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FINSLERIAN HYPERSURFACES OF A FINSLER SPACE
WITH DEFORMED DOUGLAS INFINITE SERIES METRIC
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Abstract

In present paper we studied the geometrical properties of Finslerian hy-
persurfaces and its reducibility of Cartan C− tensor in various forms for a
Finsler space Fn equipped with deformed Infinite series metric. Further we
obtained the value of main scalar I for the hypersurface in a two-dimensional
case.
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1 Introduction

Matsumoto [7] studied a Finsler metric of two variable α and β on a n-
dimensional manifold Mn and summerised all the results for the Finsler space
Fn which is equipped with (α, β)−metric. Further in 1998 he [9] introduced a
special (α, β)-metric which was defined as

L = α+
β2

α
(1)

and named as Douglas type metric and the space equiped with this metric was
known as Finsler space with Douglas type metric. Since the Douglas space was a
generalization of Berwald space, so this metric was very important in the devel-
opment of Finsler geometry.

In 2004 Lee and Park [6] introduced a r-th series (α, β)-metric

L(α, β) = β
r∑

k=0

(
α

β
)k, α < β (2)
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where α is a Riemannian metric and β is one form. The above equation is reduces
in special and important form of an (α, β)-metric for the various values of r. e.g.

1. If r = 1 then r-th series metric reduces in a special and important form
which is known as Randers metric which is widely used in the field of physics.

2. If r = 2 then above metric reduces in L = α + β + α2

β which is a combi-
nation of Randers metric and Kropina metric.

3. If r = ∞ then above metric is expressed as L(α, β) = β2

β−α which is an
remarkable form of an (α, β) that represent the difference of Randers and Mat-
sumoto metric.

Matsumoto introduced the concept of Finslerian hypersurface [8] and studied
its geometrical properties in various forms. Further many authors studied hy-
persurface properties in a Finsler space [1, 2, 3, 4, 5, 10, 11] for various Finsler
metrics and obtained very interesting results in the field of Finsler geometry.

In the present paper we combine douglas type Finsler metric L = α +
β2

α
and Infinite series metric L = β2

β−α and introduced a deformed douglas Infinite
series metric and studied some intrinsic properties of the hypersurfaces and its
reducibility of Cartan C-tensor in various forms for a Finsler space with deformed
douglas Infinite series metric. In the last article of present paper we obtain the
the value of main scalar I in a two-dimensional case for the hypersurfcae of a
Finsler space with deformed douglas Infinite series metric.

2 Preliminaries

The concept of Finslerian hypersurfaces introduced by [8] and studied in detail
by[4] in a n-dimensional Finsler space Fn = (Mn, L) with respect to cartan con-
nection CΓ = (F i

jk, N
i
j , C

i
jk) and obtained the expression for fundamental metric

tensor gij and C-tensor Cijk which can be written as

gij =
1

2

∂2L2

∂yi∂yj
, Cijk =

1

2

∂gij
∂yk

, (3)

Further Matsumoto [8] and Kitayama [4] considered the parametric form of an
hypersurface of an n-dimensional manifold Mn is given by

xi = xi(uα)

where uα {α = 1, 2, 3...(n − 1)}, are the Gaussian coordinates and the hypersur-
face of Mn is denoted by Mn−1.
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Again the supporting line element yi which is tangential to the hypersurface
Mn−1 at the point (uα) is given by

yi = Bi
α(u)v

α, (4)

where the projection factors Bi
α = ∂xi

∂uα represent a tangent space at a point of the
hypersurface and matrix corresponding to it is of rank n − 1 whereas vα is the
line element of support of the hypersurface Mn−1 at the point (uα).

Since the metric function L(u, v) = L{x(u), y(u, v)} satisfied the conditions
of a Finsler metric in the hypersurface Mn−1, so we have an (n− 1) dimensional
Finsler space Fn−1 = {Mn−1, L} equipped with the metric L(u, v).

Now the expression for metric tensor, hv-tensor, a unit normal vector, angular
metric tensor and the relation between projection factors and its inverse for a
Finslerain hypersurface Fn−1 [8] at a point (uα) are given by

gαβ = gijB
i
αB

j
β, Cαβγ = CijkB

i
αB

j
βB

k
γ ,

gij{x(u, v), y(u, v)}Bi
αN

j = 0, gij{x(u, v), y(u, v)}N iN j = 1.

hαβ = hijB
i
αB

j
β, hijB

i
αN

j = 0, hijN
iN j = 1. (5)

Bα
i = gαβgijB

j
β, Bi

αB
β
i = δβα, Bα

i N
i = 0, Bi

αNi = 0.

