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AN APPROACH TO REVERSE MINKOWSKI TYPE
INEQUALITY WITH K-WEIGHTED FRACTIONAL
INTEGRAL OPERATOR

Noureddine AZZOUZ! and Bouharket BENAISSA*2

Abstract

In this research, we present an innovative approach to the reverse Minkowski
type inequality using the k-weighted fractional integral operator ,+J Y. This
operator has two positive summation parameters, 1 < p < ¢ < oo, and our
approach yields new results based on the selection of the function .
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1 Introduction

In 2010, Dahmani presented a reverse Minkowski fractional integral inequality
[5, Theorem 2.1]. For any f,g positive functions on [0, +o0], a > 0, p > 1, if
0<m< % < M, for all T € [0, ], then
1+ M(m+2)
(m+1)(M+1)

SR

(J(f+9)"®)7, (1)

3=

1
(@) r + (JgP(t)r <
where J¢ is the Riemann-Liouville fractional integral operator of order a > 0.
Several researchers have made significant contributions to the field by deriving
extensions and generalizations of the above reverse Minkowski inequality for frac-
tional integral operators [11, 13, 14].

In another way, in [8] for an integrable function f defined on the interval [a, b]
and for a differentiable function ¢ such that ¢'(¢t) > 0 for all ¢ € [a,b], the left
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weighted fractional integral of f with respect to the function v is defined as follows

ahmﬂwzU@;hwliwwmmm—w@w*w@ﬂ$w,x>a,<m

where v(z) # 0 is a weight function ( positive measurable function ).

This study aims to present a novel generalized form of the weighted fractional
operator previously described in [8]. Additionally, the study seeks to establish
new reverse Minkowski-type inequalities utilizing two positive parameters, with
values restricted to 1 < p < ¢ < o0.

2 k-weighted fractional operator
This section aims to provide a definition of the k-weighted fractional integral
of a function f with respect to the function . Additionally, we establish the space

in which this integral is bounded.
Let [a,b] C (0,+00), where a < b.

Definition 1. Let a« > 0, k > 0 and ¥ be an increasing differentiable function
on [a,b]. The left sided k-weighted fractional integral of an integrable function f
with respect to the function v on [a,b] is defined as follows

@) = s [0 W) e E s 20 @)

where v(x) # 0 is a weight function and the k-gamma function defined by

[eS) e
k() —/ t* ™ F dt.
0

For f(s) =1, we denote

@) = s [ e v s o>

The space Ly [a, b] of all real-valued Lebesgue measurable functions f on [a, ]
with norm condition :

: :
ufw:(/\fwﬂﬂmmm) < oo, 1<p<too,

is known as weighted Lebesgue space, where w denotes a weight function.

L. Put w = 1, the space L;)[a, b] reduces to the classical Lebesgue space Ly|a, b].

2. Choose w(x) = vP(z) ' (x), we get

b v
Lxtlastl =4 £ 7 = ([ 1@ 1 v'@an) <o @)
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In the next theorem, we show that the k-weighted fractional integral is bounded.

Theorem 1. For any functions f € Lyr[a,b], the fractional integral operator (3)
is defined and we have

o+ I f(x) € Lyp[a,b]. ()

Moreover

@), < C 1@z (6)

where

_ (@) = ¢(a)F
¢= M(a+k) 9

Proof. Let f € Lyr[a,b] and %—i— [% =1, we have

a+Jvf / |v(z) 1Y f(z) P ¥/ (2)da

o 1 b / - -

— krk(a)/a /a v(s)f(8)Y(s)(W(x) — ¥(s))x ds| (x)dx

- 0 / —(s))E TR Sp "(z) dx
B kprzm)/a [ @) (v e w) vt ) i) @)

Using Holder inequality for p > 1, we get

1 b
< -
xt T kPTh (o )/a

a+JUf( )

/ﬂ” VP () fP(s)0" (5) (W () — ob(s)) % " ds

p—1

' (z) da

< BT / </ P (9~ w(s)F ds)
< ([ e - vt d) v (@)da

p—1
e | [ Pe e vt

(p—Da

x(¥(z) —¢(a) * ¢'(z)dsdz.

(s))* " ds
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Applying Fubini’s Theorem and the monotonicity of ¢, we deduce

v a((b) ~ b))
Xy = kT2 (o + k)

(p—Da
E

a+J3ff(~’U)‘

/ab 0P () fP(s)| ' (s) (/Sb(w(x) — w(s))%—1¢/(x> dac) s

_ a (pfkl)a b .
- BT [P o) (0] 0/ 00 = () s
(V(b) = (@) T (1) = v(@)F [ o it
< T | e el ds

W) =)'t
I'P(a+ k)

11 -

O]

Putting v(z) = 1, the operator 44 J¥ f(x) is simplified to the k-Hilfer operator
of order o > 0
1
ardif(@) =

k Fk(a)

/ “Wle) — () E T () f()ds,, x> a,  (8)

which is bounded on

Lyla,b] = {fr I 7 o= (/b | F(@) Ipw’(x)dx); < oo}.

