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FINSLERIAN HYPERSURFACES OF A FINSLER SPACE
WITH DEFORMED DOUGLAS INFINITE SERIES METRIC

V. K. CHAUBEY*! and Brijesh Kumar TRIPATHI?

Abstract

In present paper we studied the geometrical properties of Finslerian hy-
persurfaces and its reducibility of Cartan C'— tensor in various forms for a
Finsler space F" equipped with deformed Infinite series metric. Further we
obtained the value of main scalar I for the hypersurface in a two-dimensional
case.
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1 Introduction

Matsumoto [7] studied a Finsler metric of two variable a and 8 on a n-
dimensional manifold M™ and summerised all the results for the Finsler space
F™ which is equipped with («, 8)—metric. Further in 1998 he [9] introduced a
special («, §)-metric which was defined as

B2
L=a+ — 1
+= 1)
and named as Douglas type metric and the space equiped with this metric was
known as Finsler space with Douglas type metric. Since the Douglas space was a

generalization of Berwald space, so this metric was very important in the devel-
opment of Finsler geometry.

In 2004 Lee and Park [6] introduced a r-th series (v, 3)-metric

Kap) = (5 a<p (2)
k=0
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where « is a Riemannian metric and ( is one form. The above equation is reduces
in special and important form of an («, §)-metric for the various values of r. e.g.

1. If r = 1 then r-th series metric reduces in a special and important form
which is known as Randers metric which is widely used in the field of physics.

2. If r = 2 then above metric reduces in L = o+ 3 + %2 which is a combi-
nation of Randers metric and Kropina metric.

3. If r = oo then above metric is expressed as L(a, ) = /36?2& which is an
remarkable form of an («, 3) that represent the difference of Randers and Mat-
sumoto metric.

Matsumoto introduced the concept of Finslerian hypersurface [8] and studied
its geometrical properties in various forms. Further many authors studied hy-
persurface properties in a Finsler space [1, 2, 3, 4, 5, 10, 11] for various Finsler
metrics and obtained very interesting results in the field of Finsler geometry.

2

In the present paper we combine douglas type Finsler metric L = a 4+ —

@

and Infinite series metric L = Bﬂéa and introduced a deformed douglas Infinite

series metric and studied some intrinsic properties of the hypersurfaces and its
reducibility of Cartan C-tensor in various forms for a Finsler space with deformed
douglas Infinite series metric. In the last article of present paper we obtain the
the value of main scalar I in a two-dimensional case for the hypersurfcae of a
Finsler space with deformed douglas Infinite series metric.

2 Preliminaries

The concept of Finslerian hypersurfaces introduced by [8] and studied in detail
by[4] in a n-dimensional Finsler space F™ = (M", L) with respect to cartan con-
nection CT = (F ;k, N ;, ; ;) and obtained the expression for fundamental metric
tensor g;; and C-tensor Cj;, which can be written as

1o R (3)
g’L] - 2 8y18y3’ Z_]k - 2 8yk7

Further Matsumoto [8] and Kitayama [4] considered the parametric form of an
hypersurface of an n-dimensional manifold M™ is given by

where u® {a =1,2,3...(n — 1)}, are the Gaussian coordinates and the hypersur-
face of M™ is denoted by M"™~ L.
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Again the supporting line element y° which is tangential to the hypersurface
M"™1 at the point (u®) is given by
y' = Bg(u)p®, (4)
where the projection factors B?, = gffa represent a tangent space at a point of the
hypersurface and matrix corresponding to it is of rank n — 1 whereas v® is the
line element of support of the hypersurface M"~! at the point (u®).

Since the metric function L(u,v) = L{z(u),y(u,v)} satisfied the conditions
of a Finsler metric in the hypersurface M"~!, so we have an (n — 1) dimensional
Finsler space F"~! = {M"~! L} equipped with the metric L(u,v).