Ni = gijN
j , Bk

i = gkjBji, Bi
αB

α
j +N iNj = δij .

The cartan connection ICΓ = (Γ∗α
βγ , G

α
β , C

α
βγ) for the Finslerian hypersurface Fn−1

are given by

Γ∗α
βγ = Bα

i (B
i
βγ + Γ∗i

jkB
j
βB

k
γ ) +Mα

βHγ .

Gα
β = Bα

i (B
i
0β + Γ∗i

0jB
j
β), Cα

βγ = Bα
i C

i
jkB

j
βB

k
γ ,

where

Mβγ = NiC
i
jkB

j
βB

k
γ , Mα

β = gαγMβγ , Hβ = Ni(B
i
0β + Γ∗i

ojB
j
β),

and

Bi
βγ =

∂Bi
β

∂uγ , Bi
0β = Bi

αβv
α.

Note: ”The tensorial form Mαβ and Hα are known as the second fundamental
v-tensor and normal curvature vector respectively”.

Further the second fundamental h-tensor Hβγ can be expressed as [8]

Hβγ = Ni(B
i
βγ + Γ∗i

jkB
j
βB

k
γ ) +MβHγ , (6)
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where, Mβ = NiC
i
jkB

j
βN

k.
Since form above it is clear that the tensorial quantity Hβγ is not symmetric so
we have

Hβγ −Hγβ =MβHγ −MγHβ. (7)

Now the h and v-covariant derivatives of the projection factor Bi
α with respect to

ICΓ can be expressed as

Bi
α|β = HαβN

i, Bi
α|β =MαβN

i.

Now when we contracting Hβγ and Hγβ by vβ we get

H0γ = Hγ , Hγ0 = Hγ +MγH0, (8)

Thus following important results for the Finslerian hypersurface [8] we shall use
in our present paper

Lemma 1. The normal curvature tensor vanishes identically iff the normal cur-
vature vector vanishes in a Finslerian hypersurface F (n−1).

Lemma 2. If Fn be a Finsler space and F (n−1) be its hypersurface then the
hypersurfave F (n−1) will be a hyperplane of the first kind iff normal curvature
vector vanishes identically.

Lemma 3. If Fn be a Finsler space and F (n−1) be its hypersurface then the
hypersurfave F (n−1) will be a hyperplane of the second kind iff normal curvature
vector and second fundamental h-tensor vanishes identically.

Lemma 4. If Fn be a Finsler space and F (n−1) be its hypersurface then the
hypersurfave F (n−1) will be a hyperplane of the third kind iff normal curvature
vector, second fundamental h and v tensor vanishes identically.

3 Finsler space with deformed Douglas infinite series
metric

The deformed Douglas Infinite series metric is a combination of Matsumoto
Douglas type and Infinite series metric which we defined as

Definition 1. Let Fn be an n-dimensional Finsler space consisting of an n-
dimensional differentiable manifold Mn equipped with a fundamental function L
defined as

L(α, β) = α+
β2

α
+

β2

(β − α)
(9)

then the metric L is known as deformed Infinite series and the Finsler space
Fn = {Mn, L(α, β)} equiped with this metric is known as deformed infinite series
Finsler space.

Now differentiating equation (9) partially with respect to α and β we have
following important identities
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Lα = α4−β4−2α3β−2αβ3+α2β2

α2(β−α)2
, Lβ = 2β3−3αβ2

α(β−α)2
Lαα =

2{α3+(β−α)3}β2

α3(β−α)2

Lββ =
2{α3+(β−α)3}

α(β−α)3
, Lαβ =

−2β{α3+(β−α)3}β
α2(β−α)3

where Lα = ∂L
∂α , Lβ = ∂L

∂β , Lαα = ∂Lα
∂α , Lββ =

∂Lβ

∂β , Lαβ = ∂Lα
∂β .

In Finsler space Fn = {Mn, L(α, β)} the normalized element of support li =
˙∂iL and angular metric tensor hij are given by:

li = α−1LαYi + Lβbi (10)

hij = paij + q0bibj + q−1(biYj + bjYi) + q−2YiYj (11)

where Yi = aijy
j and the scalars p, q0, q−1 and q−2 are constants and its values

are given below

p =
(β3 − α3 + α2β)(α4 − β4 − 2αβ3 − 2α3β + α2β2)

α4(β − α)3
, (12)

q0 =
2(β3 − α3 + α2β){α3 + (β − α)3}

α2(β − α)4
,

q−1 =
−2β(β3 − α3 + α2β){α3 + (β − α)3}

α4(β − α)4
,

q−2 =
(β3 − α3 + α2β)(α5 + 3β5 + 3α3β2 + 7α2β3 − 9αβ4)

α6(β − α)4
.

