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SOLUTIONS FOR A NONLOCAL ELLIPTIC EQUATION
WITH CRITICAL SOBOLEV EXPONENT AND SINGULAR
TERM

Habib BENFRIHA'!, Abdelaziz BENNOUR? and Sofiane
MESSIRDI*3

Abstract

In this paper, we consider a class of nonhomogeneous fractional elliptic
equations involving critical Hardy Sobolev exponents as follows

{(—A)Su — pte = [l P A ppis + f(2), T EQ,

u=20 x € 01,

where Q C RY is a bounded domain, 0 < s < 1, A > 0 is a parameter. We
prove the existence of multiple solutions using the variational methods and
the Nehari manifold decomposition.
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1 Introduction

The paper deals with the following fractional Hardy-Sobolev equation with
nonhomogeneous term

(1)

(—A)°u — It = |u|?s = 2u + A= T f(z), zeQ,
u=0 x € 01,
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being 0 < s < 1, where € is a bounded domain in RV, (N > 2s) containing

2/ N+2s
the origin 0 in its interior, 0 < p < g 1= 225%, A is a positive parameter,
4
0 <a<2s 2= 1\72iv25 is the fractional critical Hardy-Sobolev exponent. The
fractional Laplacian (—A)® is defined by
u(z +y) +ulz —y) — 2u(x)
_2(—A)5u(ib) = CN,S/ ’fL‘ — y|N+2S dy
RN
where
4T (N\ 2+ s)
CN,S = N\2 .
mNA2|D(—s)]

I' is the Gamma function, f is a given bounded measurable function.

It has been seen that the fractional differential equations have better effects in
many realistic applications than the classical ones. Qualitative theory and its ap-
plications in physics, engineering, economics, biology, and ecology are extensively
discussed and demonstrated in [5, 6, 8, 11, 12, 13| and the references therein.
There have been by now a large number of papers concerning the existence, nonex-
istence as well as qualitative properties of nontrivial solutions to critical elliptic
problems of Hardy potential and fractional Laplace operator. For instance, Ben-
nour and all in [1] handled the following singular equation

A% = () = (M) + A (s ) + f(@), w e
u:g—:‘lzo, x € 012,

where  is a bounded domain in RY and N > 5,Under sufficient conditions on the
data, the existence and multiplicity of solutions was proven, via Ekland’s variation
principle and the Mountain Pass Lemma principle.

In the local setting case (s = 1) the problem (1) is reduced to the semilinear
problem with Sobolev-Hardy exponents

—Au = pm = |u|? ~2u + A + flx), z€Q,

u=20 x € 0f.
This problem was further studied by Chen and Rocha [4], who based on varia-
tional methods obtained the existence of four non-trivial solutions.
Recently, the existence of nontrivial solutions for nonlinear fractional elliptic equa-
tions with Hardy’s potential type

(A)u= e = g(w) (2)

have been studied by several authors. Wang and all [15] studied (2) with g(u) =

|u|>" ~2u + au, a > 0 and discussed the infinitely many solutions. Daoues and all
*(1)-2,,

7] studied (2) with g(u) = Auld—2y + B2 02
[7] (2) g(u) = Aul

Pk and obtained the existence and
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nonexistence of nonnegative distributional solutions.
In what follows, we state the main result for which we consider the following
hypothesis

N+2a

inf ¢ v s(T'(u) /fudx ueX /\u\z de=13>0. ()

Where X is a Hilbert space defined as
X={ue H*RY):u=0in RV \ Q},
where H?%(R”) the usual fractional Sobolev space,

4s (N 28)N+25
N —2s "N 4+ 2s

= Oy //‘ WE 1 / —)\/UQd:r
’.’E—y|N+2S y—HK ’ ‘23 ‘x’2s—a
Q

RNRN

YN,s =

and

Thus, we write our results in the following theorem:

Theorem 1. Let 0 < p < fi5, 0 < X < A and f is a bounded measurable

function satisfying the condition (F), then (1) has at least two nontrivial solutions,
if 0 < a <287 (u)+2s— N.