Now the expression for metric tensor, hv-tensor, a unit normal vector, angular
metric tensor and the relation between projection factors and its inverse for a
Finslerain hypersurface F"~! [8] at a point (u®) are given by

Yap glJBaBﬁ7 Capy = CijkBgBéB];’

gz]{x(ua U)? y(“’a U)}BQN] = 07 glj{x(u7 U)v y(ua ’U)}NZN] =1

hap = hijBLB%,  hijBuN? =0, hijN'N/ = 1. (5)

B = g*%g;;B,,  BLB] =4, BfN'=0, BiN;=0.

N; =gijN7,  Bf =g¢"Bj;, B,BY+ N'N; =0
The cartan connection ICT = (I'y7, G, Cg, ) for the Finslerian hypersurface "~ 1
are given by

% = B (B, + . ByBY) + Mg H,.

& = BY(Bi,+T3iB)), Cg, =BrCY BBk,

where
Mgy NC’kBJB ME‘ =g“"Mpg,, Hg= NZ-(B[%B + Fg;Bé)
and
. OBt . .
B, = s 08 = Bagv™

Note: "The tensorial form M,z and H, are known as the second fundamental
v-tensor and normal curvature vector respectively”.

Further the second fundamental h-tensor Hg, can be expressed as [§]

Hpy = Ni(Bfiw + ;Ichngs) + MpgH,, (6)



104 V. K. Chaubey and Brijesh Kumar Iripathi

where, Mg = N;Ci, BLN*.
Since form above it is clear that the tensorial quantity Hg, is not symmetric so
we have

Hpy — Hyg = MgHy — M, Hp. (7)

Now the h and v-covariant derivatives of the projection factor BY, with respect to
ICT can be expressed as

Bls=HasN',  Bilsg=MagN".
Now when we contracting Hg, and H,g by vP we get
Hoy = Hy, Hyo= Hy+ M,Ho, (8)

Thus following important results for the Finslerian hypersurface [8] we shall use
in our present paper

Lemma 1. The normal curvature tensor vanishes identically iff the normal cur-
vature vector vanishes in a Finslerian hypersurface F™=1.

Lemma 2. If F™ be a Finsler space and F™ Y be its hypersurface then the
hypersurfave F™Y will be a hyperplane of the first kind iff normal curvature
vector vanishes identically.

Lemma 3. If F™ be a Finsler space and F" Y be its hypersurface then the
hypersurfave F(™=1 will be a hyperplane of the second kind iff normal curvature
vector and second fundamental h-tensor vanishes identically.

Lemma 4. If F" be a Finsler space and F("V) be its hypersurface then the
hypersurfave F=Y will be a hyperplane of the third kind iff normal curvature
vector, second fundamental h and v tensor vanishes identically.

3 Finsler space with deformed Douglas infinite series
metric

The deformed Douglas Infinite series metric is a combination of Matsumoto
Douglas type and Infinite series metric which we defined as

Definition 1. Let F™ be an n-dimensional Finsler space consisting of an n-

dimensional differentiable manifold M™ equipped with a fundamental function L

defined as , ,

g p

L(a, B) a+a+(6—a) (9)

then the metric L is known as deformed Infinite series and the Finsler space

F" = {M"™, L(c, B)} equiped with this metric is known as deformed infinite series
Finsler space.

Now differentiating equation (9) partially with respect to « and § we have
following important identities
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ot~ B4—2038-208%+a2B? 283 _3a32 _ 2{a®+(B—a)} B2
Lo=""=5%mr— Ls=%gar  Leaa="mpar

_ _ —28{a’+(B-a)?}8
Lop = a(f—a)® Lap = a2(B—a)3

oL L L oL ALy
where Lo = 30, Lg = 35, Laa = 555 Lgs = 35+ Lap = S5

~ In Finsler space F"* = {M", L(c, 3)} the normalized element of support I; =
0;L and angular metric tensor h;; are given by:

li = o 'LoY; + Lgb; (10)

hij = pai; + qobibj + q-1(b;Y; + b;Y;) + q-2YiY; (11)

where Y; = aijyj and the scalars p, qg,q_1 and g_o are constants and its values
are given below

(8% — o’ + a?B)(a’ — Bt — 2% — 20°8 + a®5?)

b= o5~ ) -
2B P+ a?B){’ + (B - )}
qgo = a2(ﬁ — 04)4 )
_ =28(8° — o + a?B){a’ + (B — a)?}
qd-1 = 044(5 _ a)4 )
(8% — a3 4+ a?B)(a® + 385 + 30382 + 70?32 — 9ap?)
- af (B — a)f ‘

Note: 0,—1,—2 in the subscript represents homoginity of the respective terms.

