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SOLUTIONS FOR A NONLOCAL ELLIPTIC EQUATION
WITH CRITICAL SOBOLEV EXPONENT AND SINGULAR

TERM

Habib BENFRIHA1, Abdelaziz BENNOUR2 and Sofiane
MESSIRDI∗3

Abstract

In this paper, we consider a class of nonhomogeneous fractional elliptic
equations involving critical Hardy Sobolev exponents as follows{

(−∆)
s
u− µ u

|x|2s = |u|2∗s−2u+ λ u
|x|2s−α + f(x), x ∈ Ω,

u = 0 x ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain, 0 < s < 1, λ > 0 is a parameter. We
prove the existence of multiple solutions using the variational methods and
the Nehari manifold decomposition.
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1 Introduction

The paper deals with the following fractional Hardy-Sobolev equation with
nonhomogeneous term{

(−∆)su− µ u
|x|2s = |u|2∗s−2u+ λ u

|x|2s−α + f(x), x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1)
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being 0 < s < 1, where Ω is a bounded domain in RN , (N > 2s) containing

the origin 0 in its interior, 0 ≤ µ < µs := 22s
Γ2(N+2s

4
)

Γ2(N−2s
4

)
, λ is a positive parameter,

0 < α < 2s, 2∗s = 2N
N−2s is the fractional critical Hardy-Sobolev exponent. The

fractional Laplacian (−∆)s is defined by

−2(−∆)su(x) = CN,s

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|x− y|N+2s
dy

where

CN,s =
4sΓ(N \ 2 + s)

πN\2|Γ(−s)|
.

Γ is the Gamma function, f is a given bounded measurable function.
It has been seen that the fractional differential equations have better effects in
many realistic applications than the classical ones. Qualitative theory and its ap-
plications in physics, engineering, economics, biology, and ecology are extensively
discussed and demonstrated in [5, 6, 8, 11, 12, 13] and the references therein.
There have been by now a large number of papers concerning the existence, nonex-
istence as well as qualitative properties of nontrivial solutions to critical elliptic
problems of Hardy potential and fractional Laplace operator. For instance, Ben-
nour and all in [1] handled the following singular equation∆2u− µ

(
u

|x|4

)
=

(
|u|2∗(s)−2u

|x|s

)
+ λ

(
u

|x|4−α

)
+ f(x), x ∈ Ω,

u = ∂u
∂n = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN and N ≥ 5,Under sufficient conditions on the
data, the existence and multiplicity of solutions was proven, via Ekland’s variation
principle and the Mountain Pass Lemma principle.
In the local setting case (s = 1) the problem (1) is reduced to the semilinear
problem with Sobolev-Hardy exponents{

−∆u− µ u
|x|2 = |u|2∗s−2u+ λ u

|x|2−α + f(x), x ∈ Ω,

u = 0 x ∈ ∂Ω.

This problem was further studied by Chen and Rocha [4], who based on varia-
tional methods obtained the existence of four non-trivial solutions.
Recently, the existence of nontrivial solutions for nonlinear fractional elliptic equa-
tions with Hardy’s potential type

(−∆)su− µ
u

|x|2s
= g(u) (2)

have been studied by several authors. Wang and all [15] studied (2) with g(u) =
|u|2∗−2u+ au, a > 0 and discussed the infinitely many solutions. Daoues and all

[7] studied (2) with g(u) = λ|u|q−2u + |u|2∗(t)−2u
|x|t and obtained the existence and
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nonexistence of nonnegative distributional solutions.
In what follows, we state the main result for which we consider the following
hypothesis

inf

γN,s(T (u))
N+2s

4s −
∫
Ω

fudx : u ∈ X,

∫
Ω

|u|2∗sdx = 1

 > 0. (F)

Where X is a Hilbert space defined as

X = {u ∈ H2s(RN ) : u = 0 in RN \ Ω},

where H2s(RN ) the usual fractional Sobolev space,

γN,s =
4s

N − 2s
(
N − 2s

N + 2s
)
N+2s

4s

and

T (u) = CN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

u2

|x|2s
dx− λ

∫
Ω

u2

|x|2s−α
dx.

Thus, we write our results in the following theorem:

Theorem 1. Let 0 < µ < µs, 0 < λ < λ1 and f is a bounded measurable
function satisfying the condition (F), then (1) has at least two nontrivial solutions,
if 0 < α < 2β+(µ) + 2s−N.