This paper is organized as follows: in the forthcoming section, we give some
preliminaries and technical lemmas used in our work. Section 3 is concerned by
the proofs of our main results. In the following discussions, we shall denote various
positive constants as c. O(g') means that |O(e!)e™!| < ¢, as ¢ — 0, and o(1) is an
infinitesimal value, — (respectively, —) will denote strongly (respectively, weakly)
convergence. We denote the norme of X~ (the dual of X) by ||.||-.

2 Notations and preliminary results

2.1 A functional framework for the nonlocal problems

The embedding X < L"() is continuous for any r € [1;2*] and compact for
any r € [1;2%). The space X is endowed with the norm defined as

. u(y)
b= O | [Vt doty - “/ o

RNRN

by using fractional Hardy inequality [10],
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u? [u(

— X
/ FERE= / / r:c—yrws dsdy, e X
Q

RNRN
we find that the norm ||.|| is equivalent to the usual norm

v, [ [0 t0E

S |z — y| N2

From the fractional Sobolev-Hardy inequality, for u € [0; 15[, we can define the
best constant of fractional Sobolev-Hardy

Ju(@) — u(y)l? w2
Cn,s fN &dedy_uélzl%dx
A, s(Q) = inf ROR _
’ ueX\{0} 2%
(flusac)
Q

Ghoussoub and Shakerian [9] proved that there exists radial solutions U,(x) €
H*(RN) positive, symmetric, decreasing and solves

(—A)*u — il = |u|>72u in RV,
u>0 in RV,

satisfying ‘l|1m Uu(z) = 0 and U, € CY(RN \ {0}). Furthermore, U, has the

following properties

lim |z|?” WU, (x) = b,
|z|—0
lim [z]® WU, (2) = 6s,

|z| =00

where §y and ., are positive constants and 3~ (), 87 (i) are zeros of the function

F(—ﬂ)F( 25)
Uns(B) = 4°—5 2~ —p, B>0, 0<p<Ts,
L(F=3=)0(5)
and satisfying
N-—2
0< (1) <~ < fH(u) <N —2s
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The author in [9] proved that A, s is attained in RY by the function
ye(x) = 5285N U, (g) , Ve >0,

and achieved

O [ [ U o — [y = A
|1:— |N+2s ’ 200 7 1UEl AT = s
RNRN (9}

Due to the fractional Hardy inequality, the operator £ = (—A)® — uﬁ is defined
on X. Moreover, the following eigenvalue problem with Hardy potentials and
singular coefficient

u=20 x € 010,

where 0 < a < 25, A € R, has the first eigenvalue \; given by:

2
u(z) —u(y u
Cns | | %dfﬂdﬂ — i s da
. RNRN |z — | Q
A1 = inf
ueX\{0} f‘ |25 —d

Definition 1. A functional I € C*(X,R) satisfies the Palais-Smaile condition at
level ¢, ((PS). for short), if any sequence (un) C X such that

I(uy) = ¢ and I'(uy) = 0 in X1 (dual of X),

contains a strongly convergent subsequence.

Definition 2. We say that u € X is a weak solution of the problem (1) if for all
p € X, one has

o [ ey [
Q

RNRN
— /\u|2§2u<pdx - /fgodx =0.
Q Q

2.2 Nehari manifold

The energy functional associated to (1) is given by the following expression:

1 A u? 1 .
I(u) = 5”“”2 - 2/|x|28ad:c — 2:/|u\25dx — /fuda:, Yu € X.
Q Q Q
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We see that I is well defined in X and belongs to C*(X,R) and is not bounded.
Moreover, all the critical points of I are precisely the solutions of (1). We define
the Nehari manifold N associated with the functional by

N:={ue X, (I'(u),u) = 0}.

It is usually effective to consider the existence of critical points in this smaller
subset of the Sobolev space. We can split N for:

Nt = {ueN,{I"(u),u) >0},
NY = {u e N, (I"(u),u) = 0},
N™ :={ueN,{I"(u),u) <0}

I
I

Define

¢ =inf{I(u), ueN },
ct =inf{I(u), ue Nt}
¢ =inf{I(u), ue N}

2.3 Some technical lemmas

Lemma 1. If p €]0; 755, @« > 0 and 0 < X\ < Ay, then

inf{(T(u))? : /u|22dx =1} =M >0.

