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Abstract

In this study, we obtain sharp bounds for the second Hermitian- Toeplitz
determinants of a subclass of analytics functions in the open unit disk.
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1 Introduction and definitions

Let H be the class of analytic functions in the unit disk E := {{ € C : [{| < 1},
and let A be the subclass normalized by [ (0) := I’ (0) — 1 := 0, that is, functions
of the form

1O =) al, a:=1 ((€E), (1)
r=1

Let S be a subclass of A that consists of univalent (one-to-one) functions.
A function | € A is said to be starlike (with respect to the origin) if I(E) is
starlike with respect to the origin, and convex if I(E) is convex. Let S*(«) and
C(«) denote, respectively, the classes of starlike and convex functions of order «
(0<a<1)in S. It is well known that a function [ € A belongs to S*(«) if, and

only if, ©
2@\,
Re(l(§)>> (& € E),

and that [ € C(«) if, and only if,
g” (5))
Re 1+ >« cE).
< ) (€ €E)
Note that S*(0) =: S*and C(0) =: C.
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Definition 1. Letl € A and be locally univalent for ¢ € E, and 0 < o < 1. Then,
I € M(«) if and only if

Re ((1—52) “?) >a (£€E). (2)

Due to their geometrical characteristics, this class has a significant impact
on the theory of geometric functions. This function I € M («) maps univalently
E onto a domain [ (E) convex in the direction of the imaginary axis, i.e., for
wy,wy € [(E) such that Rew; = Rews the line segment [wy,ws] lies in I (E),
with the additional property that there exist two points wi, w2 on the boundary
of [ (E) for which {w; + it : ¢t >0} C C\I(E) and {wqy —it:t > 0} C C\l(E) (see,
e.g., [11, p.199)).

Definition 2. Letl € A, and be given by (1). Then, for ¢ > 1 andn > 0, define

Qn an4+1 - Qniyg—1
Toaf)=| T e
Ap+q—1 Qng—2 ° - an
where Gy, = ay. When ay, is a real number , T, ,(f) is qth Hermitian-Toeplitz

determinant.

In particular
_ 2 2 2
T31(f) =1—2laz|” + 2Re (a3a3) — |a3|".

Finding sharp bounds for the Hankel determinants of functions in A has been the
subject of a great many papers in the recent years. In particular, many results are
known concerning the second Hankel determinant Hs (2) = agay — ag when l € S
and its subclasses, and asummary of some of the more important results can be
found in [19]. On the other hand, investigations concerning Toeplitz determinants
were introduced only recently in [2]. Similarly, problems concerning Hermitian-
Toeplitz determinants were first considered in [7].

We next discuss the Zalcman functional, its relationship with the Zalcman
conjecture, and a generalization due to Ma [18]. In the early 70s, Lawrence
Zalcman posed the conjecture that if [ € S, and is given by (1) then

‘a% — azn_1| <(n-— 1)2 for n > 2, (3)

with equality for the Koebe function k (z) = z/ (1 — z)* for z € E, or a rotation.
This conjecture implies the celebrated Bieberbach conjecture |a,| < n for I € S
[5]. The elementary area theorem shows that the conjecture is true when n = 2
[8]. Kruskal established the conjecture when n = 3 [14], and more recently for
n = 4,5,6 [15]. However, the Zalcman conjecture for n > 6 remains an open
problem.
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The conjecture has been proved for several subclasses of .S, e.g., starlike, typi-
cally real, and close-to-convex functions [5], [17] and it is known that the Zalcman
conjecture is asymptotically true [10]. Recently, Abu Muhana et al. [1] proved
the conjecture for the class M (a).

Relevant to this paper is Ma’s generalization of the Zalcman functional a2 —
aon—1, defined as follows.

Definition 3. Letl € A,and be given by (1). For m,n € N\ {1}, let jpmn (f) =
UG, — Qmtn—1, and in particular, Jo 3 (f) = azas — aq.

