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NUMERICAL SOLUTION FOR STOCHASTIC MIXED
NONLINEAR SCHRÖDINGER EQUATION

Sabrine ARFAOUI1, Anouar BEN MABROUK∗,2 and Chaouhaid
SOUISSI3

Abstract

In this paper, a numerical study of a mixed nonlinear stochastic Schrödinger
equation in the case of an additive white noise and with mixed concave-
convex, sub-super nonlinearities is developed. The influence of the stochas-
tic part on the deterministic solutions such as stationary states and blow-up
solutions is investigated. Numerical examples are provided with error esti-
mates.
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1 Introduction

In this work, we are interested to the study of a one-dimensional stochastic
nonlinear Schrödinger (NLS) equation with both a sublinear and a superlinear
power law nonlinearities, and an additive noise. The deterministic equation oc-
curs as a basic model in many areas of physics, hydrodynamics, plasma physics,
nonlinear optics, molecular biology, etc. It describes the propagation of waves
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in media with both nonlinear and dispersive responses. The deterministic case
has been widely studied for existence, uniqueness, nodal solutions, phase plane,
non-radially symmetric solutions, as well as the asymptotic problem on the power
laws ([1, 2, 5, 6, 7, 8, 17, 32]).

However, although it is an idealized model, it does not take into account
many aspects such as non-homogeneity, high order terms, thermal fluctuations,
and external forces, which may be modeled as a random excitation (see [18, 19, 24,
25, 28]). Propagation in random media may also be considered. The resulting re-
scaled equation is a random perturbation of the dynamical system of the following
form

i
∂u

∂t
+

∂2u

∂x2
+ |u|p−1u+ α|u|q−1u = εf(t, x) , L1 < x < L2, t > t0,

u(t0, x) = u0(x) , L1 ≤ x ≤ L2,

∂u

∂x
(t, L1) =

∂u

∂x
(t, L2) = 0 , t ≥ t0,

(1)

where u = u(t, x), t ≥ 0, x ∈ R is a complex-valued function, α ∈ R, L1 and L2

are real parameters. The term f(t, x) includes the stochastic contribution. For
an additive noise, f(t, x) = χ̇(t, x) is real-valued, Gaussian, white in time and
either white or correlated in space. In this case, the noise does not depend on the
solution. The size of the noise is controlled by the parameter ε > 0. Finally, the
nonlinearity powers p and q satisfy 0 < q < 1 < p.

Here, we are particularly interested in the influence of a noise acting as a
potential on the behavior of the solution. Such noise has been considered in [26]
where its paths are smooth functions and the nonlinearity is subcritical. The case
of a white noise, considered here, has been introduced in the context of crystals
(see [3, 4] and also [27, 33] for other models). It is expected that such noise has
a strong influence on the solution blow-up. It may delay or even prevent the
formation of a singularity. In [15], some numerical simulations tend to show that
this is the case for a very irregular noise such as a space-time white noise. However,
in the supercritical case and for a space-correlated and non-degenerate noise, it
has been observed that, on the contrary, any solution seems to blow-up in a finite
time. Recall that in the deterministic case, only a restricted class of solutions
blows up. Our aim is to prove rigorously such a behavior. It is mathematically
very difficult to consider space-time white noises due to the lack of smoothing
effect in the Schrödinger equation. Thus, we restrict our attention to the study
of correlated noise.

The case of an additive noise has been considered in [9, 10], where it has been
proved that for any initial data, blow-up occurs in the sense that, for arbitrary
t > 0, the probability that the solution blows up before the time t is strictly
positive. Thus, the noise strongly influences this blow-up phenomenon. This
result is in perfect agreement with the numerical simulations. The argument is
based on three ingredients: first, we generalize the deterministic argument to
prove that blow-up occurs for some initial data: this is based on a stochastic
version of the variance identity (see [31, 34]). Then, we use the fact that the
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NLS equation is controllable by a forcing term. Thus, any initial data can be
transformed into a state which yields a singular solution. Finally, since the noise
is non-degenerate and the solution depends continuously on the path of the noise,
we can argue that, with positive probability, the noise will be close to the control
so that blow-up will happen afterward.