This paper is organized as follows: in the forthcoming section, we give some
preliminaries and technical lemmas used in our work. Section 3 is concerned by
the proofs of our main results. In the following discussions, we shall denote various
positive constants as c. O(εt) means that |O(εt)ε−t| ≤ c, as ε → 0, and o(1) is an
infinitesimal value, → (respectively, ⇀) will denote strongly (respectively, weakly)
convergence. We denote the norme of X− (the dual of X) by ∥.∥−.

2 Notations and preliminary results

2.1 A functional framework for the nonlocal problems

The embedding X ↪→ Lr(Ω) is continuous for any r ∈ [1; 2∗] and compact for
any r ∈ [1; 2∗). The space X is endowed with the norm defined as

∥u∥2 := CN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

u2

|x|2s
dx,

by using fractional Hardy inequality [10],
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∫
Ω

u2

|x|2s
dx ≤ 1

µs
CN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy, ∀u ∈ X,

we find that the norm ||.|| is equivalent to the usual normCN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

 1
2

.

From the fractional Sobolev-Hardy inequality, for µ ∈ [0;µs[, we can define the
best constant of fractional Sobolev-Hardy

Aµ,s(Ω) := inf
u∈X\{0}

CN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

u2

|x|2sdx(∫
Ω

|u|2∗sdx
) 2

2∗s

.

Ghoussoub and Shakerian [9] proved that there exists radial solutions Uµ(x) ∈
Hs(RN ) positive, symmetric, decreasing and solves{

(−∆)su− µ u
|x|2s = |u|2∗s−2u in RN ,

u ≥ 0 in RN ,

satisfying lim
|x|→∞

Uµ(x) = 0 and Uµ ∈ C1(RN \ {0}). Furthermore, Uµ has the

following properties

lim
|x|→0

|x|β−(µ)Uµ(x) = δ0,

lim
|x|→∞

|x|β+(µ)Uµ(x) = δ∞,

where δ0 and δ∞ are positive constants and β−(µ), β+(µ) are zeros of the function

ΨN,s(β) = 4s
Γ(N−β

2 )Γ(2s+β
2 )

Γ(N−2s−β
2 )Γ(β2 )

− µ, β > 0, 0 ≤ µ < µs,

and satisfying

0 ≤ β−(µ) <
N − 2s

2
< β+(µ) ≤ N − 2s.
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The author in [9] proved that Aµ,s is attained in RN by the function

yε(x) = ε
2s−N

2 Uµ

(x
ε

)
, ∀ε > 0,

and achieved

CN,s

∫
RN

∫
RN

|yε(x)− yε(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

y2ε
|x|2s

dx =

∫
Ω

|yε|2
∗
sdx = A

N
2s
µ,s.

Due to the fractional Hardy inequality, the operator L = (−∆)s−µ 1
|x|2s is defined

on X. Moreover, the following eigenvalue problem with Hardy potentials and
singular coefficient {

(−∆)su− µ u
|x|2s = λ u

|x|2s−α x ∈ Ω,

u = 0 x ∈ ∂Ω,

where 0 < α < 2s, λ ∈ R, has the first eigenvalue λ1 given by:

λ1 = inf
u∈X\{0}

CN,s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

u2

|x|2sdx∫
Ω

u2

|x|2s−αdx
.

Definition 1. A functional I ∈ C1(X,R) satisfies the Palais-Smaile condition at
level c, ((PS)c for short), if any sequence (un) ⊂ X such that

I(un) → c and I ′(un) → 0 in X−1 (dual of X),

contains a strongly convergent subsequence.

Definition 2. We say that u ∈ X is a weak solution of the problem (1) if for all
φ ∈ X, one has

CN,s

∫
RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy − µ

∫
Ω

uφ

|x|2s
dx− λ

∫
Ω

uφ

|x|2s−α
dx

−
∫
Ω

|u|2∗s−2uφdx−
∫
Ω

fφdx = 0.

