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COEFFICIENT BOUNDS FOR A FAMILY OF BI-UNIVALENT
FUNCTIONS INVOLVING TELEPHONE NUMBERS
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Abstract

In the present paper, we introduce and investigate a new family Fx (v, A, 0; 9)
of holomorphic and bi-univalent functions by using the generalized telephone
numbers which defined in the open unit disk A. We find upper bounds for
the initial Taylor-Maclaurin coefficients and Fekete-Szego inequality for func-
tions in this family. We also indicate certain special cases and consequences
for our results.
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1 Introduction

Indicate by A the family of holomorphic functions in the open unit disk A =
{€ e C: || <1}, of the form

O =€+ ant™ (1)
n=2

We denote by S the subfamily of A consisting of functions which are also univalent
in A.
We say that f € S is called starlike of order v(0 < v < 1) if

ff'(f))
") o een
and a function f € S is called convex of order v(0 < v < 1) if
£f"(€) >
éR(f’(f) +1)>7, (E€N).
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We know that 8*(y) and C() are the families of functions that starlike of order
~ and convex of order y in the unit disk A, respectively.

The image of A under each univalent function f € A contain a disk of radius
%, see the Koebe one-quarter theorem [13] and each function f € S has an inverse

1 defined by f~1(f(¢)) = ¢ and
st ) = (ol <mihr) 2 §)
where
g(w) = fH(w) = w — agw?® 4 (243 — a3)w® — (5a3 — Sagaz + ag)w* + - - - .

A say that f € A is named bi-univalent function in A if both f and f~! are
univalent functions in A. The family of all bi-univalent functions in A denoted by
3.

Very large number of works related to the bi-univalent functions have been
presented in the papers (see [1, 2, 4, 5, 7, 8, 10, 15, 16, 17, 18, 19, 20, 21, 25, 27,
28, 29, 30]). We recall some examples of functions in the family ¥, from the work
of Srivastava et al. [26],

1E£, —log(1 —¢) and %log <1j§> .

The Fekete-Szegd problem |a3 — na%‘ for f € S is well known for its rich history
in the field of Geometric Function Theory and its origin was in the disproof by
Fekete and Szegd (see [14]) of the Littlewood-Paley conjecture that the coefficients
of odd univalent functions are bounded by unity. Many authors obtained Fekete-
Szegd inequalities for different families of functions. This topic has become of
considerable interest among researchers in Geometric Function Theory (see, for
example, [1, 3, 9, 12, 32, 22, 23, 24, 26, 33]).

The conventional telephone numbers are quantified by the recurrence relation

T(k) =Tk —1)+ (k- D)T(k—2) k=2,

with initial conditions

T(0) = T(1) = 1.

For integers k£ = 0 and 7 = 1, Wloch and Wolowiec-Musial [31] defined gener-
alized telephone numbers T'(7, k) by the recurrence relation:

T(r, k) =71T(r,k—1)+ (k- 1)T(1,k — 2),
with initial conditions
T(r,0)=1 and 7T(1,1)=T.

Recently, Bednarz and Wolowiec-Musial [6] considered accessible generaliza-
tion of telephone numbers by

Tr(k)=T7r(k—-1)+71(k—-1)T7(k—2),
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where k 2 2 and 7 2 1 with initial conditions
T7(0) =T7(1) = 1.

Very recently, Deniz [12] investigated the exponential generating function for
T7(k) as follows:

(o] k
r+7% 2 : r
e( + 2) = TT(k’)y
k=0

Clearly, when 7 = 1, we have T'r(k) = T'(k) classical telephone numbers.
Now, we study the function

1437

P 2)

e 2
19(5):@(£+ 2) :1+5+5+1J6”£3+

with its domain of definition as the open unit disk A. We note that ¥(§) is
holomorphic function in A, with positive real part, where J(0) = 1, 9'(0) > 0
and where ¢ maps A onto a region starlike with respect to 1 and symmetric with
respect to the real axis.

Lemma 1. ([13], p.41) Let h € P be given by the following series:
h(€) =1+ c1&+ct?+--- | where &€A.
The sharp estimate is given by
len]| £ 2 ,where neN

holds true.

2 Main results

We now provide, using the generalized telephone numbers, the following sub-
family of holomorphic and bi-univalent functions.

