Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 5(67), No. 2 - 2025, 81-88 https://doi.org/10.31926/but.mif.2025.5.67.2.6

HERMITIAN-TOEPLITZ DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS

Mucahit BUYANKARA¹ and Murat ÇAĞLAR^{*,2}

Abstract

In this study, we obtain sharp bounds for the second Hermitian-Toeplitz determinants of a subclass of analytics functions in the open unit disk.

2020 Mathematics Subject Classification: 30C45,30C55.

 $Key\ words:$ analytic functions, univalent functions, Hermitian-Toeplitz determinants.

1 Introduction and definitions

Let *H* be the class of analytic functions in the unit disk $\mathbb{E} := \{\xi \in \mathbb{C} : |\xi| < 1\}$, and let *A* be the subclass normalized by l(0) := l'(0) - 1 := 0, that is, functions of the form

$$l(\xi) = \sum_{r=1}^{\infty} a_r \xi^r, \ a_1 := 1 \quad (\xi \in \mathbb{E}).$$
 (1)

Let S be a subclass of A that consists of univalent (one-to-one) functions. A function $l \in A$ is said to be starlike (with respect to the origin) if $l(\mathbb{E})$ is starlike with respect to the origin, and convex if $l(\mathbb{E})$ is convex. Let $S^*(\alpha)$ and $C(\alpha)$ denote, respectively, the classes of starlike and convex functions of order α $(0 \leq \alpha < 1)$ in S. It is well known that a function $l \in A$ belongs to $S^*(\alpha)$ if, and only if,

$$\operatorname{Re}\left(\frac{\xi l'(\xi)}{l(\xi)}\right) > \alpha \quad (\xi \in \mathbb{E}),$$

and that $l \in C(\alpha)$ if, and only if,

$$\operatorname{Re}\left(1+\frac{\xi l''(\xi)}{l'(\xi)}\right) > \alpha \quad (\xi \in \mathbb{E}).$$

Note that $S^*(0) =: S^*$ and C(0) =: C.

 $^{^1 \}rm Vocational$ School of Social Sciences, Bing"olUniversity, Türkiye, e-mail: mbuyankara@bingol.edu.tr; mucahit.buyankara41@erzurum.edu.tr

^{2*} Corresponding author, Department of Mathematics, Faculty of Science, Erzurum Technical University, Türkiye, e-mail: mcaglar25@gmail.com; murat.caglar@erzurum.edu.tr

Definition 1. Let $l \in A$ and be locally univalent for $\xi \in \mathbb{E}$, and $0 \le \alpha < 1$. Then, $l \in M(\alpha)$ if and only if

$$\operatorname{Re}\left(\left(1-\xi^2\right)\frac{l(\xi)}{\xi}\right) > \alpha \quad (\xi \in \mathbb{E}).$$

$$(2)$$

Due to their geometrical characteristics, this class has a significant impact on the theory of geometric functions. This function $l \in M(\alpha)$ maps univalently \mathbb{E} onto a domain $l(\mathbb{E})$ convex in the direction of the imaginary axis, i.e., for $w_1, w_2 \in l(\mathbb{E})$ such that $\operatorname{Re} w_1 = \operatorname{Re} w_2$ the line segment $[w_1, w_2]$ lies in $l(\mathbb{E})$, with the additional property that there exist two points w_1, w_2 on the boundary of $l(\mathbb{E})$ for which $\{w_1 + it : t > 0\} \subset \mathbb{C} \setminus l(\mathbb{E})$ and $\{w_2 - it : t > 0\} \subset \mathbb{C} \setminus l(\mathbb{E})$ (see, e.g., [11, p.199]).

Definition 2. Let $l \in A$, and be given by (1). Then, for $q \ge 1$ and $n \ge 0$, define

$$T_{q,n}(f) := \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ \overline{a}_{n+1} & a_n & \cdots & a_{n+q-2} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{n+q-1} & \overline{a}_{n+q-2} & \cdots & a_n \end{vmatrix}$$

where $\overline{a}_k := \overline{a_k}$. When a_n is a real number, $T_{q,n}(f)$ is qth Hermitian-Toeplitz determinant.