Note: 0,−1,−2 in the subscript represents homoginity of the respective terms.

Fundamental metric tensor gij = 1
2 ∂̇i∂̇jL

2 and its reciprocal tensor gij for L =
L(α, β) are given by [8]

gij = paij + p0bibj + p−1(biYj + bjYi) + p−2YiYj (13)

gij = p−1aij − s0b
ibj − s−1(b

iyj + bjyi)− s−2y
iyj (14)

where bi = aijbj and b2 = aijb
ibj

p0 = q0 + L2
β, p−1 = q−1 + L−1pLβ, p−2 = q−2 + p2L−2 (15)

s0 =
1

τp
{pp0 + (p0p−2 − p2−1)α

2}, (16)

s−1 =
1

τp
{pp−1 + (p0p−2 − p2−1)β},

s−2 =
1

τp
{pp−2 + (p0p−2 − p2−1)b

2},

τ = p(p+ p0b
2 + p−1β) + (p0p−2 − p2−1)(α

2b2 − β2)
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The hv-torsion tensor Cijk = 1
2 ∂̇kgij is given by

2pCijk = p−1(hijmk + hjkmi + hkimj) + γ1mimjmk (17)

where,

γ1 = p
∂p0
∂β

− 3p−1q0, mi = bi − α−2βYi (18)

Here mi is a non-vanishing covariant vector orthogonal to the element of support
yi. Thus we have

Proposition 1. The normalised supporting element li and angular metric ten-
sor hij of an n-dimensional Finsler space Fn equipped with a deformed Douglas
Infinite series metric L are given by (10) and (11) respectively.

Proposition 2. The fundamentiacl metric tensor gij and its reciprocal tensor gij

of an n-dimensional Finsler space Fn equipped with a deformed Douglas Infinite
series metric L are given by (13) and (14) respectively.

Proposition 3. The Cartan hv-torsion tensor of an n-dimensional Finsler space
Fn equipped with a deformed Douglas Infinite series metric L is given by (17).

Let {ijk} be the component of christoffel symbols of the associated Riemannian

space Rn and ▽k be the covariant derivative with respect to xk relative to this
christoffel symbol. Now we define,

2Eij = bij + bji, 2Fij = bij − bji (19)

where bij = ▽jbi.

Let CΓ = (Γ∗i
jk,Γ

∗i
0k,Γ

i
jk) be the cartan connection of Fn. The difference tensor

Di
jk = Γ∗i

jk − {ijk} of the special Finsler space Fn is given by

Di
jk = BiEjk + F i

kBj + F i
jBk +Bi

jb0k +Bi
kb0j − b0mg

imBjk (20)

−Ci
jmA

m
k − Ci

kmA
m
j + CjkmA

m
s g

is + λs(Ci
jmC

m
sk +

Ci
kmC

m
sj − Cm

jkC
i
ms)

where

Bk = p0bk + p−1Yk, Bi = gijBj , F k
i = gkjFji (21)

Bij =
{p−1(aij − α−2YiYj) +

∂p0
∂β mimj}

2
, Bk

i = gkjBji

Am
k = Bm

k E00 +BmEk0 +BkF
m
0 +B0F

m
k

λm = BmE00 + 2B0F
m
0 , B0 = Biy

i

where ′0′ denote contraction with yi except for the quantities p0, q0 and so. Thus

Proposition 4. The difference tensor Di
jk of the Cartan connection CΓ for the

n-dimensional Finsler space Fn equipped with a deformed Douglas Infinite series
metric L is given by (20).
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4 Finslerian hypersurface F (n−1)(c) for a Finsler space
with deformed Douglas infinite series metric

Let us consider a Finsler space with the deformed Infinite series metric L(α, β) =

α + β2

α + β2

(β−α) , where, α
2 = aij(x)y

iyj is a Riemannian metric and vector field

bi(x) =
∂b
∂xi is a gradient of some scalar function b(x). Now we consider a hyper-

surface F (n−1)(c) given by equation b(x) = c, a constant [11].

From the parametric equation xi = xi(uα) of Fn−1(c), we get

∂b(x)
∂uα = 0 ∂b(x)

∂xi
∂xi

∂uα = 0, biB
i
α = 0

Above shows that bi(x) are covarient component of a normal vector field of
hypersurface Fn−1(c). Further, we have

biB
i
α = 0 and biy

i = 0 i.e β = 0 (22)

and induced matric L(u, v) of Fn−1(c) is given by

L(u, v) = aαβv
αvβ, aαβ = aijB

i
αB

j
β (23)

which is a Riemannian metric.