The paper is organized as follows: In section 2, we formulate the discrete prob-
lem associated to the continuous one revised in (1). Discrete derivatives as well
as discrete functional space framework are introduced. Section 3 is concerned to
the solvability of the discrete problem. Standard calculus and matrix spaces are
applied to reach our aim. Section 4 is devoted to the proof of convergence of the
discrete method. It is proved to be convergent of order 2 in both time and space.
In section 5, consistency and stability are investigated by applying local trunca-
tion error method for the consistency and Lax-Richtmyer concept for stability.
Section 6 is devoted to the implementation of some numerical simulations due to
the theoretical results provided in the eventual discussions and interpretations.
Finally, we conclude in section 7.

2 The discrete stochastic Schrödinger equation

In the present work, we will apply noises having their paths in H1 as used in
[9] when studying the influence of a noise on the formation of singularities and in
[11] to give a numerical discretization of a similar problem to (1).

Taking into account these facts, the system (1) will be rewritten on the form
i
∂u

∂t
+

∂2u

dx2
+ |u|p−1u+ α|u|q−1u = εχ̇ , L1 < x < L2, t > t0,

u(t0, x) = u0(x) , L1 ≤ x ≤ L2

∂u

∂x
(t, L1) =

∂u

∂x
(t, L2) = 0 , t ≥ t0.

(2)

Consider a time step l = δt and denote

tk = t0 + kl , k ∈ N.

Fix next an integer N and consider a space step

h = δx =
L2 − L1

N + 1
.

We subdivide the interval [L1, L2] into subintervals [xm, xm+1] where

xm = L0 +mh , m = 0, ..., N + 1.

Consider also positive parameters λi and µi, i = 1, 2, 3, such that

λ1 + λ2 + λ3 = µ1 + µ2 + µ3 = 1.
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These parameters play the role of calibrators for the discrete derivatives to be
introduced later. Denote next ukm the approximation of u(tk, xm) and Uk

m the
numerical solution of (2). We introduce the following notations

∂k
mU =

Uk+1
m − Uk−1

m

2l
and

∂Uk
m

∂t
= λ1∂

k
m−1U + λ2∂

k
mU + λ3∂

k
m+1U,

for the time derivatives, and

∂Uk
m

∂x
=

Uk
m+1 − Uk

m−1

2h
and ∆m

k U =
Uk
m+1 − 2Uk

m + Uk
m−1

h2
,

and
∂2Uk

m

∂x2
= µ1∆

m
k+1U + µ2∆

m
k U + µ3∆

m
k−1U,

for the space derivatives. Denote next

gp(u) = |u|p−1u , gq(u) = α|u|q−1u,

and g(u) = gp(u) + gq(u). We discretize problem (1) as

i
∂Uk

m

∂t
+

∂2Uk
m

∂x2
+ g(Uk

m) = εf
k+ 1

2
m , (3)

where

f
k+ 1

2
m =

ε√
hl

χ
k+ 1

2
m

is an additive noise, with (χ
k+ 1

2
m )k≥0, m = 0, . . . , N + 1 being sequences of inde-

pendent random variables with normal law N(0, 1).
The numerical problem is considered under the initial data

U0
m = u(t0, xm) = u0(xm),

U1
m = U0

m + il(u′′0(xm) + g(u0(xm))),
0 ≤ m ≤ N + 1,

(4)

and the boundary conditions

Uk
−1 = Uk

1 and Uk
N+2 = Uk

N , ∀k. (5)

The nonlinear part g(u) will be approximated by

g(Uk
m) =

1

2

[
g̃(Uk

m + Uk−1
m ) + gq(U

k
m) + gq(U

k−1
m )

]
,

where g̃ = max
m

|U0
m|p−1. Next, denote

a1 = µ1σ + iλ1, b1 = b3 = −µ2σ,
a2 = −2µ1σ + iλ2, b2 = 2µ2σ − g̃l,
a3 = µ1σ + iλ3, c1 = −µ3σ + iλ1,
c2 = 2µ3σ − g̃l + iλ2, c3 = −µ3σ + iλ3,
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where σ =
2l

h2
. We obtain, for 1 ≤ m ≤ N , and k ≥ 0,



a1U
k+1
m−1 + a2U

k+1
m + a3U

k+1
m+1 = b1U

k
m−1 + b2U

k
m + b3U

k
m+1

+c1U
k−1
m−1 + c2U

k−1
m + c3U

k−1
m+1 +Hk

m + F k
m,

a2U
k+1
0 + (a1 + a3)U

k+1
1 = b2U

k
0 + (b1 + b3)U

k
1

+c2U
k−1
0 + (c1 + c3)U

k−1
1 +Hk

0 + F k
0 ,

(a1 + a3)U
k+1
N + a2U

k+1
N+1 = (b1 + b3)U

k
N + b2U

k
N+1

+(c1 + c3)U
k−1
N + c2U

k−1
N+1 +Hk

N + F k
N ,

(6)

where

Hk
m = −l(gq(U

k
m) + gq(U

k−1
m )), and F k

m = −2lfk+1/2
m .