Depending on the function v, we’ll get different types of k-weighted fractional
integral operators.

1. By choosing 9 (7) = 7, the operator a+J§f)f(m) is reduced to the k-weighted
Riemann-Liouville fractional integral operator of order a > 0

RLf(x) = v(:);’)lﬂlw /:(:L‘ —5)5 Lu(s)f(s)ds,, x> a, 9)

which is bounded on

Lypla,b] = {f: I 7 lp= (/b o) () P dx); < oo}.

2. Choosing (1) = In7, 4+J% f(z) is reduced to the k-weighted Hadamard
fractional integral operator of order a > 0

1 T ds

Hf(x) = v(x)kf‘k(a)/: (ln S>2_1v(s)f(s)s, x>a>1, (10)
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which is bounded on

Lytla,b) = ﬂufuf(éﬁwmﬂmwﬁ);<w

3. Choosing ¥(71) = 7:;11 where p > 0, a+J§3/)f(:c) is reduced to the k-weighted

Katugompola fractional integral operator of order a > 0

=% z a_
Kf(x) = W/ (zPth —sPth)® ! v(s)f(s)sPds, x >a  (11)

which is bounded on

mem{ﬁfxg<4bmmﬂmpxwﬁé<m}

4. Choosing (1) = @, a+Jff(:c) is reduced to the k-weighted fractional
conformable integral operator of order o > 0

—791_% ' x—ae—s—ae%_lvsif(s) S, x>a
/@) = e /. (= = —a)) ”@_Wad’ZQ
which is bounded on

1

Lxpla,b] = ﬁHfMF<A%M@N®W®:§POP<w

For example see [6].
We need the following Lemma to prove our results [2]-[3].

Lemma 1. Let 1 < p < g < oo and f, W be non-negative measurable functions
on la, b]. we suppose that, 0 < ff fr(s)W(s)ds < oo, forr >1, then

D
q

/ab fP(s)W (s)ds < </ab W(S)ds> v </ab fq(S)W(s)ds> : (13)

Proof. If p = q, then we get equality and for p # ¢, we use Holder’s integral
inequality with q > 1. We have

p
/ab fP(s)W(s)ds = /ab (W%(s» (fp(s)Wg(s)> ds

S(A%V@wﬁqf<1fﬁ@nvwm§

2
q



44 Noureddine Azzouz and Bouharket Benaissa

Corollary 1. Let 1 < p < q < oo, f be non-negative measurable function on
[a, ] and p € Ca, z] be a positive, increasing function and ,+J¥ is the left sided
k-weighted fractional operator defined by (3), then

1 q—p 1

(e 3077 @)" < [ d02@)] ™ (o 3p9@) " (14)
Y

Proof. Using the inequality (13) by taking W (s) = Y )U(Ei()xk) T, ((3) U9 we obtain

4a—p

[P o < ([ )

([ )

this gives the desired results. O

3 Main results

In this section, we present new inverse Minkowski-type inequalities using the
k-weighted fractional integral operator a+J§f’. Let 0 <a <b< 400, v(x) # 0 be
a weight function and f,g € Lyr[a,b].

Theorem 2. Let f, g >0, 1 <p < g < +o0, if

f(s)
g(s)

then the following inequality yields

0<m< <M, for allsc€]la,zx], (15)

(a0 3257@)" + (3207 @) < K2, (0 T @ +9@)) . (10)
where .,
Kot = Gy L9t @] ™ "

Proof. From the supposition (15) we result

M1 _ f(s) +g(s)
MO )

hence
M

1) < 5y (F(9) +905))

taking the pth power of the above inequality and multiplying by the positive
V'(s)(Y(x) - Qb(s))%_lv(s), we obtain

b (s)(Wh(x) = 1(s))

B8
k

“lo(s) fP(s) <
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< ! ) Y (s)(w(x) — () Eu(s)(f(s) + g(s))",

M+1
integrating with respect to s over [a, x|, we get

(o327 (@)dz)" <

B =

< (I U@ Fg@pd)” )

applying the inequality (14) on the right-hand side of (18), we get

9—pP

[ I1@)] 7 (T @)+ 9(@) (@)