Writing β = 0 in the equations (10), (11) and (13) we get

p = 1, q0 = 0, q−1 = 0 q−2 = −α−2 p0 = 0 p−1 = 0 (24)

p−2 = 0 τ = 1, s0 = 0 s−1 = 0 s−2 = 0

from (12) we get,
gij = aij (25)

thus along Fn−1(c), (25) and (22) leads to

gijbibj = b2

So we get
bi(x(u)) = bNi, b2 = aijbibj (26)

where b is the length of the vector bi

Again from (25) and (26), we get

bi = aijbj = N i (27)

thus we have,

Proposition 5. The induced Riemannian metric in a Finslerian hypersurface
F (n−1)(c) of the Finsler space Fn equipped with a deformed Douglas Infinite series
metric is given by (23) and its scalar function b(x) is given by (26) and (27).
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Now the angular metric tensor hij and metric tensor gij of Fn are given by

hij = aij −
1

α2
YiYj and gij = aij (28)

From equation (22), (28) and (5) it follows that if h
(a)
αβ denote the angular metric

tensor of the Riemannian aij(x) then we have along Fn−1
(c) , hαβ = h

(a)
αβ .

thus along Fn−1
(c) , ∂p0

∂β = −6
α

from equation (16) we get

r1 =
−6
α , mi = bi

then hv-torsion tensor becomes

Cijk = − 3

α
bibjbk (29)

in the deformed Douglas Infinite series Finsler hypersurface F
(n−1)
(c) . Due to fact

from (5), (6), (8), (22) and (29) we have

Mαβ = 0 and Mα = 0 (30)

Therefore from equation (6) it follows that Hαβ is symmetric. Thus we have

Proposition 6. The second fundamental v-tensor in a Finslerian hypersurface
F (n−1)(c) of the Finsler space Fn equipped with a deformed Douglas Infinite series
metric is given by (30) and the second fundamental h-tensor Hαβ is symmetric.

Now from (22) we have biB
i
α = 0. Then we have

bi|βB
i
α + biB

i
α|β = 0

Therefore, from (8) and using bi|β = bi|jB
j
β + bi|jN jHβ, we have

bi|jB
i
αB

j
β + bi|jB

i
αN

jHβ + biHαβN
i = 0 (31)

since bi|j = −bhCh
ij , we get

bi|jB
i
αN

j = 0

Therefore from equation (31) we have,

bHαβ + bi|jB
i
αB

j
β = 0 (32)

because bi|j is symmetric. Now contracting (32) with vβ and using (4) we get

bHα + bi|jB
i
αy

j = 0 (33)
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Again contracting by vα equation (33) and using (4), we have

bH0 + bi|jy
iyj = 0 (34)

Now by using Lemmas 1, 2 and equation (34), it is clear that hypersuface F
(n−1)
(c)

of Finsler space with deformed Douglas Infinite series is a hyperplane of first kind
if and only if H0 = 0.

Since bi|j represent the covariant derivative with respect to CΓ in the Finsler
space Fn defined on yi, but bij = ▽jbi is the covariant derivative with respect
to Riemannian connection {ijk}. Hence bij does not depend on yi. So we shall
consider the difference bi|j − bij where bij = ▽jbi. Since bi is a gradient vector,
then from (19) we have

Eij = bij Fij = 0 and F i
j = 0

Thus using above fact the in equation (20), the difference tensor can be rewritten
as

Di
jk = Bibjk +Bi

jb0k +Bi
kb0j − b0mg

imBjk − Ci
jmA

m
k − Ci

kmA
m
j (35)

+CjkmA
m
s g

is + λs(Ci
jmC

m
sk + Ci

kmC
m
sj − Cm

jkC
i
ms)

where

Bi = 0, Bi = 0, BiB
i = 0, λm = Bmb00, Bij = − 3

α
bibj , (36)

Bi
j = − 3

α
b2, Am

k = Bm
k b00 +Bmbk0

In view of (24) and (25), the relation in (19) becomes to by virture of (36) we
have Bi

0 = 0, Bi0 = 0 which leads Am
0 = Bmb00.