Recall now the net function ukm = u(tk, xm), 0 ≤ m ≤ N + 1, and k ≥ 0. By
Taylor expansion, we find

i
∂ukm
∂t

=
∂2ukm
∂x2

+ g(ukm) +Rk
m , 0 ≤ m ≤ N + 1 , k ≥ 0,

u0m = u0(xm) , 0 ≤ m ≤ N + 1,

u1m = u0(xm) + k
(
u′′0(xm) + g(u0(xm))

)
+ Sm , 0 ≤ m ≤ N + 1,

(7)

where Rk
m and Sm are the truncation errors, which satisfy

|Rk
m| ≤ c1(h

2 + k2), and |Sm| ≤ c1(h
2 + k2) , 0 ≤ m ≤ N + 1 , k ≥ 0, (8)

for some constant c1 > 0. Letting ekm = ukm−Uk
m, it follows from (6) and (7) that i

∂ekm
∂t

=
∂2ekm
∂x2

+ g(ukm)− g(Uk
m) +Rk

m , 0 ≤ m ≤ N + 1 , k ≥ 0,

e0m = 0 , e1m = Sm , 0 ≤ m ≤ N + 1.
(9)

To tackle our problem, we introduce the functional space settings. Define the set
Ωh = {xm ; 0 ≤ m ≤ N + 1}, and the space Wh of functions defined on Ωh. For
v ∈ Wh, we denote vm = v(xm). The discrete inner product and the discrete
L2-norm on Wh will be, respectively,

(u, v)h = h

N+1∑
m=0

umvm, and ||v||2 = (v, v)
1/2
h =

[
h

N+1∑
m=0

|vm|2
]1/2

.

3 Solvability of the discrete problem

From equation (6), we obtain the following matrix system

AUk+1 = BUk + CUk−1 +Hk + F k, (10)
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where F is the white noise vector, and A,B and C are the matrices defined by

A =



a2 a1 + a3 0 · · · · · · 0

a1 a2 a3
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . a1 a2 a3

0 · · · · · · 0 a1 + a3 a3


,

B =



b2 b1 b3 0 · · · · · · 0

b1 b2 b3
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . b1 b2 b3

0 · · · · · · 0 b1 + b3 b2


,

C =



c2 c1 + c3 0 · · · · · · 0

c1 c2 c3
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . c1 c2 c3

0 · · · · · · 0 c1 + c3 c2


,

and where

Hk =
(
Hk

0 , . . . , H
k
m, . . . , Hk

N+1

)T
,

and

F k =
(
F k
0 , . . . , F

k
m, . . . , F k

N+1

)T
,

where the upper-script T stands for the transpose.
In order to prove the solvability of the discrete problem (6), we have to calcu-

late the determinant of the matrix A. This is based on techniques developed in
[20, 21, 22, 23] and treating the invertibility of a general tri-diagonal matrix. We
recall the basic result in what follows

Lemma 1. [20, 21, 22, 23] For n ∈ N, consider a real-valued n× n-matrix

A =



d1 a1 0 . . . . . . 0
b2 d2 a2 . . . . . . 0
0 b3 d3 a3 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . bn−1 dn−1 an−1

0 0 . . . 0 bn dn


,
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and define the vector α = (α0, α1, . . . αn) by

αi =


1 if i = 0,
d1 if i = 1,
diαi−1 − biai−1αi−2 if i = 2, 3, . . . , n.

Then, det(A) = αn.

Now, we are able to state the main result of this section

Theorem 1. The discrete problem (6) is uniquely solvable.

Proof. Taking in Lemma 1, n = N+2, and αn = DetN+2(A) the determinant
of the matrix A of our discrete problem (6), we get

DetN+2(A)− a2DetN+1(A) + a3(a1 + a3)DetN (A) = 0. (11)

The characteristic equation associated to (11) is

λ2 − a2λ+ a3(a1 + a2) = 0.

Its determinant is

∆N+2 = −4µ2
1σ

2 − λ2
2 + 4λ1λ3 + 4λ2

3 − 4µ1σ
2i(1 + 2λ3).

We now split the proof into cases.

