eo ()

Proceeding in a similar manner as we did in order to obtain (33) we can see there
exists a constant C? 3, Such that:

C2
\Kg"ﬁ’“ea:pu(x) — el < % (43)
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Now, using (42) and (43) we have that

C
Ty < ’ﬂ’“ug [ (44)

where C3 By is a constant depending on «, 3, i
Now, going further, we can see that:

1 /
Ty < 5 (nggoo + ||gll00) \Kna’ﬁ’“expi(x) — 9e2HT 4 eQMxKﬁ”B’ueo(zf)\-

In order to estimate T3 we have

]Kg’ﬁ’“expi(:v) - 2exp3(x) + expz(a:)Kﬁ’B’“eo(xﬂ
< |[Ky Pt eap, (x) — exp(a)| + expy, ()| K Feo(x) — eo()].
Now, using the uniform limit from Theorem 7, proceeding in a similar fashion as

we did for the estimate in (33), we can find a constant C g > 0 depending on
«, B and p such that:

4
Ca,ﬁ,u
b

| K2Ptexp? — expllos < ;

so, we have that
4
’Kﬁvﬁ:#expl%(w) - 262/“: + eQMszé’ﬁ#eO( )’ < (C B + e2ucoz B, ,u) (45)

which implies

T3 < —(C’4 +62ucl ) 19" lloo + 19l 0o
2n B Hz L )

therefore, there exists a constant C’g, s, depending on «, B and p such that:

Ty < 0% 5,19 oo + 11 o) (16)
Hence,
K49 — glw)eo) |
< = [C pllall + (O3 s+ C3 9, 1w + 3,1 ]
Therefore,
I~ f(@)eo)lp < Opale + DIf — gl (47)

1
+E [Colz,ﬂ#HgHoo + (Cgv,ﬂ pt 05 B, u) ||g oo + 05 B, u”g HOO] :
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Further, by using the inequality ||g]lcc < |[fllcc + ||f — 9lloo in the relation from
above, we get

K2 (f = F()eo) o
cl Cy
S*“WWW+<QM@“+D+’M)”fNW
n n
].

1
- [(CB 5+ ) 9l + C2,

Now, using (40) and (33), we obtain:

Cl Cl
[ = fllo < 2250 +<@mwﬂ+n+2@juf—ﬂm

19" llsc] »

- [(Cap+ Cap) 190 +

3\'—‘

1
where, for the simplicity of notation, we denote I'y g, = (@#,5 (et +1)+ ‘j’f’“),

K1 =Cj 5+ Coppand Ky = Cf g
Further, we have

7/"’"

1B f = fllos

cl 1 K 1 K
< 2 a:ﬁ#ﬁ F _ - 1 / - 2 "
<25 [ flloo + T, <||f lloo + T Mllg oo + 0 Tosn Mllg lloo

C, T 1 K+ Ky
=20 o, T2 (f gl + 3 T

K+ K
Fawg,”KQ 1 K1+K2
e (1 = ol + 5 - 2

sl (1 Kok 1)

NeNY

Cl
< 2P| g +

N K1+K F,@ n
r K. Ki+Ky 1
yraBuliag (o JR1F N 2
K+ Ko Papu 1

Cl
< 9Bty e|l 4 Yapultn g ALt e Kit+K; 1
n K1+K Faﬁ,u n
Lo g, K K+ Ky 1
praBut2 o g RS2 1)
K1+ Ko Logpy N

Now, using the inequalities:

Ki+Ky 1 K+ K» 1
ek et N ) (Y Mt et sl
(i )= 0= ()

2
Ki+Ky 1 K+ Ky ( 1 >
w f? = S 1 + — w f’ = )
: ( Lo pp ”) ( Logu ) : vn

and:
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we get:
a,f CO‘ 5 M
K7 = flloo €225 flloo + CTwn + C3wa f

2
where C] = (ng’la’_‘}gl +K1> Cy and C5 = ;gf_&f ( ,/K1+K2> Cy, which is
d

our result.
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