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Series III: Mathematics and Computer Science, Vol. 5(67), No. 2 - 2025, 81-88

https://doi.org/10.31926/but.mif.2025.5.67.2.6

HERMITIAN-TOEPLITZ DETERMINANTS FOR A
SUBCLASS OF ANALYTIC FUNCTIONS

Mucahit BUYANKARA1 and Murat ÇAĞLAR∗,2

Abstract

In this study, we obtain sharp bounds for the second Hermitian- Toeplitz
determinants of a subclass of analytics functions in the open unit disk.
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1 Introduction and definitions

Let H be the class of analytic functions in the unit disk E := {ξ ∈ C : |ξ| < 1},
and let A be the subclass normalized by l (0) := l′ (0) − 1 := 0, that is, functions
of the form

l (ξ) =

∞∑
r=1

arξ
r, a1 := 1 (ξ ∈ E) . (1)

Let S be a subclass of A that consists of univalent (one-to-one) functions.
A function l ∈ A is said to be starlike (with respect to the origin) if l(E) is
starlike with respect to the origin, and convex if l(E) is convex. Let S∗(α) and
C(α) denote, respectively, the classes of starlike and convex functions of order α
(0 ≤ α < 1) in S. It is well known that a function l ∈ A belongs to S∗(α) if, and
only if,

Re

(
ξl′ (ξ)

l(ξ)

)
> α (ξ ∈ E),

and that l ∈ C(α) if, and only if,

Re

(
1 +

ξl′′ (ξ)

l′(ξ)

)
> α (ξ ∈ E).

Note that S∗(0) =: S∗and C(0) =: C.
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Definition 1. Let l ∈ A and be locally univalent for ξ ∈ E, and 0 ≤ α < 1. Then,
l ∈ M(α) if and only if

Re

((
1 − ξ2

) l(ξ)
ξ

)
> α (ξ ∈ E). (2)

Due to their geometrical characteristics, this class has a significant impact
on the theory of geometric functions. This function l ∈ M(α) maps univalently
E onto a domain l (E) convex in the direction of the imaginary axis, i.e., for
w1, w2 ∈ l (E) such that Rew1 = Rew2 the line segment [w1, w2] lies in l (E),
with the additional property that there exist two points w1, w2 on the boundary
of l (E) for which {w1 + it : t > 0} ⊂ C\l (E) and {w2 − it : t > 0} ⊂ C\l (E) (see,
e.g., [11, p.199]).

Definition 2. Let l ∈ A, and be given by (1). Then, for q ≥ 1 and n ≥ 0, define

Tq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q−2
...

...
...

...
an+q−1 an+q−2 · · · an

,

∣∣∣∣∣∣∣∣∣
where ak := ak. When an is a real number , Tq,n(f) is qth Hermitian-Toeplitz
determinant.

In particular

T3,1 (f) = 1 − 2 |a2|2 + 2 Re
(
a22a3

)
− |a3|2 .

Finding sharp bounds for the Hankel determinants of functions in A has been the
subject of a great many papers in the recent years. In particular, many results are
known concerning the second Hankel determinant H2 (2) = a2a4 − a23 when l ∈ S
and its subclasses, and asummary of some of the more important results can be
found in [19]. On the other hand, investigations concerning Toeplitz determinants
were introduced only recently in [2]. Similarly, problems concerning Hermitian-
Toeplitz determinants were first considered in [7].

We next discuss the Zalcman functional, its relationship with the Zalcman
conjecture, and a generalization due to Ma [18]. In the early 70s, Lawrence
Zalcman posed the conjecture that if l ∈ S, and is given by (1) then∣∣a2n − a2n−1

∣∣ ≤ (n− 1)2 for n ≥ 2, (3)

with equality for the Koebe function k (z) = z/ (1 − z)2 for z ∈ E, or a rotation.
This conjecture implies the celebrated Bieberbach conjecture |an| ≤ n for l ∈ S
[5]. The elementary area theorem shows that the conjecture is true when n = 2
[8]. Kruskal established the conjecture when n = 3 [14], and more recently for
n = 4, 5, 6 [15]. However, the Zalcman conjecture for n > 6 remains an open
problem.
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The conjecture has been proved for several subclasses of S, e.g., starlike, typi-
cally real, and close-to-convex functions [5], [17] and it is known that the Zalcman
conjecture is asymptotically true [10]. Recently, Abu Muhana et al. [1] proved
the conjecture for the class M(α).

Relevant to this paper is Ma’s generalization of the Zalcman functional a2n −
a2n−1, defined as follows.

Definition 3. Let l ∈ A,and be given by (1). For m,n ∈ N\ {1}, let jm,n (f) :=
aman − am+n−1, and in particular, J2,3 (f) = a2a3 − a4.