Q
In particular
T(u) > nl|ul® 3)
where n =1 — %
Proof. . The proof is similar to [2]. O

Lemma 2. Let f # 0 satisfying the condition (F), then N° =0 and c = c*.
Proof. . The lemma is proved in the same way as in [14]. O

Let the cut-off function ¢(z) = ¢(|z]) € C§°(Q) such that 0 < ¢(z) < 1 in
B(0,R) and ¢(z) = 1 in B(0, %) Set ue = p(x)ye(x), the following asymptotic
properties hold.

Proposition 1. Suppose that N > 2s, p € [0;75[. Then
N
(1) ||u€H2 = Aﬁjs + O(gQﬁJr(M)-‘r?S—N).

(2) f|us
Q

N
%dr = AZs + 0(5235+(“)*N).

(3) f‘ifﬁ'ﬁadx = 0(g%), where 0 < a < 237 (u) + 25 — N.
Q
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287 (W) +2s—N
2

(4) [uedx = 0O(e
Q

Proof. . For the estimates (1), (2) and (4) one can see in [16], we only verify (3)

/|x!°‘_25ugdm = / ]a:\o‘_%ugdx + / |x|0‘_25ugd1‘

@ 2\B(0,%) B(0,)
R
5— + 2 a—2s -
= 0> N +wzv/ P22 (p)p™N dp
0
g
_ 0(62571\74»2,3"’(“)) + wN€2SN/ Paizs*N*lUi(g)prldp
0
= 0(e"),
wy is the area of the sphere SV—1. O

Lemma 3. Let f # 0 satisfies (F). For every u € X, u # 0 there exists a unique
tt =tT(u) > 0 such that t™u € N™. In particular:

N—2s
4s

T'(u)
(25 = 1) [ful*dx
Q

tt > = tmax (1)

and I(ttu) = max I(tu). Moreover, if [fudx > 0, then there exists a unique

t= =t (u) >0 such that t u € N, t7 < tyax(u) and I(t " u) = 0<£1iig1 I(tu).
Proof. The lemma is proved in the same way as in [7]. O

Lemma 4. Let f # 0 satisfies (F). For each u € N\ {0}, there exist ¢ > 0
and a differentiable function t = t(w) > 0, w € X \ {0}, ||lw| < e, satisfying the
following:

t(0) =1, t(w)(u —w) €N, V ||w|| <e,

(#(0), 0) = (20N,5 / / (u(x) —|U(y>)(v(w) =) gy

T — y|N+25

RNRN

- 4(2(154 + mi\a)uv + 2 )% 2w + fv)da:) / (T(u) — (2 - 1)é|ul23dx> .

Proof. . Define the map FF: R x X — R,

F(t,w) =tT(u—w) —t%71 [ Ju —w[*de — | (u—w)fdz.
j——

Q
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Since

OF . .
F(1,0) =0, 5(1,0) =T(u) — (2F — 1)/|u|2 dx # 0,
Q

applying the implicit function theorem at the point (1,0) we can get the result of
this lemma. O

3 Proof of Theorem 1

The current section contains two subsections. We consider 0 < A < A\ and
0 < p <s.
3.1 Existence of solution in N+

Using Ekeland’s variational principle, we prove the existence of a solution in
NT.

Proposition 2. Let f be a function satisfying (F). Then ¢ = injf\f](u) is achieved
ue
at a point ug € N1 which is a critical point and even a local minimum for I.

Proof. . We start by showing that I is bounded from below in N. Indeed for

u € N we have
- /|u|2:dx - /fud:v =0.
Q Q

Thus
1 1 x N 2
I(u)zQT(u)2§/|u|25d$/fudx:; + S/fd
0
(N + 23)
> — I1F12
16N sn
In particular,
N +2s
oz 2P e
16N sn

From Lemma 3, we can get to =t~ (v) such that tgv € N*. Moreover,

oty
I(tov) = t%T 0

\2 dx —to/fvdac

1

< —%t%T(v) <0.