In [18], Ma conjecture that if [ € S, then for m,n € N\ {1}
|Jm,n (f)’ < (n_ 1) (m+ 1)'

The following results will be used for functions p € P, the class of functions
with positive real part in E given by

[ee]
p&)=1+> df, (4)
r=1
and because the coefficients as, ag, and a4 will be our main focus, we also need
Lemma 4, which can easily be deduced from (1), (2) and (4).

Lemma 1. ([8]) Let p € P be given by (4), then |d,| <2, when r > 1. Also

p 0<wv<2,
2|v—1|, elsewhere.

)

‘dg—%d%‘ < max {2, 2]11—1]}:{ (5)

Lemma 2. ([9]) If p € P is given by (4), then
|d — vdpd,—| < 2max {1, |2v—1|}
foroeC,andl1 <k<r-—1.

Lemma 3. ([16]) Assume that p € P, with coefficients given by (4), and di > 0.
Then, for some complex valued ¢ with || < 1 and some complez-valued y with
lyl <1

2dy = di +y (4 —di),

dds =di+2(4—d})diy—di (4—d}) y* +2 (4 — d}) (1—|y’2>g,

)
az = (1—-a)dy, (6)
a3 = (1—a)da+1, (7)
ag = (1 —a)(dz+d), (8)
as = (1—a)(dy+dy)+1, (9)

where dy, da, and ds, dy are given by (4).
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Proof. By (2) there exists p € P of the form (4) such that

l
1-¢) —p©u-w+a (). (10)
Substituting the series (1) and (4) into (10) by equating the coefficients we
obtain (6), (7), (8) and (9). O

2 Hermitian-Toeplitz determinants

In this section, we compute sharp lower and upper bounds for

1 a2 as
T3:(f)=|a 1 as|=2Re(a3as) —2las|” — |ag* +1 (11)
as as 1
over the class M(a).
Theorem 1. If 1€ M(a),0<a< i, then

2, a € [0,0.0554]
Tsa(f) < { 4a(l — a)(4a —5) +2, € [0.0554,3) (12)
and 2 2
Tor(f) > (20" — 3+ 2) +4da(l —a) + 2. (13)

200 — 1

Both inequalities are sharp.

Proof. First note that both M («) and T3(f) are rotationally invariant, and so,
we can assume that d; = 2x for z € [0, 1] . Thus, using (11), Lemma 3 and Lemma
4, we obtain

T31(f) = 8(1—a)? [2(1 - @)zt +22%(1 — a)(1 — 2?) Rey|
—4(1 = a)? (o + 20%(1 = 2®) Rey + |y (1 - 2%)?)
—4(1 —a)(z®> + (1 — z*)Rey) (14)

for some complex y with |y| < 1.
We consider two cases : A, when y # 0. Then, y = |y| e with |y| € (0,1],

and ¢ € [0,27).
Thus, setting t = x2, from 14, we get
Ts1(f) = Gt ]yl @), (15)
where
G(t,u,p) = 16(1—a)(t*>+t(1 —t)ucosyp
—4(1 — )? (t2 + 2t(1 — t)ucos o + u*(1 — t)2)
—4(1 = a)(t+ (1 —t)ucosp) (16)
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for t € [0,1], u € [0,1], ¢ € [0, 27]. Since

Gtiu,p) = —4(1-a)’(1-t)u
+4(1—a) (2(1 — ) (1 —2a)t —1)(1 —t)ucos
+4(1 — @)?(3 — 4a)t?* — 4(1 — a)t (17)

and a € [O, 2) we see that
L(t,u) < G(t,u,p) < P(t,u), te0,1],ue[0,1], ¢ € [0,27], (18)

where

L(t,u) = G(t,u,m), P(t,u) =G(t,u,0).
I. We first discuss the inequality (12). We have
P(tiu) = —4(1—a)?(1 —t)%u®+

+4(1 — ) (21 —a) (1 = 2a)t — 1)(1 — t)u
+4(1 — @)?(3 — 4a)t* — 4(1 — a)t.