Fundamental metric tensor g;; = %&@LQ and its reciprocal tensor g% for L =
L(«a, B) are given by [8]

9ij = paij + pobibj + p—1(b:;Y; + b;Y;) + p2YiY (13)
g7 =ptal — sob't — s_1 (b + Vyt) — s_oy'y’ (14)

where b = aijbj and b2 = aijbibj

po=aq+Ls pa=qa1+L'pLs, po=qo+p’L? (15)
_ 1 2 a2 16
so = Tp{PPo + (pop—2 — p=i)a”}, (16)
1 2
s_1 = 5{??—1 + (pop—2 — p=1)B},
1
s_2 = —{pp_2+ (pop—2 — p21)b?},
TP

T = p(p+pob® +p_18) + (pop—2 — p*1)(@°b* — %)
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The hv-torsion tensor Cjji, = %5kgij is given by

QpCijk = p_l(hijmk + hjkmi + hkimj) + Y1 (17)
where,
0 _
"= Paigo — 3p-19o, m; = b; — a Y, (18)

Here m; is a non-vanishing covariant vector orthogonal to the element of support
y'. Thus we have

Proposition 1. The normalised supporting element l; and angular metric ten-
sor hij of an n-dimensional Finsler space F™ equipped with a deformed Douglas
Infinite series metric L are given by (10) and (11) respectively.

Proposition 2. The fundamentiacl metric tensor g;; and its reciprocal tensor g"
of an n-dimensional Finsler space F" equipped with a deformed Douglas Infinite
series metric L are given by (13) and (14) respectively.

Proposition 3. The Cartan hv-torsion tensor of an n-dimensional Finsler space
F"™ equipped with a deformed Douglas Infinite series metric L is given by (17).

Let {; 1.} be the component of christoffel symbols of the associated Riemannian

space R™ and v/, be the covariant derivative with respect to z* relative to this
christoffel symbol. Now we define,

2Eij = bij + bji, 2Fij = bij — bjz' (19)

where bij = ijz

Let CT = (F;,i, Tyt I‘j. ) be the cartan connection of F™. The difference tensor

D}k = I‘;‘}g — ; i} of the special Finsler space F" is given by

;‘k = BiEjk + F/iBj + F;Bk + B;bokz + B,iboj — bomgimBjk (20)
—Cin AL = Cin AT + Cirm A9 + X(C, O +

where
By = pob +p-1Yy, B'=g¢"B;, FF=g"F,; (21)
{p-1(aij — a72VY}) + Pomem;} :
B;; = 5 E , BF =4"B;

= B.'Eo + B"Eyy + BiF)"' + BoF}"
N = B"FEqo + 2BoFy*, By = By

where '0’ denote contraction with 3’ except for the quantities pg, go and s,. Thus

Proposition 4. The difference tensor D}k of the Cartan connection CT for the
n-dimensional Finsler space F™ equipped with a deformed Douglas Infinite series
metric L is given by (20).
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4 Finslerian hypersurface F"~!)(c¢) for a Finsler space
with deformed Douglas infinite series metric

Let us consider a Finsler space with the deformed Infinite series metric L(«, §) =

o+ %2 + %, where, o? = aij(x)yiyj is a Riemannian metric and vector field

bi(z) = gfi is a gradient of some scalar function b(z). Now we consider a hyper-

surface F("~1)(¢) given by equation b(z) = ¢, a constant [11].
From the parametric equation z* = z*(u®) of F"~!(c), we get

ou® Ozt Ou®

8b($) =0 8b($) Oz’ — 07 sz(zX =0

Above shows that b;(z) are covarient component of a normal vector field of
hypersurface F"~!(c). Further, we have

bB: =0 and by' =0 ie [=0 (22)
and induced matric L(u,v) of F"1(c) is given by
L(u,v) = aazv™0°, aog = aijBleé (23)

which is a Riemannian metric.
Writing 8 = 0 in the equations (10), (11) and (13) we get

p=1, @=0 ¢1=0 go=-a? p=0 p1=0 (24)
p_2:0 T:1, 80:0 8_1:0 8_2:0

from (12) we get, - -
g =a 2
thus along F"~1(c), (25) and (22) leads to
gijbibj = b2