In particular

$$T_{3,1}(f) = 1 - 2|a_2|^2 + 2\operatorname{Re}\left(a_2^2\overline{a}_3\right) - |a_3|^2.$$

Finding sharp bounds for the Hankel determinants of functions in A has been the subject of a great many papers in the recent years. In particular, many results are known concerning the second Hankel determinant $H_2(2) = a_2a_4 - a_3^2$ when $l \in S$ and its subclasses, and asummary of some of the more important results can be found in [19]. On the other hand, investigations concerning Toeplitz determinants were introduced only recently in [2]. Similarly, problems concerning Hermitian-Toeplitz determinants were first considered in [7].

We next discuss the Zalcman functional, its relationship with the Zalcman conjecture, and a generalization due to Ma [18]. In the early 70s, Lawrence Zalcman posed the conjecture that if $l \in S$, and is given by (1) then

$$|a_n^2 - a_{2n-1}| \le (n-1)^2 \text{ for } n \ge 2,$$
(3)

with equality for the Koebe function $k(z) = z/(1-z)^2$ for $z \in \mathbb{E}$, or a rotation. This conjecture implies the celebrated Bieberbach conjecture $|a_n| \leq n$ for $l \in S$ [5]. The elementary area theorem shows that the conjecture is true when n = 2[8]. Kruskal established the conjecture when n = 3 [14], and more recently for n = 4, 5, 6 [15]. However, the Zalcman conjecture for n > 6 remains an open problem. The conjecture has been proved for several subclasses of S, e.g., starlike, typically real, and close-to-convex functions [5], [17] and it is known that the Zalcman conjecture is asymptotically true [10]. Recently, Abu Muhana et al. [1] proved the conjecture for the class $M(\alpha)$.

Relevant to this paper is Ma's generalization of the Zalcman functional $a_n^2 - a_{2n-1}$, defined as follows.

Definition 3. Let $l \in A$, and be given by (1). For $m, n \in \mathbb{N} \setminus \{1\}$, let $j_{m,n}(f) := a_m a_n - a_{m+n-1}$, and in particular, $J_{2,3}(f) = a_2 a_3 - a_4$.

In [18], Ma conjecture that if $l \in S$, then for $m, n \in \mathbb{N} \setminus \{1\}$

$$|J_{m,n}(f)| \le (n-1)(m+1).$$

The following results will be used for functions $p \in P$, the class of functions with positive real part in \mathbb{E} given by

$$p\left(\xi\right) = 1 + \sum_{r=1}^{\infty} d_r \xi^r,\tag{4}$$

and because the coefficients a_2 , a_3 , and a_4 will be our main focus, we also need Lemma 4, which can easily be deduced from (1), (2) and (4).

Lemma 1. ([8]) Let $p \in P$ be given by (4), then $|d_r| \leq 2$, when $r \geq 1$. Also

$$\left| d_2 - \frac{\upsilon}{2} d_1^2 \right| \le \max\left\{ 2, \ 2 \left| \upsilon - 1 \right| \right\} = \begin{cases} 2, & 0 \le \upsilon \le 2, \\ 2 \left| \upsilon - 1 \right|, & elsewhere. \end{cases}$$
(5)

Lemma 2. ([9]) If $p \in P$ is given by (4), then

$$|d_r - \upsilon d_k d_{r-k}| \le 2 \max\{1, |2\upsilon - 1|\}$$

for $v \in \mathbb{C}$, and $1 \leq k \leq r - 1$.

Lemma 3. ([16]) Assume that $p \in P$, with coefficients given by (4), and $d_1 \ge 0$. Then, for some complex valued ζ with $|\zeta| \le 1$ and some complex-valued y with $|y| \le 1$

 $2d_2 = d_1^2 + y \left(4 - d_1^2\right),$

$$4d_3 = d_1^3 + 2\left(4 - d_1^2\right)d_1y - d_1\left(4 - d_1^2\right)y^2 + 2\left(4 - d_1^2\right)\left(1 - |y|^2\right)\zeta.$$

Lemma 4. Assume that $l \in M(\alpha)$, and is given by (1). Then

$$a_2 = (1 - \alpha) d_1,$$
 (6)

$$a_3 = (1 - \alpha) d_2 + 1, \tag{7}$$

$$a_4 = (1 - \alpha) (d_3 + d_1), \tag{8}$$

$$a_5 = (1 - \alpha) (d_2 + d_4) + 1, \tag{9}$$

where d_1 , d_2 , and d_3 , d_4 are given by (4).