2.2 Nehari manifold

The energy functional associated to (1) is given by the following expression:

I(u) =
1

2
∥u∥2 − λ

2

∫
Ω

u2

|x|2s−α
dx− 1

2∗s

∫
Ω

|u|2∗sdx−
∫
Ω

fudx, ∀u ∈ X.
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We see that I is well defined in X and belongs to C1(X,R) and is not bounded.
Moreover, all the critical points of I are precisely the solutions of (1). We define
the Nehari manifold N associated with the functional by

N := {u ∈ X, ⟨I ′(u), u⟩ = 0}.

It is usually effective to consider the existence of critical points in this smaller
subset of the Sobolev space. We can split N for:

N+ := {u ∈ N, ⟨I ′′(u), u⟩ > 0},
N0 := {u ∈ N, ⟨I ′′(u), u⟩ = 0},
N− := {u ∈ N, ⟨I ′′(u), u⟩ < 0}.

Define

c = inf{I(u) , u ∈ N },
c+ = inf{I(u) , u ∈ N+},
c− = inf{I(u) , u ∈ N−}.

2.3 Some technical lemmas

Lemma 1. If µ ∈]0;µs[, α > 0 and 0 < λ < λ1, then

inf{(T (u))
1
2 :

∫
Ω

|u|2∗sdx = 1} = M > 0.

In particular
T (u) ≥ η∥u∥2 (3)

where η = 1− λ
λ1
.

Proof. . The proof is similar to [2].

Lemma 2. Let f ̸= 0 satisfying the condition (F), then N0 = ∅ and c = c+.

Proof. . The lemma is proved in the same way as in [14].

Let the cut-off function φ(x) = φ(|x|) ∈ C∞
0 (Ω) such that 0 ≤ φ(x) ≤ 1 in

B(0, R) and φ(x) = 1 in B(0, R2 ). Set uε = φ(x)yε(x), the following asymptotic
properties hold.

Proposition 1. Suppose that N > 2s, µ ∈ [0;µs[. Then

(1) ∥uε∥2 = A
N
2s
µ,s + O(ε2β

+(µ)+2s−N ).

(2)
∫
Ω

|uε|2
∗
sdx = A

N
2s
µ,s + O(ε2

∗
sβ

+(µ)−N ).

(3)
∫
Ω

|uε|2
|x|2s−αdx = O(εα), where 0 < α < 2β+(µ) + 2s−N.
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(4)
∫
Ω

uεdx = O(ε
2β+(µ)+2s−N

2 ).

Proof. . For the estimates (1), (2) and (4) one can see in [16], we only verify (3)∫
Ω

|x|α−2su2εdx =

∫
Ω\B(0,R

2
)

|x|α−2su2εdx+

∫
B(0,R

2
)

|x|α−2su2εdx

= O(ε2s−N+2β+(µ)) + ωN

∫
0

R
2

ρα−2sy2ε(ρ)ρ
N−1dρ

= O(ε2s−N+2β+(µ)) + ωNε2s−N

∫
0

R
2

ρα−2s−N−1U2
µ(

ρ

ε
)ρN−1dρ

= O(εα),

ωN is the area of the sphere SN−1.

Lemma 3. Let f ̸= 0 satisfies (F). For every u ∈ X, u ̸= 0 there exists a unique
t+ = t+(u) > 0 such that t+u ∈ N−. In particular:

t+ >

 T (u)

(2∗s − 1)
∫
Ω

|u|2∗sdx


N−2s

4s

= tmax(u)

and I(t+u) = max
t≥tmax

I(tu). Moreover, if
∫
Ω

fudx > 0, then there exists a unique

t− = t−(u) > 0 such that t−u ∈ N+, t− < tmax(u) and I(t−u) = min
0≤t≤tmax

I(tu).

Proof. The lemma is proved in the same way as in [7].

Lemma 4. Let f ̸= 0 satisfies (F). For each u ∈ N \ {0}, there exist ε > 0
and a differentiable function t = t(w) > 0, w ∈ X \ {0}, ∥w∥ < ε, satisfying the
following:

t(0) = 1, t(w)(u− w) ∈ N, ∀ ∥w∥ < ε,

⟨t′(0), v⟩ =
(
2CN,s

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy−

−
∫
Ω

(2(
µ

|x|4
+

λ

|x|4−α
)uv + 2∗s|u|2

∗
s−2uv + fv)dx

)
/

(
T (u)− (2∗s − 1)

∫
Ω

|u|2∗sdx
)
.