So we get -
bi(z(u)) = bN;,  b* = a"bb, (26)

where b is the length of the vector b’
Again from (25) and (26), we get
b’ = ab; = N* (27)
thus we have,

Proposition 5. The induced Riemannian metric in a Finslerian hypersurface
F("*l)(c) of the Finsler space F" equipped with a deformed Douglas Infinite series
metric is gien by (23) and its scalar function b(z) is given by (26) and (27).
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Now the angular metric tensor h;; and metric tensor g;; of F™ are given by
1
hij = aij - @KY} and gij = aij (28)

From equation (22), (28) and (5) it follows that if hgg denote the angular metric

tensor of the Riemannian a;;(x) then we have along F(Z)_l, hag = hga).
thus along F(’é)_l, %Lg) ==

from equation (16) we get

== m=0
then hv-torsion tensor becomes
3
Cijk = _Ebibjbk (29)

in the deformed Douglas Infinite series Finsler hypersurface F((S_l). Due to fact
from (5), (6), (8), (22) and (29) we have

My =0 and My,=0 (30)
Therefore from equation (6) it follows that Hag is symmetric. Thus we have

Proposition 6. The second fundamental v-tensor in a Finslerian hypersurface
F("*l)(c) of the Finsler space F™ equipped with a deformed Douglas Infinite series
metric is given by (30) and the second fundamental h-tensor Hug is symmetric.

Now from (22) we have b; B: = 0. Then we have
bijgBh + biBl 3 =0

Therefore, from (8) and using b; g = b Bé + bi|; N7 Hg, we have

ilj
bij; BLBY + by, BLNT Hy + biHogN' = 0 (31)
since b;|; = —thZ»hj, we get
b;); BLNT =0

Therefore from equation (31) we have,
bHop + by BLBY = 0 (32)

because b;|; is symmetric. Now contracting (32) with v” and using (4) we get

¥

bHo + by Bly’ =0 (33)
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Again contracting by v® equation (33) and using (4), we have
bHo + by;y'y’ =0 (34)

Now by using Lemmas 1, 2 and equation (34), it is clear that hypersuface F’ (cn*l)
of Finsler space with deformed Douglas Infinite series is a hyperplane of first kind
if and only if Hy = 0.

Since b;); represent the covariant derivative with respect to CT" in the Finsler
space F" defined on y', but b;; = /;b; is the covariant derivative with respect
to Riemannian connection {;k} Hence b;; does not depend on y’. So we shall
consider the difference b;; — b;; where b;; = <7;b;. Since b; is a gradient vector,
then from (19) we have

¥

Ez‘j = bij Fij =0 and FJZ =0

Thus using above fact the in equation (20), the difference tensor can be rewritten
as

Dy = B'bji + Blbow + Biboj — bomg ™ Bji — Cjp Af' — Ch AT (35)
+Ckm AL g™ + N (C},, Ct + Chp C2 — CIRCy)
where
. . 3
B;=0, B'=0, B;B'=0, \"=B"by, Bij= —abibj, (36)

3

B! = —EbQ, W= Bj'boo + B™byo

In view of (24) and (25), the relation in (19) becomes to by virture of (36) we
have Bé =0, B;o = 0 which leads A" = B™bg.