Q=

(30 (@)ds)” < (19

M
M+1
Using the assumption (15), we obtain

(1+m)g(s) < f(s) + g(s),
for p > 1 we deduce that
1 \?
70 = (155) U+,

multiplying by /(s)(¢(z) — w(s))%_lv(s) and integrating with respect to s over

[a, x], thus

3=

(TP @))” < — (T () + )i 20

Now applying the inequality (14) on the right-hand side of (20), we get

9—p

[ 301@] ™ (3@ e @) @)

(a+J$gp<x>d:c); <

adding the inequalities (19) with (21), we get the required inequality (16). O

In the following corollaries, we present some special cases of two-parameter
reverse Minkowski’s inequalities using the k-weighted fractional integral operator

(3):

1. Setting 1(7) =7, v(r) = 1 and o = k = 1, then we get +JV1(z) =z —a
and

I @) = Rf @) = [ o) ds w>a (22)

Corollary 2. (Reverse Minkowski’s inequality via Riemann integral opera-
tor.)
Let f,g>0,1<p<q<+oo, if

0<m<£§3<M, for all s € [a,x], (23)
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then
</: f(s) ds)fl’ n </: g(s) ds)i . (/ax(f(S) o) dS)é e

Inequality (24) is a new generalization on [a,z] with two parameters 1 <
p < g, for ¢ = p we get [4, Theorem 1.2].

. Setting Setting v(r) = 1 and ¥(7) = 7, we get ,+J{1(z) = m(x —a)*
and
1 r o
f) = Rf@) = s [ @ s aa (9

Corollary 3. (Reverse Minkowski’s inequality via k-Riemann-Liouville op-
erator.) Under the assumptions of Corollary 2, we have.

(RLf(2))7 + (REg(x))r < K (RE(f(x) + g(x)))7 . (27)
where -
[ 1+ M(m+2) 1 ey T

- [(m‘f‘l)(M-i-l)] [aFk(a) (v —a) : (28)

Inequality (27) is a generalization on [a, | with two parameters 1 < p < ¢,
taking ¢ = p we get [12, Theorem3.1].

. Setting v(7) = 1 and ¥(7) = In 7, we deduce ,+J¥1(z) = m (In %)%

and
1 T

oty f(2) = Hf(w) = WTr(a) /: (ln s):

Corollary 4. (Reverse Minkowski type inequality via k-Hadamard opera-
tor.) Under the assumptions of Corollary 2, we have.

- f((j) ds, z>a>1. (29)

(Hf(2))? + (Hg(x))» < K (H(f(z) + g(x)))t (30)
where -
[ 1+ M(m+2) 1 nf 27 "pg

k= [mrnarid) lamw 0™ (81)

Inequality (30) is a generalization on [a, x| with two parameters 1 < p < ¢,
taking ¢ = p we get [7, Theorem11].
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4. Setting v(7) =1 and (1) = Tp’::ll we get o+ JV1(x) = Fk(i+k) (xp+/1):11p+1)z
and
(p+ 1) %

i3 f(x) = Kf(z) = / @t B L f(s)ds, 7> a
’ (32)

Corollary 5. (Reverse Minkowski’s inequality via k-Katugompola opera-
tor.) Under the assumptions of Corollary 2, we have for all p > —1

(Kf(@) + (Kg(z)? < K (K(f(z) + g(x)))7 (33)

kI‘k(a)

where

1 xp-&-l _ ap+1 % %
. 4
FAa+k)< p+1 ) (34

B [&iﬁ%ffﬂ

Inequality (33) is a generalization on [a, z] with two parameters 1 < p < g,
taking k =1 and g = p we get [9, Theorem 3].
(z—a)?

5. Setting v(7) = 1 and ¥(7) = (T;a)e, we have a+J%1($) = m ( 0 )Z
and for x > a

-7 5
atr U f(z) = Cf(z) = keI‘k(a)/ ((95 —a)’ — (s - a)a) 1 (s_f(j)l_eds'

Corollary 6. (Reverse Minkowski’s inequality via fractional k-conformal
integral operator.) Under the assumptions of Corollary 2, we get

(€f(x))F + (Cg(x))? < K (€(f(x) + g(x)))7, (35)

e

Theorem 3. Let 1 <p < qg<4oo,n>1and f, g >0, such that for all x > a,
o+ J0 f1(x) <00, 4+ Vg7 (x) < oo. If

where

[ 1+ M(m+2) ]
CLm+1)(M+1)

Ead
| S
3 ‘
)
—
w
(=)
~—

Now, we give the second result.