Proof. . Define the map F : R×X → R,

F (t, w) = tT (u− w)− t2
∗
s−1

∫
Ω

|u− w|2∗sdx−
∫
Ω

(u− w)fdx.
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Since

F (1, 0) = 0,
∂F

∂t
(1, 0) = T (u)− (2∗s − 1)

∫
Ω

|u|2∗sdx ̸= 0,

applying the implicit function theorem at the point (1, 0) we can get the result of
this lemma.

3 Proof of Theorem 1

The current section contains two subsections. We consider 0 < λ < λ1 and
0 < µ < µs.

3.1 Existence of solution in N+

Using Ekeland’s variational principle, we prove the existence of a solution in
N+.

Proposition 2. Let f be a function satisfying (F). Then c = inf
u∈N

I(u) is achieved

at a point u0 ∈ N+ which is a critical point and even a local minimum for I.

Proof. . We start by showing that I is bounded from below in N. Indeed for
u ∈ N we have

T (u)−
∫
Ω

|u|2∗sdx−
∫
Ω

fudx = 0.

Thus

I(u) =
1

2
T (u)− 1

2∗s

∫
Ω

|u|2∗sdx−
∫
Ω

fudx =
s

N
T (u)− N + 2s

2N

∫
Ω

fudx

≥ −(N + 2s)2

16Nsη
∥f∥2−.

In particular,

c ≥ −(N + 2s)2

16Nsη
∥f∥2−.

From Lemma 3, we can get t0 = t−(v) such that t0v ∈ N+. Moreover,

I(t0v) =
1

2
t20T (v)−

t
2∗s
0

2∗s

∫
Ω

|v|2∗sdx− t0

∫
Ω

fvdx

= −1

2
t20T (v) +

(
1− 1

2∗s

)
t
2∗s
0

∫
Ω

|v|2∗sdx

< − s

N
t20T (v) < 0.

Hence,
c ≤ I(t0v) < 0. (4)
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Applying the Ekeland’s variational principle to the minimization problem (1), we
can get a minimizing sequence (un)n ⊂ N+ satisfying :

(i) I(un) < c+ 1
n ,

(ii) I(un) ≤ I(w) + 1
n∥w − un∥, ∀ w ∈ N.

By taking n large enough, we get from (4) :

I(un) =
s

N
T (un)−

N + 2s

2N

∫
Ω

fundx < c+
1

n
≤ − s

N
t20T (un).

This implies that ∫
Ω

fundx ≥ 2st20
N + 2s

T (un) (5)

consequently, un ̸= 0 and we have:

2s

N + 2s

t20
∥f∥−

T (un) ≤ ∥un∥ ≤ N + 2s

2sη
∥f∥−. (6)

Next, we shall prove that ∥I ′(un)∥ → 0 as n → +∞.
Suppose that ∥I ′(un)∥ > 0 for n be large enough. By Applying Lemma 4 with

u = un and w = σ( I′(un)
∥I′(un)∥), σ > 0, we can find some tn(σ) = tσ( I′(un)

∥I′(un)∥) such
that

wσ = tn(σ) [un − σ
I ′(un)

∥I ′(un)∥
] ∈ N.

By condition (ii), we obtain:

1

n
∥w − un∥ ≥ I(un)− I(wσ)

= (1− tn(σ))⟨I ′(wσ), un⟩+ σtn(σ)⟨I ′(wσ),
I ′(un)

∥I ′(un)∥
⟩+ o(σ).

Dividing by σ and passing to the limit as σ goes to zero we derive that:

1

n
(1 + |t′n(0)| ∥un∥) ≥ −t′n(0)⟨I ′(un), un⟩+ ∥I ′(un)∥

= ∥I ′(un)∥,

where t′n(0) = ⟨t′(0), I′(un)
∥I′(un)∥⟩. So, we conclude that:

∥I ′(un)∥ ≤ C

n
(1 + |t′n(0)|), C > 0.

The proof will be completed once we have shown that |t′n(0)| uniformly bounded
with respect to n. From Lemma 4 and the estimate (6), we get:

|t′n(0)| ≤
C1

|T (un)− (2∗s − 1)
∫
Ω

|un|2∗sdx
.
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C1 is a suitable constant.
Hence we must prove that |T (un)− (2∗s−1)

∫
Ω

|un|2
∗
sdx| is bounded away from zero.