Case 1. µ1 = 0, λ2 ∈]0, 2(
√
2 − 1)[, λ1 ∈]0, 1[, and λ3 =

λ2
2

4(1− λ2)
: In this case,

we obtain ∆N+2 = 0, and the characteristic equation (11) has a double solution
λ = iλ2. Simple computation yields that

DetN+2(A) = (iλ2)
N+2 ̸= 0.

Case 2. µ1 = 0, λ2 ∈]0, 2(
√
2 − 1)[, λ1 ∈]0, 1[ and λ3 <

λ2
2

4(1− λ2)
. We get a

determinant ∆N+2 = −ω2
0 < 0, with ω0 ∈ (0,∞). In this case, we obtain two

different complex roots for the characteristic equation (11),

r1 =
a2 + iω0

2
, and r2 =

a2 − iω0

2
,

which yields that

DetN+2(A) = −i
rN+3
1 − rN+3

2

ω0
̸= 0.

Case 3. µ1 = 0, λ2 ∈]0, 2(
√
2 − 1)[, λ1 ∈]0, 1[, and λ3 >

λ2
2

4(1− λ2)
. We get a

determinant ∆N+2 = ω2
0 > 0, with ω0 ∈ (0,∞). In this case, we obtain two

different real number roots for the characteristic equation (11),

r1 =
a2 + ω0

2
, and r2 =

a2 − ω0

2
,
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which yields that

DetN+2(A) =
rN+3
1 − rN+3

2

ω0
̸= 0.

Case 4. µ1 = 0, λ2 ∈ [2(
√
2− 1), 1[, λ1, λ3 ∈]0, 1[: In this case,

λ3 <
λ2
2

4(1− λ2)
.

Therefore, we obtain

∆ = 4(1− λ2)(λ3 −
λ2
2

4(1− λ2)
) = −ω2

0 < 0.

with ω0 ∈ (0,∞). There are in this case two complex roots

r1 = i
λ2 − ω0

2
, and r2 = i

λ2 + ω0

2
,

for the characteristic equation (11). Standard computations yield that

DetN+2(A) =

[(λ2 − ω0

2
)N+3 − (

λ2 − ω0

2
)N+3

]
iN+2

ω0
̸= 0.

Case 5. µ1 ̸= 0: Let in this case ω0 ∈ C⋆ be such that ∆N+2 = −ω2
0. Let also

r1 =
a2 + iω0

2
, and r2 =

a2 − iω0

2

be the complex roots of the characteristics equation (11). We easily obtain

DetN+2(A) =
rN+3
2 − rN+3

1

ω0
i ̸= 0.

From all the cases above, we conclude that the matrix A is invertible. It follows
that the problem (10) has a unique solution.

4 Convergence of the discrete problem

The main result of this section is to prove the convergence of the difference
scheme. We will prove precisely that the method is unconditionally convergent
with order 2 in both time and space.

Theorem 2. Let u and Uk be the solutions of (2) and (6), respectively. Assume
further that u is sufficiently regular. Then, for h, l small enough, we have

∥Uk − uk∥2 ≤ C(h2 + l2),

where uk = u(tk, .), and C > 0 is a constant independent of h and l.
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Proof. The proof reposes on the recurrence rude. We deduce from (8)-(9)
that

∥e0∥2 ≤ C(h2 + l2), and ∥e1∥2 ≤ C(h2 + l2).

So, suppose that this occurs for all l ≤ k, that is

∥elm∥2 ≤ C(h2 + l2), ∀l ≤ k. (12)

Denote

ẽkm =
ek+1
m + ek−1

m

2l
.

Using (9), we obtain

i(
∂ek

∂t
, ẽk)h = (

∂2ẽk

∂X2
, ẽk)h + (g(uk)− g(Uk), ẽk)h + (Rk, ẽk)h. (13)

We will examine now each term of the above equality. We have, for all k,m,

∂ekm
∂t

ẽkm =
1

4l

[
|ek+1

m |2 + 2iIm(ek+1
m ek−1

m )− |ek−1
m |2

]
. (14)

Similarly, we have

∂2ekm
∂x2

ẽkm = µ1
ek+1
m+1 − 2ek+1

m + ek+1
m−1

h2
ẽkm + µ2

ekm+1 − 2ekm + ekm−1

h2
ẽkm

+µ3
ek−1
m+1 − 2ek−1

m + ek−1
m−1

h2
ẽkm.