In [18], Ma conjecture that if l ∈ S, then for m,n ∈ N\ {1}

|Jm,n (f)| ≤ (n− 1) (m+ 1) .

The following results will be used for functions p ∈ P , the class of functions
with positive real part in E given by

p (ξ) = 1 +

∞∑
r=1

drξ
r, (4)

and because the coefficients a2, a3, and a4 will be our main focus, we also need
Lemma 4, which can easily be deduced from (1), (2) and (4).

Lemma 1. ([8]) Let p ∈ P be given by (4), then |dr| ≤ 2, when r ≥ 1. Also∣∣∣d2 − υ

2
d21

∣∣∣ ≤ max {2, 2 |υ − 1|} =

{
2, 0 ≤ υ ≤ 2,

2 |υ − 1| , elsewhere.
(5)

Lemma 2. ([9]) If p ∈ P is given by (4), then

|dr − υdkdr−k| ≤ 2 max {1, |2υ − 1|}

for υ ∈ C, and 1 ≤ k ≤ r − 1.

Lemma 3. ([16]) Assume that p ∈ P , with coefficients given by (4), and d1 ≥ 0.
Then, for some complex valued ζ with |ζ| ≤ 1 and some complex-valued y with
|y| ≤ 1

2d2 = d21 + y
(
4 − d21

)
,

4d3 = d31 + 2
(
4 − d21

)
d1y − d1

(
4 − d21

)
y2 + 2

(
4 − d21

) (
1 − |y|2

)
ζ.

Lemma 4. Assume that l ∈ M(α), and is given by (1). Then

a2 = (1 − α) d1, (6)

a3 = (1 − α) d2 + 1, (7)

a4 = (1 − α) (d3 + d1), (8)

a5 = (1 − α) (d2 + d4) + 1, (9)

where d1, d2, and d3, d4 are given by (4).
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Proof. By (2) there exists p ∈ P of the form (4) such that(
1 − ξ2

) l(ξ)
ξ

= p (ξ) (1 − α) + α (ξ ∈ E) . (10)

Substituting the series (1) and (4) into (10) by equating the coefficients we
obtain (6), (7), (8) and (9).

2 Hermitian-Toeplitz determinants

In this section, we compute sharp lower and upper bounds for

T3,1(f) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ = 2 Re
(
a22a3

)
− 2 |a2|2 − |a3|2 + 1 (11)

over the class M(α).

Theorem 1. If l ∈M(α), 0 ≤ α < 1
2 , then

T3,1(f) ≤
{

2, α ∈ [0, 0.0554]
4α(1 − α)(4α− 5) + 2, α ∈

[
0.0554, 12

) (12)

and

T3,1(f) ≥ (2α2 − 3α+ 2)2

2α− 1
+ 4α(1 − α) + 2. (13)

Both inequalities are sharp.

Proof. First note that both M(α) and T3,1(f) are rotationally invariant, and so,
we can assume that d1 = 2x for x ∈ [0, 1] .Thus, using (11), Lemma 3 and Lemma
4, we obtain

T3,1(f) = 8(1 − α)2
[
2(1 − α)x4 + 2x2(1 − α)(1 − x2) Re y

]
−4(1 − α)2

(
x4 + 2x2(1 − x2) Re y + |y|2 (1 − x2)2

)
−4(1 − α)(x2 + (1 − x2) Re y) (14)

for some complex y with |y| ≤ 1.
We consider two cases : A, when y ̸= 0. Then, y = |y| eiφ with |y| ∈ (0, 1],

and φ ∈ [0, 2π) .
Thus, setting t = x2, from 14, we get

T3,1(f) = G(t, |y| , φ), (15)

where

G(t, u, φ) = 16(1 − α)3(t2 + t(1 − t)u cosφ

−4(1 − α)2
(
t2 + 2t(1 − t)u cosφ+ u2(1 − t)2

)
−4(1 − α)(t+ (1 − t)u cosφ) (16)
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for t ∈ [0, 1], u ∈ [0, 1], φ ∈ [0, 2π]. Since

G(t, u, φ) = −4(1 − α)2(1 − t)2u2 +

+4(1 − α) (2(1 − α) (1 − 2α)t− 1)(1 − t)u cosφ

+4(1 − α)2(3 − 4α)t2 − 4(1 − α)t (17)

and α ∈
[
0, 12

)
, we see that

L(t, u) ≤ G(t, u, φ) ≤ P (t, u), t ∈ [0, 1] , u ∈ [0, 1] , φ ∈ [0, 2π] , (18)

where
L(t, u) = G(t, u, π), P (t, u) = G(t, u, 0).

I. We first discuss the inequality (12). We have

P (t, u) = −4(1 − α)2(1 − t)2u2 +

+4(1 − α) (2(1 − α) (1 − 2α)t− 1)(1 − t)u

+4(1 − α)2(3 − 4α)t2 − 4(1 − α)t.