Proof. By (2) there exists $p \in P$ of the form (4) such that

$$\left(1-\xi^2\right)\frac{l(\xi)}{\xi} = p\left(\xi\right)\left(1-\alpha\right) + \alpha \quad \left(\xi \in \mathbb{E}\right).$$

$$(10)$$

Substituting the series (1) and (4) into (10) by equating the coefficients we obtain (6), (7), (8) and (9). \Box

2 Hermitian-Toeplitz determinants

In this section, we compute sharp lower and upper bounds for

$$T_{3,1}(f) = \begin{vmatrix} 1 & a_2 & a_3 \\ \overline{a}_2 & 1 & a_2 \\ \overline{a}_3 & \overline{a}_2 & 1 \end{vmatrix} = 2 \operatorname{Re} \left(a_2^2 \overline{a}_3 \right) - 2 |a_2|^2 - |a_3|^2 + 1$$
(11)

over the class $M(\alpha)$.

Theorem 1. If $l \in M(\alpha), 0 \le \alpha < \frac{1}{2}$, then

$$T_{3,1}(f) \le \begin{cases} 2, & \alpha \in [0, 0.0554] \\ 4\alpha(1-\alpha)(4\alpha-5)+2, & \alpha \in [0.0554, \frac{1}{2}) \end{cases}$$
(12)

and

$$T_{3,1}(f) \ge \frac{(2\alpha^2 - 3\alpha + 2)^2}{2\alpha - 1} + 4\alpha(1 - \alpha) + 2.$$
(13)

Both inequalities are sharp.

Proof. First note that both $M(\alpha)$ and $T_{3,1}(f)$ are rotationally invariant, and so, we can assume that $d_1 = 2x$ for $x \in [0, 1]$. Thus, using (11), Lemma 3 and Lemma 4, we obtain

$$T_{3,1}(f) = 8(1-\alpha)^2 \left[2(1-\alpha)x^4 + 2x^2(1-\alpha)(1-x^2)\operatorname{Re} y \right] -4(1-\alpha)^2 \left(x^4 + 2x^2(1-x^2)\operatorname{Re} y + |y|^2 (1-x^2)^2 \right) -4(1-\alpha)(x^2 + (1-x^2)\operatorname{Re} y)$$
(14)

for some complex y with $|y| \leq 1$.

We consider two cases : **A**, when $y \neq 0$. Then, $y = |y| e^{i\varphi}$ with $|y| \in (0, 1]$, and $\varphi \in [0, 2\pi)$.

Thus, setting $t = x^2$, from 14, we get

$$T_{3,1}(f) = G(t, |y|, \varphi),$$
(15)

where

$$G(t, u, \varphi) = 16(1 - \alpha)^{3}(t^{2} + t(1 - t)u\cos\varphi) -4(1 - \alpha)^{2}(t^{2} + 2t(1 - t)u\cos\varphi + u^{2}(1 - t)^{2}) -4(1 - \alpha)(t + (1 - t)u\cos\varphi)$$
(16)

Hermitian-Toeplitz determinants ...

for $t \in [0, 1], u \in [0, 1], \varphi \in [0, 2\pi]$. Since

$$G(t, u, \varphi) = -4(1 - \alpha)^{2}(1 - t)^{2}u^{2} + +4(1 - \alpha)(2(1 - \alpha)(1 - 2\alpha)t - 1)(1 - t)u\cos\varphi +4(1 - \alpha)^{2}(3 - 4\alpha)t^{2} - 4(1 - \alpha)t$$
(17)

and $\alpha \in \left[0, \frac{1}{2}\right)$, we see that

$$L(t, u) \le G(t, u, \varphi) \le P(t, u), \quad t \in [0, 1], \ u \in [0, 1], \ \varphi \in [0, 2\pi],$$
 (18)

where

$$L(t, u) = G(t, u, \pi), \quad P(t, u) = G(t, u, 0).$$

I. We first discuss the inequality (12). We have

$$P(t,u) = -4(1-\alpha)^2(1-t)^2u^2 + +4(1-\alpha)(2(1-\alpha)(1-2\alpha)t-1)(1-t)u +4(1-\alpha)^2(3-4\alpha)t^2 - 4(1-\alpha)t.$$

When t = 1, i.e., x = 1, then $d_1 = 2$, so

$$P(1, u) = 4(1 - \alpha)(4\alpha^2 - 7\alpha + 2), \quad u \in [0, 1].$$
(19)

Assume next that $t \in [0, 1)$, and let

$$u_w = \frac{2(1-\alpha)(1-2\alpha)t - 1}{2(1-\alpha)(1-t)}$$

We consider two further cases.