Now contracting (35) by yk we get

Di
j0 = Bibj0 +Bi

jb00 −BmCi
jmb00

Again contracting the above equation with respect to yj we have

Di
00 = 0

Paying attention to (22), along F
(n−1)
(c) , we get

biD
i
j0 = − 3

α
b2bib00 (37)

Now we contract (37) by yj we have

biD
i
00 = 0 (38)

From (26), (27), (30) and Mα = 0, we have
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bib
mCi

jmB
j
α = b2Mα = 0

Thus the relation bi|j = bij − brD
r
ij the equation (37) and (38) gives

bi|jy
iyj = b00 − brD

r
00 = b00

Consequently (33) and (34) may be written as

bHα + bi0B
i
α = 0, and bH0 + b00 = 0 (39)

Thus the condition H0 = 0 is equivalent to b00 = 0. Using the fact β = biy
i = 0

the condition b00 = 0 can be written as bijy
iyj = biy

ibjy
j for some cj(x). Thus

we can write,
2bij = bicj + bjci (40)

Now from (22) and (40) we get

b00 = 0, bijB
i
αB

j
β = 0, bijB

i
αy

j = 0

Hence using the above condition and equation (39) we have

Hα = 0 (41)

Thus using Lemma 2 and above condition we have

Theorem 1. The necessary and sufficient condition for a Finslerian hypersurface
F (n−1)(c) of the Finsler space Fn equipped with a deformed Douglas Infinite series
metric to be a hyperplane of first kind is (40).

again from (40) and (36) we get

bi0b
i = c0b2

2 , λm = 0, Ai
jB

j
β = 0 and BijB

i
αB

j
β = − 3

αbibjB
i
αB

j
β = 0.

Now we use equation (25), (26), (27), (30) and (35) then we have

brD
r
ijB

i
αB

j
β = 0 (42)

Thus the equation (32) reduces to

Hαβ = 0 (43)

Hence the hypersurface Fn−1
(c) is umbilic.

Now from Lemma 3, F
(n−1)
(c) is a hyperplane of second kind if and only if

Hα = 0 and Hαβ = 0. Thus from (42), we get

c0 = ci(x)y
i = 0

Therefore there exist a function ψ(x) such that

ci(x) = ψ(x)bi(x)

Therefore (40) we get
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2bij = bi(x)ψ(x)bj(x) + bj(x)ψ(x)bi(x)

This can also be written as
bij = ψ(x)bibj (44)

Thus using the condition (41) and (43) we have

Theorem 2. The necessary and sufficient condition for in a Finslerian hypersur-
face F (n−1)(c) of the Finsler space Fn equipped with a deformed Douglas Infinite
series metric to be a hyperplane of second kind is (44).

Again Lemma 4, together with (30) and Mα = 0 shows that Fn−1
(c) become a

hyperplane of third kind.

Theorem 3. The Finslerian hypersurface F (n−1)(c) of the Finsler space Fn

equipped with a deformed Douglas Infinite series metric is a hyperplane of the
third kind.

5 Some important result of hypersurface F (n−1)(c) of a
Finsler space F n(c) with deformed Douglas infinite
series metric

The hv-torsion tensor Cijk of F (n−1)(c) with deformed infinite series metric
written in equation (29) as

Cijk = −3
α bibjbk

Contracting by gjk, we have

Ci = Cijkg
jk = −3b2

α bi

This implies that

bi =
−α
3b2
Ci

Therefore equation (29) becomes

Cijk =
α2

9b6
CiCjCk (45)

Definition 2. A Finsler space Fn is called C2-like,if the (h) hv-tortion tensor
Cijk is written in the form

Cijk = 1
C2CiCjCk

Thus using the above dfinition and equation (45) we have

C =
3b3

α
(46)

Thus
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Proposition 7. The Finslerian hypersurface F (n−1)(c) of the Finsler space Fn

eqquipped with a deformed Douglas Infinite series metric is always be a C2-like
Finsler space if equation (46) is satisified.

Since the main scalar of two dimensional Finsler space is defined as

LCijk = Imimjmk

From equation (16) mi = bi we have

LCijk = Ibibjbk

Contracting gjk we have

LCi = Ib2bi

which gives

bi =
L
b2
Ci

Now the main scalar of two dimensional Finsler

LCijk =
IL3

b6
CiCjCk (47)

From equation (45) and (47), we have

I =
α2

9L2
(48)

Proposition 8. The main scalar I of a Finslerian hypersurface F (n−1)(c) for the
Finsler space Fn eqquipped with a deformed Douglas Infinite series metric in a
two dimensional case is given by (48).

6 Conclusion

In the present paper, we obtained the conditions for a Finslerian hypersurface
F (n−1)(c) of a Finsler space Fn with deformed Douglas Infinite series metric to
be a hyperplane of first, second, and third kind in the Theorems 1, 2, and 3, re-
spectively. Further for application point of view we also obtained the Proposition
7 which states the condition under which hypersurface Fn−1(c) will be reduces in
C2-like Finsler space and in Propostion 8 gives the value of the main scalar I for
the hypersurface in two-dimensional case.
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