Arguing by contradiction, assume that for a subsequence still called (un), we have

|T (un)− (2∗s − 1)

∫
Ω

|un|2
∗
sdx| = o(1). (7)

According to (6) and (7), there exists a constant C2 > 0 such that
∫
Ω

|un|2
∗
sdx ≥ C2.

In addition, from (7) and by the fact that un ∈ N, we get∫
Ω

fundx = (2∗s − 2)

∫
Ω

|un|2
∗
sdx+ o(1).

This together with (F) imply that

0 < (2∗s − 2)


 T (un)

(2∗s − 1)
∫
Ω

|un|2∗sdx


2∗s−1

2∗s−2

− 1

 = o(1)

which is clearly impossible. In conclusion,

I ′(un) → 0 as n → +∞. (8)

Let u0 ∈ X be the weak limit in X of (un)n.
From (5) we derive that

∫
Ω

fu0 > 0, and from (8) that

⟨I ′(u0), w⟩ = 0, ∀w ∈ X,

i.e u0 is a weak solution for (1). In fact, u0 ∈ N and

c ≤ I(u0) ≤ lim
n→+∞

I(un) = c.

So, we deduce that un → u0 strongly in X and I(u0) = c = inf
u∈N

I(u). Moreover,

u0 ∈ N+. So u0 is a local minimum for I.

3.2 Existence of solution in N−

In this subsection, to prove the existense of a solution in N−, we shall find the
range of c− where I verifies the (PS)c− condition.

Lemma 5. Let (un)n be any sequence of X satisfying the following conditions:

(a) I(un) → c with 0 < c < s
NA

N
2s
µ,s,

(b) I ′(un) → 0 as n → +∞.
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Then (un)n has a strongly convergent subsequence.

Proof. . From (a) and (b), we have

I(un) = c+ o(1),

and

⟨I ′(un), un⟩ = T (un)−
∫
Ω

|un|2
∗
sdx−

∫
Ω

fundx+ o(1), (9)

then
s

N

∫
Ω

|un|2
∗
sdx+ o(1) = c+

1

2

∫
Ω

fundx− 1

2
⟨I ′(un), un⟩.

By using Hölder inequality, we get

s

N

∫
Ω

|un|2
∗
sdx ≤ c+

1

2
∥f∥−∥un∥+

1

2
∥I ′(un)∥−∥un∥. (10)

From (3), (9) and (10) then, we have for all ε positive

η∥un∥2 ≤ T (un) ≤
∫
Ω

|un|2
∗
sdx+

∫
Ω

fundx+ ⟨I ′(un), un⟩

≤ N

s
c+

N + 2s

2s
(∥f∥− + ∥I ′(un)∥−)∥un∥+ ε∥un∥.

So T (un) is uniformly bounded. For a subsequence of (un)n, we can get a u ∈ X
such that

un ⇀ u.

So, from (b), we obtain that

⟨I ′(u), w⟩ = 0, ∀w ∈ X.

Then u is a weak solution for (1). In particular u ̸= 0, u ∈ N and I(u) ≥ c.
We have

un ⇀ u in X and L2∗s (Ω),

un ⇀ u in L2(Ω, |x|−2s),

un → u in L2(Ω, |x|α−2s),

un → u in Lq(Ω), for 1 ≤ q < 2∗s.

Let un = u+vn. So, vn ⇀ 0 in X. As in Brezis-Lieb Lemma (see [3]), we conclude
that

o(1) =
1

2
T (vn)−

1

2∗

∫
Ω

|vn|2
∗
dx, (11)
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and

o(1) = T (vn)−
∫
Ω

|vn|2
∗
dx.

Without loss of generality, as n → +∞ we may assume that

T (vn) → l ,

∫
Ω

|vn|2
∗
sdx → l.