Now contracting (35) by y* we get
D;‘O = Bibjo + B;boo — BmC;mboo
Again contracting the above equation with respect to y/ we have

Paying attention to (22), along F((Sfl), we get

; 3
b DYy = —abzbiboo (37)
Now we contract (37) by 4/ we have
biDiy =0 (38)

From (26), (27), (30) and M, = 0, we have
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bib"Cl Bl = My = 0

Thus the relation b;; = b;; — b, Dj; the equation (37) and (38) gives

3
biy'y’ = boo — br Dy = boo
Consequently (33) and (34) may be written as
bH, + bioB!, =0,  and bHy+ by =0 (39)

Thus the condition Hy = 0 is equivalent to bgg = 0. Using the fact 3 = by’ = 0
the condition byg = 0 can be written as bijyiyj = biyibjyj for some c;(x). Thus
we can write,
2b;; = bic; + bjc; (40)
Now from (22) and (40) we get
boo =0, byBLB, =0, b;Biy =0
Hence using the above condition and equation (39) we have
H,=0 (41)
Thus using Lemma 2 and above condition we have

Theorem 1. The necessary and sufficient condition for a Finslerian hypersurface
F("_l)(c) of the Finsler space F" equipped with a deformed Douglas Infinite series
metric to be a hyperplane of first kind is (40).

again from (40) and (36) we get
biobi == #, AT = 0, A;Bé =0 and BZJB(ZIB% == —%blb]B&Bé = 0.
Now we use equation (25), (26), (27), (30) and (35) then we have
b, Di; B, B} =0 (42)
Thus the equation (32) reduces to
Hoy=0 (43)

Hence the hypersurface F (72)_1 is umbilic.

Now from Lemma 3, F((g_l) is a hyperplane of second kind if and only if

H, =0 and H,3 = 0. Thus from (42), we get
co=ci(x)y* =0
Therefore there exist a function ¢ (x) such that
ci(x) = (z)bi(x)
Therefore (40) we get



Finslerian hypersurfaces ..... deformed Douglas infinite series metric 111

2b;j = bi(x)(2)bj(z) + bj(x)Y(2)bi(z)
This can also be written as
bij = ¥(x)bib; (44)
Thus using the condition (41) and (43) we have

Theorem 2. The necessary and sufficient condition for in a Finslerian hypersur-
face F("_l)(c) of the Finsler space F" equipped with a deformed Douglas Infinite
series metric to be a hyperplane of second kind is (44).

Again Lemma 4, together with (30) and M, = 0 shows that F (72)—1 become a
hyperplane of third kind.

Theorem 3. The Finslerian hypersurface F"=Y(c) of the Finsler space F™
equipped with a deformed Douglas Infinite series metric is a hyperplane of the
third kind.

5 Some important result of hypersurface F"~V(c) of a
Finsler space F"(c) with deformed Douglas infinite
series metric

The hv-torsion tensor Cjj; of F (»=1)(¢) with deformed infinite series metric
written in equation (29) as

Ciji = =2bib;by

Contracting by ¢’%, we have

Ci = Cyjrg’* = =2,

[

This implies that

bi = 52Ci
Therefore equation (29) becomes
o?

Definition 2. A Finsler space F" is called C2-like,if the (h) hv-tortion tensor
Cijk is written in the form

Cijr = %CijC’k
Thus using the above dfinition and equation (45) we have

3b3
C="

Thus
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Proposition 7. The Finslerian hypersurface F(”*l)(c) of the Finsler space F™
eqquipped with a deformed Douglas Infinite series metric is always be a C2-like
Finsler space if equation (46) is satisified.

Since the main scalar of two dimensional Finsler space is defined as
LCjji = Imymjmy,
From equation (16) m; = b; we have
LCiji, = Ib;bjby,

Contracting ¢’* we have

LC; = Ib3b;
which gives
b = 5C;
Now the main scalar of two dimensional Finsler
IL3

From equation (45) and (47), we have

042

Proposition 8. The main scalar I of a Finslerian hypersurface F(”_l)(c) for the
Finsler space F™ eqquipped with a deformed Douglas Infinite series metric in a
two dimensional case is given by (48).

6 Conclusion

In the present paper, we obtained the conditions for a Finslerian hypersurface
F™=1(c) of a Finsler space F" with deformed Douglas Infinite series metric to
be a hyperplane of first, second, and third kind in the Theorems 1, 2, and 3, re-
spectively. Further for application point of view we also obtained the Proposition
7 which states the condition under which hypersurface F"~!(c) will be reduces in
C2-like Finsler space and in Propostion 8 gives the value of the main scalar I for
the hypersurface in two-dimensional case.
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