Denote I1m,k, I
2
m,k and I3m,k, respectively, the first, the second, and the third right-

hand terms of the last equality. It results that

I1m,k =
µ1

2h2
(ek+1

m+1e
k+1
m + ek+1

m+1e
k−1
m − 2|ek+1

m |2

−2ek+1
m ek−1

m + ek+1
m−1e

k+1
m + ek+1

m−1e
k−1
m ).

(15)

Similarly,

I2m,k =
µ2

h2
(ekm+1e

k+1
m + ekm+1e

k−1
m − 2ekmek+1

m

−2ekmek−1
m + ekm−1e

k+1
m + ekm−1e

k−1
m ).

(16)

Finally, for the third part, we get

I3m,k =
µ3

h2
(ek−1

m+1e
k+1
m + ek−1

m+1e
k−1
m − 2ek−1

m ek+1
m

−2|ek−1
m |2 + ek−1

m−1e
k+1
m + ek−1

m−1e
k−1
m ).

(17)

For the nonlinear part, denote

Xk
m = (g(ukm)− g(Uk

m))ẽkm,

and
Y k
m = (gq(u

k
m)− gq(U

k
m))ẽkm.
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Since p > 1, the function gp is locally Lypschitz continuous. Hence,

|gp(ukm)− gp(U
k
m)| ≤ C|ekm|,

for some constant C independent of k,m. Consequently,

|Xk
m| ≤ 1

2

∣∣(gp(ukm)− gp(U
k
m))ek+1

m

∣∣+ 1

2

∣∣(gp(ukm)− gp(U
k
m))ek−1

m

∣∣
≤ C1

(
|ekmek+1

m |+ |ekmek−1
m |

)
,

for some constant C1 independent of k,m. Similarly, using the fact that the
function gq is locally q-Hölder continuous, we get

|Y k
m| ≤ CAk(|ek+1

m |2 + |ek−1
m |2),

where Ak = ∥ek∥q2 + ∥ek−1∥q2. As a result, we obtain

|(g(ukm)− g(Uk
m))ẽkm| ≤ C

(
|ekmek+1

m |+ |ekmek−1
m |

+Ak(q)(|ek+1
m |2 + |ek−1

m |2)
)
.

(18)

Denote
φ1,k(l, h) = 2lC1 + 4lAk + (3 + 5µ1)

σ

2
,

φ2,k(l, h) = 4(µ2σ + lC1),
φ3,k(l, h) = 2lC1 + 4lAk + (2 + 2µ3)σ.

Taking the real and imaginary parts in (13), and taking into account (14)-(18),
we obtain

(1− φ1,k(l, h))∥ek+1∥22 ≤ φ2,k(l, h))∥ek∥22 + (1 + φ3,k(l, h))∥ek+1∥22. (19)

Using the recurrence hypothesis (12), we immediately decuce that

∥ek+1∥2 ≤ C, (20)

where C is independent of the time index k.

5 Consistency and stability of the method

The present section is twofold. We propose to investigate firstly the consis-
tency of the discrete method developed above using the so-called local truncation
error. The second part will be devoted to the stability of the numerical scheme.

Lemma 2. The following assertions hold.

� For λ1 ̸= λ3, µ1 ̸= µ3, and l = o(h4+η) for η > 0 small enough, the
numerical scheme is consistent with order (h2 + l2).

� For λ1 ̸= λ3, µ1 = µ3, and l = o(h2+η) for η > 0 small enough, the
numerical scheme is consistent with order (h2 + l2).
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� For λ1 = λ3, µ1 = µ3, and l = o(h1+η) for η > 0 small enough, the
numerical scheme is consistent with order (h2 + l2).

Proof. The principal part of the local truncation error of the method arising
from the scheme (3) is given by

Lu(t, x) = ih
∂2u

∂t∂x
(λ3 − λ1) + l(µ1 − µ3)

(
2

h2
∂u

∂t
+

∂3u

∂x2∂t

)
+l2

(
1

h2
(µ1 + µ3)

∂2u

∂t2
+

1

6

∂3u

∂t3

)
+ h2

(
i

2
(λ1 + λ3)

∂3u

∂x2∂t
+

1

24

∂4u

∂x4

)
+o(l2 + h2).

(21)

It is clear that Lu tend toward 0 as l and h tend to 0, which ensures the consistency
of the method. Furthermore, the method may be always consistent with an order
2 in time and space by setting l = o(h4+η) for η > 0 small enough. Moreover, this
shows the utility of the calibrating barycenter parameters λi and µi, for i = 1, 2, 3)
which permits effectively to minimize the numerical error and to regulate the order
of consistency. A special case may be obtained by following [12, 13] and [14] where
the authors considered{

λ1 = λ3 = λ ∈ ]0, 1[,
λ2 = 1− 2λ ∈ ]0, 1[

and

{
µ1 = µ3 = µ ∈ ]0, 1[,
µ2 = 1− 2µ ∈ ]0, 1[.