Definition 1. The family Fx (v, \,8;9) contains all the functions f € X if it
fulfills the next subordinations:

(T8 Lo o () <) e

and

(55) [o-og o ()] <) o

where 0 Xy <1, 0SA<1,056<1,1<7<2and g(w) = fH(w).
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Remark 1. 1. If we take A = 0 and v = 1 in Definition 1, the family Fx(vy, A, 0; %)
reduce to the family 85,(V) which was studied recently by Cotirld and Wanas (see

[11]).

2. If we take v =0 and A = § = 1 in Definition 1, the family Fs(vy, A, 6;9) reduce
to the family Cx(¥) which was introduced recently by Cotirlda and Wanas (see [11]).

[IA

A

A

Theorem 1. If f given by (1) is in the family Fs (v, A, 6;9) (0= v =< 1,0
1,06 £ 1), then

1
las] € mind ———
v+ A+ 1)

2
J [+ D)+ MG+ 1) 27+ 1)+ (= D(E+ )]+ (1—7) (7 + A + 1>>2\}
and

|as| Smin{ ! + Tl )
- A(v+X20+1) Y(y+1D)+ A6+ 2H+D)+AN=-1)(6+1))

1 1
GAG+DP 2<v+A<25+1>>}'

Proof. Let f € Fx(v,A,6;9) and f~! = g. There are the functions ®, ¥ : A — A
holomorphic, with ®(0) = ¥(0) = 0, fulfills the following conditions:

(ff’@)”[u_aﬁf'@+5<1+ff"<f)>r=ﬁ<q><§>>, ceh (3)

f(&) £(€) 71(6)
and
(ﬁﬁ?)w [(1 ) wgg(;(;;}) +0 <1 + wggl’(’l(;‘)ﬁ)r —I(U(w)), weA (4)

Define the functions x and y by

x(g):iiggzlmlermfﬂm
and _—_—
y(&)zlfq,g=1+y1£+y2£2+---.

It follows that x, y are analytic functions in A, where z(0) =1 = y(0). Then, we
get &, ¥ : A — A, where x and y are the functions with a positive real part in
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A.
But, we have
1-— 1 ¢
0O =10 ac (- T+ ger @
d
[N TSI Y P R 1 U N
BEGCEIREL AR el

By substituting (5) and (6) into (3) and (4) and applying (2), we get

(F&) lo-o o ()]

-1, (85)
=OF T 1 ry (7 —1)a?
=9 (D(¢) =e :1+2$1§+[2—|— 2 1}5%---(7)
and
wg' () \" [, - wg(w) wg”(w)\ ]
() Lo-950 0 ()]
(legru;,)(w; _H_(Zgiﬁf) )
= 0 (U(w) = — 1t ot |24 TS0 2y
(8)
Equating the coefficients in (7) and (8), yields
(Y+AG+1))ag = %xl, 9)
S0 =D AGH Dy + (A= 1 +1) 2y + M35 + 1))
+2(y + A(26 + 1))as = % + (7_81);”%, (10)
—(Y+ A0+ 1)) ag = %yl (11)
and
S0 = D FAG+ 1) 2y + (= DE+1)) = 27+ AB5 + 1))] a3
2 y2 | (7 — 1)3/%
+2(y+ A (20 4+ 1)) (2a5 — a3) = St g (12)

From (9) and (11), we have
r1 = —U (13)
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and 1
2(y+ A6 +1))%a3 = Z(ﬂﬁ%ﬂﬁ)- (14)

If we add (10) to (12), we obtain

1 1
O+ D) +AE+ D) RO+ 1) + A= D@ + )] a3 = 5 (@a+y2)+5 (T=1)(z1+91).
(15)
Substituting from (14) the value of 27 + 7 in the relation (15), we get
T2 + Y2
2 | [y(y+1) + A6+1) (2(y+1) + A=D1 (6+1)] + (1—7) (v + A(0+1))?
(16)
Applying Lemma 1 for the coefficients 1, z2,y1, 2 in (14) and (16), we get

2 =

and

2
as| < .
- J [B+1) + AB+1) 201) + A= D(E+1)]+ (1=7) (+AG+1)

In order to find the bound on |ag|, from (10) we subtract (12) and applying (13),
we get 72 = 3%, hence