Case1. Suppose that $u_w \ge 1$ i.e., that $\frac{3-2\alpha}{4(1-\alpha)^2} \le t \le 1$. Then

$$P(t,u) \le P(t,1) = 8(1-\alpha)^2(1-2\alpha)t - 4(1-\alpha)(2-\alpha) + 2.$$

Since

$$t_w = \frac{2(1-\alpha)(2-\alpha)-1}{4(1-\alpha)^2(1-2\alpha)} < \frac{(3-2\alpha)}{4(1-\alpha)^2},$$

$$P(t,1) \le P(1,1) = 4\alpha(1-\alpha)(4\alpha-5) + 2.$$

Case2. Suppose that $0 \le u_w < 1$, i.e., that $0 \le t < \frac{(3-2\alpha)}{4(1-\alpha)^2}$. Then

$$P(t, u) \le P(t, u_w) = 16(1 - \alpha)^4 t^2 - 8(1 - \alpha)^2 t + 1 \le P(0, u_w) = 1.$$

Noting now that

$$P(1,1) = 4\alpha(1-\alpha)(4\alpha-5) + 2 < 1 = P(0,u_w)$$

if, and only if, $\alpha \in (0, 0.0554)$, combining (19) with (18) and (15), inequality (12) follows in the case when $y \neq 0$.

II. We next discuss the inequality (13).

We have

$$L(t, u) = -4(1 - \alpha)^{2}(1 - t)^{2}u^{2}$$

-4(1 - \alpha) (2(1 - \alpha) (1 - 2\alpha)t - 1)(1 - t)u
+4(1 - \alpha)^{2}(3 - 4\alpha)t^{2} + 4(1 - \alpha)(2\alpha - 3)t + 2

for $t \in [0, 1], u \in [0, 1]$.

When t = 1, i.e., x = 1, so far $d_1 = 2$, we have

$$L(1, u) = 4\alpha(1 - \alpha)(4\alpha - 5) + 2, \quad u \in [0, 1].$$
(20)

Assume next that $t \in [0, 1)$ and let

$$u'_{w} = \frac{-2(1-\alpha)(1-2\alpha)t - 1}{2(1-\alpha)(1-t)}.$$

Since $u'_{w} \leq 0$, for $t \in [0, 1)$, we have

$$L(t,u) \geq L(t,1) = -4(1-\alpha)^2(1-t)^2 - 4(1-\alpha)\left(2(1-\alpha)\left(1-2\alpha\right)t-1\right)(1-t) + 4(1-\alpha)^2(3-4\alpha)t^2 + 4(1-\alpha)(2\alpha-3)t+2.$$

Let

$$t'_{w} = \frac{(2\alpha^{2} - 3\alpha + 2)}{4(1 - \alpha)(1 - 2\alpha)}$$

It is easy to check, $t_{w}^{'} < 1$, so

$$L(t,1) \ge L(t'_w,1) = \frac{-(2\alpha^2 - 3\alpha + 2)^2}{(1 - 2\alpha)} + 4\alpha(1 - \alpha) + 2, \quad t \in [0,1).$$
(21)

Note now that the inequality $L(1, u) \ge L(t'_w, 1)$, i.e., the inequality

$$4\alpha(1-\alpha)(4\alpha-5) + 2 \ge \frac{-(2\alpha^2 - 3\alpha + 2)^2}{(1-2\alpha)} + 4\alpha(1-\alpha) + 2.$$

Therefore, (21), together with (20), (15) and (18), proves (13) in this case also.

This completes the proof of the theorem in case **A**.