O<m§§§2§M, for all s € [a,z],
then
(a+J$f‘I(x))§ + (Q+Jfgq(x))i > <(m+ DTl 2> [TV 1()] e

(37)
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Proof. Multiplying the inequalities (19) with (21), we get

<a+J$(f(w)+g(:L‘))q(x))3 > (M—i-l]z/;m—i-l) [w-ﬁl(:p)}%

1 1
X <a+J$fp(x)dw>p <a+J$gp(af)dw>p :
hence for p = g we get

(M+1)(m+1)
M . (38)
X <a+.]$fp(m)dx) ? <a+.]$gp(a:)dx)

(T80 @) + @) (@)” >

3=

By applying Minkowski inequality, we get

172 1 172
(0@ +a@r @)’ | < (38 @) + (o aan)”|
(39)
consequently, by setting the inequalities (38) and (39), we obtain

A

(a+3257@)" + (o327 @)" = By (o3P @) (3 @)7 . (@0)

where

Bl_<(m+1§\£fM+l)_2>' (41)

On the other hand, from the inequality (14), we deduce that for 1 < p < ¢ < oo

P—gq 1

> [ 301@)] 7 (30 w)

Q=

(o 3277(@))

and

=

P—gq

(e 397@))" = [0 d02@)]| 7 (o Il0" @)

B =

this gives us

SEIN

(o3 77) "+ (wrdbgi(@) " >
(42

2(2=9) 2 2
[31@] " | (w3t @) 4 (b))
using the inequalities (40) and (42), we obtain the desired inequality (37). O

Corollary 7. Under the assumptions of Theorem 3, we result the following cases.
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1. The reverse Minkowski’s inequality associated with Riemann integral
x 2 T 2 T 1 z 1
q q p p
</ fi(s) d8> + (/ 91(s) ds) > B (/ fP(s) ds) </ fP(s) ds> ,
(43)

B:((m+1)(M+1)—2> - a5 (44)

where

M

2. The reverse Minkowski’s inequality associated with k-Riemann-Liouville in-
tegral

(RLFI(x))1 + (RLg(x))1 > B (RLfP(x))7 (REGP(x))P,  (45)

where

2p—2q

B= <(m+13\(4M+1) —2> [w(x—aﬁ T (4e)

3. The reverse Minkowski’s inequality associated with k-Hadamard integral

(H9(2))1 + (Hg(2))1 > B (Hf(2))7 (Hg" ()7 , (47)
where
(DM +1) 1 e\ E]
B= ( o - 2) [W (1n 5) ] . (48)

4. The reverse Minkowski’s inequality associated with k-Katugompola integral
2 2 1 1
(Kfi(x))e + (Kg(x))e = B (KfP(2))r (Kg*(x))7, (49)

where

—2q

- (20 ) [t () ]

5. The reverse Minkowski’s inequality associated with k-fractional conformal
integral

(€f9(x))1 + (Cg(x))1 > B (Cf7(x))7 (Cg"(x))7 , (51)

where

B ((m+13\(4M+1) 2> [Fk(a1+ . <(g;_9a)e>‘;]pq' )
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Remark 1. The above inequalities are generalizations with two parameters respec-
tively to the inequalities in [10, Theorem 1./, [12, Theorem3.2], [7, Theorem12]
and [9, Theorem 3.

Now we consider that M and N are functions of a variable ¢ € [a, b].
Theorem 4. Let f, g >0, 1<p<qg<+o0, if

f(s)

0<m(t) < 05)

< M(t), for alls,tE€ [a,zx], (53)

then the following inequality yield

(ca27@)" + (00 @)” < Ko (I o) 3
where
= (e = o3t [ [ T

Proof. From the inequality (16) and the hypothesis (53), we get

(wdtr@) o (wato)’ < (L MOMOL2

9—pP

<[ 3010)] ™ (T @) + gl

O @ (@) —p)v(t)
v(z) kT (a)

and we apply the inequality (14), we give us

and by integrating with respect to ¢ on [a, z]

multiplying by v

301 () {((ﬁJffp(x)); + <a+J§,pgp(a:))’1’} <

o3 | DB [wata@] 7 (Bt + o))"

therefore

So, we get the inequality (54).

Putting ¢ = p, we get the following Corollary.
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Corollary 8. Let f, g >0, 1 <p<+o0, if

0<m(t) < f(s) < M(t), for alls,tc€ la,x],

g(s) ~

then the following inequality yield

S =

(a+3207@)" + (-3007@)" < Ko (T2 @) + @)

where

Ko = KE(2) = 10 [ 1+ M(z)(m(x) + 2))} [a y

1
(m(z) + 1)(M(@) £ 1 A

4 Conclusion

This paper presents a novel approach to reverse Minkowski-type inequalities
using the k-weighted fractional integral operator, as well as several related in-
equalities. Our results generalize previously obtained inequalities with two pos-
itive parameters 1 < p < g < 00, in certain special cases, which depend on the
choice of the ¢ function.
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