When t = 1, i.e., x = 1, then d1 = 2, so

P (1, u) = 4(1 − α)(4α2 − 7α+ 2), u ∈ [0, 1] . (19)

Assume next that t ∈ [0, 1), and let

uw =
2(1 − α)(1 − 2α)t− 1

2(1 − α)(1 − t)
.

We consider two further cases.
Case1. Suppose that uw ≥ 1 i.e., that 3−2α

4(1−α)2
≤ t ≤ 1. Then

P (t, u) ≤ P (t, 1) = 8(1 − α)2(1 − 2α)t− 4(1 − α)(2 − α) + 2.

Since

tw =
2(1 − α)(2 − α) − 1

4(1 − α)2(1 − 2α)
<

(3 − 2α)

4(1 − α)2
,

P (t, 1) ≤ P (1, 1) = 4α(1 − α)(4α− 5) + 2.

Case2. Suppose that 0 ≤ uw < 1, i.e., that 0 ≤ t < (3−2α)
4(1−α)2

. Then

P (t, u) ≤ P (t, uw) = 16(1 − α)4t2 − 8(1 − α)2t+ 1 ≤ P (0, uw) = 1.

Noting now that

P (1, 1) = 4α(1 − α)(4α− 5) + 2 < 1 = P (0, uw)

if, and only if, α ∈ (0, 0.0554), combining (19) with (18) and (15), inequality (12)
follows in the case when y ̸= 0.

II. We next discuss the inequality (13).
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We have

L(t, u) = −4(1 − α)2(1 − t)2u2

−4(1 − α) (2(1 − α) (1 − 2α)t− 1)(1 − t)u

+4(1 − α)2(3 − 4α)t2 + 4(1 − α)(2α− 3)t+ 2

for t ∈ [0, 1], u ∈ [0, 1].

When t = 1, i.e., x = 1, so far d1 = 2, we have

L(1, u) = 4α(1 − α)(4α− 5) + 2, u ∈ [0, 1] . (20)

Assume next that t ∈ [0, 1) and let

u
′
w =

−2(1 − α)(1 − 2α)t− 1

2(1 − α)(1 − t)
.

Since u
′
w ≤ 0, for t ∈ [0, 1), we have

L(t, u) ≥ L(t, 1) = −4(1 − α)2(1 − t)2 − 4(1 − α) (2(1 − α) (1 − 2α)t− 1)(1 − t)

+4(1 − α)2(3 − 4α)t2 + 4(1 − α)(2α− 3)t+ 2.

Let

t
′
w =

(2α2 − 3α+ 2)

4(1 − α)(1 − 2α)
.

It is easy to check, t
′
w < 1, so

L(t, 1) ≥ L(t
′
w, 1) =

−(2α2 − 3α+ 2)2

(1 − 2α)
+ 4α(1 − α) + 2, t ∈ [0, 1) . (21)

Note now that the inequality L(1, u) ≥ L(t
′
w, 1), i.e., the inequality

4α(1 − α)(4α− 5) + 2 ≥ −(2α2 − 3α+ 2)2

(1 − 2α)
+ 4α(1 − α) + 2.

Therefore, (21), together with (20), (15) and (18), proves (13) in this case also.

This completes the proof of the theorem in case A.

B. Now, assume that y = 0. Since

T3,1(f) = 4(1 − α)2(3 − 4α)t2 − 4(1 − α)t = G(t, 0, φ)

for t ∈ [0, 1] and φ ∈ [0, 2π], and noting that (18) is true for u = 0, by Parts I and
II above, both inequalities (12) and (13) are true.
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3 The functional J2,3(f)

We give the sharp upper bound for |J2,3(f)| when f ∈M(α).

Theorem 2. If l ∈M(α), 0 ≤ α < 1, then

|J2,3(f)| ≤ 2(1 − α)(1 − 2α).

The inequality is sharp.

Proof. From Lemma 4, we have

a2a3 − a4 = (1 − α)2d1d2 − (1 − α)d3. (22)

Noting that both M(α) and J2,3(f) are rotationally invariant, we now use Lemma
3 to express the coefficients d3 and d2 in terms of d1, and write u = d1 to obtain
with 0 ≤ u ≤ 2

a2a3 − a4 =
(1 − α)

4

[
(1 − 2α)u3 + u(4 − u2)y2 − 2(4 − u2)(1 − |y|2)ζ

]
.

|a2a3 − a4| ≤
(1 − α)

4

[
(1 − 2α)u3 + u(4 − u2)t2 − 2(4 − u2)(1 − t2)

]
= ψ(u, t),

where t = |y| ∈ [0, 1]. When u = 2, 0 ≤ α < 1

|a2a3 − a4| ≤ 2(1 − α)(1 − 2α).
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