Hence,
¢ < I(tpv) < 0. (4)
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Applying the Ekeland’s variational principle to the minimization problem (1), we
can get a minimizing sequence (uy,), C Nt satisfying :

(i) I(un) <c+ 1,
(i) I(un) < I(w) —1—%Hw—unH, YV weN.

By taking n large enough, we get from (4) :

N 42
I(un) = ~T(up) — + S/fundx < c+ < *NtoT(un)

N

This implies that

2
/fundm > O ( n) (5)

consequently, u, # 0 and we have:

2s t% N + 2s
———— T(uy) < |lull <
g T L) <

[FAI (6)

Next, we shall prove that ||I'(u,)| — 0 as n — 4o0.
Suppose that ||I'(u,)|| > 0 for n be large enough. By Applying Lemma 4 with
u = up and w = 0(||§/Eu"§||) o > 0, we can find some t,(0) = to(”pg 3”) such
that
I'(uy,

Ao ]EN

Wy = tp(0) [un —
By condition (ii), we obtain:

1
= uall = Iu) = I(uw)

_ - tn(U))<I/(w0)’ Un) + Utn(O')(I/( o) ||§:Eun;H

Dividing by o and passing to the limit as o goes to zero we derive that:

%(1 + 1t (0)] [lunll) = =1, (0)(I (un), un) + |1 (un) |

= | 7' (un)l,

) +o(0).

where ¢/, (0) = (¢(0), ”gg#;w So, we conclude that:

1wl < St o, o> o

The proof will be completed once we have shown that |t/ (0)| uniformly bounded
with respect to n. From Lemma 4 and the estimate (6), we get:

Ch

O =@ D
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(' is a suitable constant.

Hence we must prove that |T'(uy,) — (2% — 1) [ |u,|* dz| is bounded away from zero.
Q

Arguing by contradiction, assume that for a subsequence still called (uy,), we have

T (un) — (25 = 1)/Iunl2:dﬂf| =o(1). (7)
Q

According to (6) and (7), there exists a constant Cy > 0 such that [|u,|%dz > Cs.
Q

In addition, from (7) and by the fact that u,, € N, we get
/fundx =(2; — 2)/|un|23d:1: +o(1).
Q Q

This together with (&) imply that

* T(Un)
0<(2;—2 —1| =o(1
%N e o
Q
which is clearly impossible. In conclusion,
I'(up) — 0 asm — +oo. (8)

Let up € X be the weak limit in X of (uy)n.

From (5) we derive that [ fug > 0, and from (8) that
)

(I'(up),w) =0, Yw € X,
i.e ug is a weak solution for (1). In fact, ugp € N and

< < i =
c < I(up) < nglfoof(un) c.

So, we deduce that u, — ug strongly in X and I(ug) = ¢ = injf\f[(u). Moreover,
ue

up € NT. So ug is a local minimum for I. O

3.2 Existence of solution in N—

In this subsection, to prove the existense of a solution in N~, we shall find the
range of ¢~ where I verifies the (PS).- condition.

Lemma 5. Let (uy,), be any sequence of X satisfying the following conditions:
N
(a) I(un) — c with 0 < ¢ < F AR,

(b) I'(up) = 0 as n — +oo.
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Then (un)n has a strongly convergent subsequence.

Proof. . From (a) and (b), we have
T(un) = e+ of1),

and

wm%%pﬂm@—ﬁ%ﬂm—/MMMmm, ()
Q Q

then

s o 1 1, ,

~r n| ° 1) = 5 n - n)s Un/-
N/]u|dx+o() c—|—2/fudx 2( (Un), up)
Q Q

By using Holder inequality, we get

S * 1 1
2 [l < e G-l + 07 ) |- (10)
Q

From (3), (9) and (10) then, we have for all € positive

HWWSTWJSﬂ%WM+/MMWHH%MW

Q Q
N N+ 2s
< et — —(Ifll-+ 1T (un) | ) Junll + €llunl|-

So T'(uy,) is uniformly bounded. For a subsequence of (uy,),, we can get a u € X
such that
Up, — U.

So, from (b), we obtain that
(I'(u),w) =0, VYweX.