When t =1, i.e., x =1, then d; = 2, so
P(1,u) =4(1 — a)(4a® = Ta+2), ue|0,1]. (19)
Assume next that ¢ € [0,1), and let

21— a)(1 —2a)t —1
2(1 —a)(1 —1¢)

Uy =

We consider two further cases.

Casel. Suppose that u,, > 1 i.e., that <t <1. Then

1oy
P(t,u) < P(t,1) = 8(1 — a)?*(1 — 2a)t — 4(1 — a)(2 — a) + 2.

Since 2l—a)2—a)—1  (3—2a)
4(1 — @)?(1 — 2a) 41 — a)?’

P(t,1) < P(1,1) = 4a(1 — a)(4a — 5) + 2.

tyw =

Case2. Suppose that 0 < u,, < 1, ie., that 0 <t < 4(?1 20‘)) Then

P(t,u) < P(t,uy) = 16(1 — a)*? — 8(1 — a)?t + 1 < P(0,uy) = 1.
Noting now that
P(1,1) = 4a(1 — a)(4a —5) +2 < 1 = P(0,uy)

if, and only if, a € (0, 0.0554), combining (19) with (18) and (15), inequality (12)
follows in the case when y # 0.
IT. We next discuss the inequality (13).
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We have

L(t,u) = —4(1 —a)?(1—1t)%u?
—4(1-a)20l—a) (1 =2a)t—1)(1 —t)u
+4(1 — a)?(3 — 4a)t* +4(1 — a)(2a — 3)t + 2

for t € [0,1], u € [0, 1].
When t =1, i.e., z =1, so far d; = 2, we have

L(1,u) =4a(l —a)(4a—5)+2, wel0,1]. (20)
Assume next that ¢ € [0,1) and let

o = —2(1—-a)(1 -2a)t—1

w 21— a)(1—t)

Since u,, <0, for t € [0,1), we have

Lt,u) > L(t,1)=—-4(1-a)*1—1t)>—4(1—a) (21 —a) (1 —2a)t —1)(1 — 1)
+4(1 — @)(3 — 4a)t> + 4(1 — o) (2a — 3)t + 2.

Let

y _ (207 —3a+2)
Y41 —a)(1 - 2a)’

It is easy to check, t;u <1, s0

(202 — 3o + 2)?

L(t,1) = L(t,, 1) = — (1-2a)

+4o(l—a)+2, tel0,1). (21)

Note now that the inequality L(1,u) > L(t;u, 1), i.e., the inequality

—(2a? — 3+ 2)?
(1-2a)

da(l —a)(da—5) +2 > +4a(l — a) + 2.

Therefore, (21), together with (20), (15) and (18), proves (13) in this case also.
This completes the proof of the theorem in case A.
B. Now, assume that y = 0. Since

T31(f) = 4(1 — @)%(3 — 4a)t* — 4(1 — a)t = G(t,0, p)

for t € [0,1] and ¢ € [0, 27|, and noting that (18) is true for u = 0, by Parts I and
IT above, both inequalities (12) and (13) are true. O
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3 The functional Jy3(f)

We give the sharp upper bound for |J23(f)| when f € M(a).

Theorem 2. If | € M(«), 0 <a <1, then
[J2,3(f)] <2(1 = a)(1 - 2a).
The inequality is sharp.
Proof. From Lemma 4, we have
asaz — ag = (1 — a)%dydy — (1 — )ds. (22)

Noting that both M («) and J 3(f) are rotationally invariant, we now use Lemma

3 to express the coefficients d3 and do in terms of di, and write u = d; to obtain

with 0 <u <2

(1-«a)
4

(1-a)
4

asas — ay = (1= 20)u® 4+ u(4 - w?)y? = 204 — u?) (1 - |yP)¢]

lagas — aq| < [(1—20)u® + u(d — u®)t? — 2(4 — u?)(1 — %)) = ¢(u, 1),

where t = |y| € [0,1]. Whenu=2,0<a <1

lagas — aq] < 2(1 — a)(1 — 2a).
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