B. Now, assume that y = 0. Since

$$T_{3,1}(f) = 4(1-\alpha)^2(3-4\alpha)t^2 - 4(1-\alpha)t = G(t,0,\varphi)$$

for $t \in [0, 1]$ and $\varphi \in [0, 2\pi]$, and noting that (18) is true for u = 0, by Parts I and II above, both inequalities (12) and (13) are true.

Hermitian-Toeplitz determinants ...

3 The functional $J_{2,3}(f)$

We give the sharp upper bound for $|J_{2,3}(f)|$ when $f \in M(\alpha)$.

Theorem 2. If $l \in M(\alpha)$, $0 \le \alpha < 1$, then

$$|J_{2,3}(f)| \le 2(1-\alpha)(1-2\alpha).$$

The inequality is sharp.

Proof. From Lemma 4, we have

$$a_2a_3 - a_4 = (1 - \alpha)^2 d_1 d_2 - (1 - \alpha) d_3.$$
⁽²²⁾

Noting that both $M(\alpha)$ and $J_{2,3}(f)$ are rotationally invariant, we now use Lemma 3 to express the coefficients d_3 and d_2 in terms of d_1 , and write $u = d_1$ to obtain with $0 \le u \le 2$

$$\begin{aligned} a_2 a_3 - a_4 &= \frac{(1-\alpha)}{4} \left[(1-2\alpha)u^3 + u(4-u^2)y^2 - 2(4-u^2)(1-|y|^2)\zeta \right]. \\ |a_2 a_3 - a_4| &\leq \frac{(1-\alpha)}{4} \left[(1-2\alpha)u^3 + u(4-u^2)t^2 - 2(4-u^2)(1-t^2) \right] = \psi(u,t), \\ \text{where } t &= |y| \in [0,1]. \text{ When } u = 2, \ 0 \leq \alpha < 1 \end{aligned}$$

$$|a_2a_3 - a_4| \le 2(1 - \alpha)(1 - 2\alpha).$$

References

- Abu, M.Y., Li, L. and Ponnusamy, S., Extremal problems on the class of convex functions of order -1/2, Arch. Math. (Basel) 103 (2014), 461–471.
- [2] Ali, M.F., Thomas, D.K. and Allu, V., Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2018), 253–264.
- [3] Bansal, D., Maharana, S. and Prajpat, J.K., Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52 (2015), 1139–1148.
- [4] Brickman, L., Hallenbeck, D.J., MacGregor, T.H. and Wilken, D.R., Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413–428.
- [5] Brown, J.E. and Tsao, A., On the Zalcman conjecture for starlike and typically real functions, Math. Z. 191 (1986), 467–474.

- [6] Cho, N.E., Kwon, O.S., Lecko, A. and Sim, Y.J., Sharp estimates of generalized Zalcman functional of early coefficients for Ma-Minda type functions, Filomat 32 (2018), 6267–6280.
- [7] Cudna, K., Kwon, O.S., Lecko, A., Sim, Y.J. and Śmiarowska, B., The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Boletín de la Sociedad Matemàtica Mexicana 26 (2020), 361–375.
- [8] Duren, P.L., *Univalent functions*, Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
- [9] Efraimidis, I., A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl. 435 (2016), 369–379.
- [10] Efraimidis, I. and Vukotić, D., On the generalized Zalcman functional for some classes of univalent functions, Math. Nachr. 10 (2018), 1502–1513.
- [11] Goodman, A.W., Univalent functions, Mariner, Tampa, 1983.
- [12] Janteng, A., Halim, S. and Darus, M., Hankel determinants for starlike and convex functions, Int. J. Math. Anal. 13 (2007), 619–625.
- [13] Kaplan, W., Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–186.
- [14] Krushkal, S.L., Univalent functions and holomorphic motions, J. Analyse Math. 66 (1995), 253–275.
- [15] Krushkal, S.L., Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J. 17 (2010), 663–681.
- [16] Libera, R.J. and Złotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivatives in P, Proc. Am. Math. Soc. 87 (1983), 251–257.
- [17] Ma, W., The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc. 104 (1988), 741–744.
- [18] Ma, W., Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Ana. Appl. 234 (1999), 328–339.
- [19] Thomas D.K., Tuneski N. and Allu, V., Univalent functions: A primer, De Gruyter Studies in Mathematics, De Gruyter, Berlin, Boston, 2018.