By (11), we deduce that l = 0 and un → u strongly in X as n → +∞.
Assume that u = 0 in Ω, from ⟨I ′(un), un⟩ = o(1), we have

∥un∥2 −
∫
Ω

|un|2
∗
sdx = o(1), (12)

by the definition of Aµ,s

∥un∥2 ≥ Aµ,s

∫
Ω

|un|2
∗
sdx

 2
2∗s

, (13)

by (12) and (13)

o(1) ≥ ∥un∥2
(
(Aµ,s)

2∗s
2 − ∥un∥2

∗
s−2

)
, (14)

if ∥un∥ → 0, this contradicts c > 0. Then by (14)

∥un∥2 ≥ (Aµ,s)
N
2s (15)

It follows from (12) and (15) that

I(un) =
1

2
∥un∥2 −

1

2∗s

∫
Ω

|un|2
∗
sdx+ o(1)

=
s

N
∥un∥2 + o(1)

≥ s

N
(Aµ,s)

N
2s .

this contradicts c < s
N (Aµ,s)

N
2s . Therefore u ̸= 0 and u is a nontrival solution of

problem (1).

Lemma 6. Let f ̸= 0 be a function satisfying (F) then for all 0 < λ < λ1, there
exists v ∈ X such that

sup
t≥0

I(tv) <
s

N
A

N
2s
µ,s. (16)
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Proof. . For t ≤ 0, we consider the functions

g(t) = I(tuε)

=
t2

2
∥uε∥2 −

λt2

2

∫
Ω

|uε|2

|x|2s−α
dx− t2

∗

2∗

∫
Ω

|uε|2
∗
dx−

∫
Ω

fuεdx

and
g(t) = t2

2 ∥uε∥
2 − t2

∗

2∗

∫
Ω

|uε|2
∗
dx.

the function g attains it’s maximum. By Proposition 1, we can get that

sup
t≥0

g(t) ≤ s

N
A

N
2s
µ,s. (17)

On the other hand, using the definitions of g and uε, we get g(t) = I(tuε) ≤
t2

2 ∥uε∥
2, for all t ≥ 0 and 0 < λ < λ1.

Combining this with Proposition 1, let ε ∈]0; 1[, then there exists t0 ∈]0; 1[ inde-
pendent of ε > 0 such that

sup
t0≥t≥0

g(t) ≤ s

N
A

N
2s
µ,s + O(ε2β

+(µ)+2s−N ).

Hence, for all 0 < λ < λ1 and, by (17), we have

sup
t≥t0

g(t) = sup
t≥t0

g(t)− λt2

2

∫
Ω

|uε|2

|x|2s−α
dx−

∫
Ω

fuεdx


≤ s

N
A

N
2s
µ,s + O(ε2β

+(µ)+2s−N )− O(εα)− O(ε
2β+(µ)+2s−N

2 )

≤ s

N
A

N
2s
µ,s + O(ε2β

+(µ)+2s−N )− O(εα). (18)

As 0 < α < 2β+(µ) + 2s−N .
Combining this with (17) and (18), for any 0 < λ < λ1, we can choose ε small
enough such that

sup
t≥0

I(tuε) <
s

N
A

N
2s
µ,s.

By taking v = uε. From Lemma 3, the definition of c− and (16), for any 0 < λ <
λ1, we see that there exists t− > 0 such that t−v ∈ N− and

c− ≤ I(t−v) ≤ sup
t≥0

I(tv) <
s

N
A

N
2s
µ,s.

Proposition 3. Suppose that f verifies the conditions of Lemma 6. Then I has
a minimizer u ∈ N− such that c− = I(u). Moreover, u is a solution of problem
(1).
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Proof. If 0 < λ < λ1, then, by Lemma 5 and Lemma 6, there exists a (PS)c−

sequence (un) ⊂ N− ∈ X for I with c− ∈ (0; s
NA

N
2s
µ,s). Since I is bounded on N−,

we see that (un) is bounded in X. From Lemma 5, there exist a subsequence still
denoted by (un) and a nonzero solution u ∈ X of (1). such that un → u strongly
in X.
Now, we first prove that u ∈ N−. Arguing by contradiction, we assume u ∈ N+.
Then, by Lemma 3, there exists a unique t− such that t−u ∈ N−. It follows that

c− ≤ I(t−u) ≤ I(t−un)
n→+∞

≤ I(un)
n→+∞

= c−.

This is a contradiction. Consequently, u ∈ N−.

Proof of Theorem 1. By Proposition 2, 3, we obtain that the problem (P) has two
positive solutions u0 and u such that u0 ∈ N+, u ∈ N−. Since N+ ∩N− = ∅, this
implies that u0 and u are distinct. This completes the proof.
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