A3+ A5+ 1) (a5~ a3) = 5(02 — ), (1)

then by substituting of the value of a3 from (14) into (17), we obtain

0 — 22 +yd To — Y2 ‘
8(y+ A0 +1)% 8(y+A(26+1))
So we have . )
las| <

+ .
(v+AG+1))2  2(v+A20+1))
Also, substituting the value of a3 from (15) into (17), we get

e — T2 — Y2 n T2 + Y2
PTR(YAA241) 2[y(v+ D) A+ D2+ 1)+ (A= 1)(5 +1))]
(1 =Dt + 4t

)
R RO+ D+ 0+ DA+ D+ =10+ 1)

and we have
1 T+1
GIANB D) AT DA RO DT A — D@+ 1)

lag| < 1
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When A = 0 and v = 1, the Theorem 1 reduced to the corresponding results
of Cotirla and Wanas (see [11]).

Corollary 1. [11] If f given by (1) is in the family S5,(0), then

2

|lag| = min{17 ’3_7’}
2 3

jag) € mind =27 2L
2 72

If we put v+ = 0 and A = § = 1 in Theorem 1, the results reduced to the
corresponding results of Cotirla and Wanas (see [11]).

and

Corollary 2. [11] Let f given by (1) be in the family Cx(¥). Then

1/ 1
< min{ =
‘a2’—m1n{47 2|2_T|}

and

In the next theorem, We provide the Fekete-Szegd problem for the family
EFE(’-Y? )‘7 67 19)

Theorem 2. For 0 < v <1, 0 £ A
Fs(y, A, 0;9) be of the form (1). Then

[IA
\.P—‘
o
IA

SdS1andn € R, let f €

lag —na3| <
|77_1| é E(’}/,)\,T,é),

1 :
- { 2T A(201)) -
< n— 1> =

[+ FACGHD) RO+ D) +A—1) (D)) +(I—7) (+AG+D)] =112 (7, A, 7,9).

where

E(v, A\, T,0) (18)
WA +D)4+AE+1D) v+ D+ A=+ 1)+ (1 —7) (v + A6 +1))?
4(y+A20+1)) '
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Proof. Tt follows from (16) and (17) that

T2 — Y2

=N = gm0
_ T2 — Y2
8 (y+A25+1))
n (2 +y2) (1 — )
2 [h(w DA+ y+D+A=1DE+1)]+ 1 —7) (v + A6+ 1))2]
1 1 1
=3 (40 + s 7+ (00 - ) )
where
$(n,7)

_ Ll
O DA+ O+ D)+ A= D@+ )]+ (L= 7) (v +A@ + 1))
According to Lemma 1 and (2), we find that

1 1
PICESYOZESHE 0= [¢p(n, 7)| = I A (2011’
‘a:’, - W%‘ =
20(n, 7, (1, 7)] 2 )
After some computations, we obtain
|a3 - 77@%‘
1 ) =
< PICESYCZESHE n =1 = E(v,A7,0),
- 2ln—1] 275 |77_ 1| 2 E(’}/,)\,T, 5)
|V AHDHAGEHD) (YD +A=1) (5+1)][+(1—7) (y+A(5+1))?|
where Z (v, A, 7,0) as given in (18). O

For A = 0 and v = 1 Theorem 2 gives the results of Cotirla and Wanas (see
[11]).
Corollary 3. [11] For n € R, let f € S,(V) be of the form (1). Then
3—
of -1 = B,
|az —na3| <

2[n—1], > [3—=7]
[3—7] ' In—1] 2 =

When v = 0 and A = § = 1 Theorem 2 leads to the known result on Cotirla
and Wanas for the family Cg(9) (see [11]).

Corollary 4. [11] Forn € R, let f € Cg(9) be of the form (1). Then
2—1
B -1l = 557,

|az —naj| <

In—1] . 1> 12=7]
2[2—1]’ In—1] 2 =5-.
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If we take 7 = 1 in Theorem 2, we get the next result:

Corollary 5. If f € Fx(v,\,0;0) be of the form (1), then we have that

3

1
— a2l <
s =l = 5t @ 1)

Conclusion

Studies of bi-univalent functions which are defined by generalized telephone

numbers is relatively new, and only a small number of papers have been writ-
ten on this subject so far. In the present investigation, we create a certain family
Fs:(y, A, §; 9) of holormorphic and bi-univalent functions which are defined by gen-
eralized telephone numbers. We generated Taylor-Maclaurin coefficient inequal-
ities for functions belonging to this family and viewed the famous Fekete-Szego
problem and indicated certain special cases and consequences for our results.
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