Then v is a weak solution for (1). In particular u # 0, w € N and I(u) > c.
We have

U, —u in X and L% (Q),
u, —u in L3(Q, |z|72%),
u, — u in L3(Q, |z]|*72%),

up, = u in LY(Q), for 1 < g < 25.

Let up, = u+vy,. So, v, — 0in X. As in Brezis-Lieb Lemma (see [3]), we conclude
that

e, (11)

qnzyw@—;/w
Q
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and

o(1) =T(v,) — /]vn|2*d$.
Q
Without loss of generality, as n — 400 we may assume that

T(vp) — 1, /|vn|2:dx — L.
Q

By (11), we deduce that [ = 0 and u,, — u strongly in X as n — 4o0.
Assume that v =0 in Q, from (I'(uy), u,) = o(1), we have

funl = [l = o(0), (12)
Q
by the definition of A, s
2
2%
luml2 > Ay ﬂmﬁw , (13)
Q
by (12) and (13)
2 % 252
om>wm(mww—mms), (14)

if ||un|| — 0, this contradicts ¢ > 0. Then by (14)
N
lunl® > (Ap,s) % (15)

It follows from (12) and (15) that

1 1 .
) = gl = o [ un P +0(1)
S
Q

this contradicts ¢ < %(AMS)%. Therefore u # 0 and u is a nontrival solution of
problem (1). O

Lemma 6. Let f # 0 be a function satisfying (F) then for all 0 < X\ < Ay, there
erists v € X such that

N
supl (tv) < iAﬁfS. (16)
0 N
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Proof. . For t <0, we consider the functions
g(t) = I(tuc)
2 >\t2 |u5|2 t2*
EHUEH | ’25 a

Ydx — /fued:c

and X

_ 2 2 *

g(t) = %HUEHQ - tQ* f|u€|2 dz.
Q

the function g attains it’s maximum. By Proposition 1, we can get that

supg (t) < 3 A (17
>0

On the other hand, using the definitions of g and u., we get g(t) = I(tus) <

% luc||?, for all t > 0 and 0 < A < Ay

Combining this with Proposition 1, let £ €]0; 1[, then there exists tg €]0; 1] inde-

pendent of € > 0 such that

sup g(t) < NAQS +O(eP T (WF2s =Ny
to>t>0

Hence, for all 0 < A < A; and, by (17), we have

>t >t |[2s—e

)\t2 2
supg(t) =sup | g(t) — - i dr — /fuedx
Q

26T (W) +2s—N

N
< 24+ 0 N oo — (2 )

N
< S Af 4 00BN _g(ee), (18)

As 0 < a <28 (u)+2s—N.
Combining this with (17) and (18), for any 0 < A < Ay, we can choose ¢ small
enough such that

S N
supl (tug) < NAﬁfs.
t>0

By taking v = u.. From Lemma 3, the definition of ¢~ and (16), for any 0 < A <
A1, we see that there exists t~ > 0 such that t7v € N~ and

¢ < I(t7v) <supl(tv) < —Aﬁf
>0

O]

Proposition 3. Suppose that f verifies the conditions of Lemma 6. Then I has
a minimizer w € N~ such that ¢~ = I(u). Moreover, u is a solution of problem

(1).
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Proof. If 0 < A < Ay, then, by Lemma 5 and Lemma 6, there exists a (PS).-

sequence (u,) C N~ € X for I with ¢~ € (0; %Aﬁﬂfs). Since I is bounded on N7,

we see that (uy,) is bounded in X. From Lemma 5, there exist a subsequence still

denoted by (u,) and a nonzero solution u € X of (1). such that u, — u strongly

in X.

Now, we first prove that « € N~. Arguing by contradiction, we assume v € NT.

Then, by Lemma 3, there exists a unique ¢t~ such that t~u € N™. It follows that
¢ <I(tTu) <I(t uy) < I(u,) =c .

n—-+oo n—-+o0o

This is a contradiction. Consequently, u € N™. ]

Proof of Theorem 1. By Proposition 2, 3, we obtain that the problem (%) has two
positive solutions ug and u such that ug € N*, u € N~. Since N* NN~ = (), this
implies that uy and u are distinct. This completes the proof. ]
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