We obtain in this case,

Lu(t, x) = l2
(
2µ

h2
∂2u

∂2t
+

1

6

∂3u

∂t3

)
+ h2

(
iλ

∂3u

∂x2∂t
+

1

24

∂4u

∂x4

)
+ o(l2 + h2).

This particular case makes that the scheme is consistent just when taking the
assumption l = o(h1+η), and not necessarily l = o(h2) as in the general cases. This
is due to the fact that the second term of the summation in the right hand of the
formula (21), which was in the origin of the assumption (l = o(h2)), is simplified
as µ1 = µ3. A particular numerical example will be treated and presented in the
next section.

Now, we move to the study of the stability of this method. We will ap-
ply the well known Lyapunov criterion of stability, which states that a system
Φ(Xk, Xk−1, . . . , X0) = 0 is stable if for any bounded initial solution X0 the so-
lution Xk remains bounded, for all k ≥ 0. We have in our case the following
result.

Lemma 3. Pk: The solution Uk is bounded independently of the time index k
whenever the initial solution U0 is bounded.

Proof. The proof follows similar techniques as in the case of the convergence
treated in section 4 (Theorem 2) by applying the induction rule on k for problem
(10). Indeed, using equation (10), we obtain, for all k,

∥Uk+1∥ ≤ ∥A−1B∥.∥Uk∥+ ∥A−1C∥.∥Uk−1∥+ ∥A−1Hk∥+ ∥A−1F k∥. (22)
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Next, recall that, for l = o(h4+η) small enough, we obtain the uniform limits

A −→ iIλ, B −→ 0, and C −→ iIλ,

whenever l, h → 0, where

Iλ = i



λ1 + λ2 λ3 0 · · · · · · 0

λ1 λ2 λ3
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . λ1 λ2 λ3

0 · · · · · · 0 λ1 λ2 + λ3


.

As a consequence, for l, h small enough,

∥A−1∥, ∥A−1C∥, ∥A−1B∥ ≤ Cλ, (23)

for some constant Cλ = C(λ1, λ2, λ3) > 0. As a result, (22) yields that

∥Uk+1∥ ≤ Cλ

(
∥Uk∥+ ∥Uk−1∥+ ∥Hk∥+ ∥F k∥

)
. (24)

Now, using the recurrence method the result is immediate.

Remark 1. The last result on stability may induce another proof of the conver-
gence of the numerical scheme by using the well-known Lax-Richtmayer equiva-
lence theorem, which states that for consistent numerical approximations, stability
and convergence are equivalent. Recall here that we have already proved that the
numerical scheme is consistent.

6 Numerical implementations

We want to investigate the noise effects on stationary solutions in different
cases. As mentioned in the introduction, stationary waves play an important role
in physics, while the effect of white noise on propagation in not well-known. Noise
effects on solitary waves have already been studied for the NLS equation, and for
the Korteweg-de-Vries equation (see [15, 16, 29, 30]). One of the famous classes of
NLS solution in the deterministic case is the so-called single-soliton-type solutions
for which u(t, x) is given by

u(t, x) =

√
2a

qs
exp(i(

1

2
cx− θt+ φ))sech(

√
a(x− ct) + ϕ),

where a, qs, θ, c, φ, and ϕ are some appropriate constants. For fixed t, this function
decays exponentially as |x| → ∞, and is considered as a soliton-type disturbance
traveling with a speed c, and with a governed amplitude. In the cubic NLS

equation, we have the restriction θ =
c2

4
− a.
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In a first example, and in order to compare with existing studies, such as
[12, 13, 14], we chose the following parameters

λ1 = λ3 = λ =
1

5
, and µ1 = µ3 = µ =

1

3
.

In a second general example, we take different values for the parameters λi, and
µi, 1 ≤ i ≤ 3, such as

λ1 = 0.29 , λ2 = 0.38 , λ3 = 0.33,

and
µ1 = 0.25 , µ2 = 0.45 , µ3 = 0.3.

In the both studied cases, the presented simulations of equation (2) are given
considering an additive noise. In the numerical scheme (3), the computations are
done for −80 ≤ x ≤ 100 with a space step h = 1, and for 0 ≤ t ≤ 10, with a time
step l = 0.01. We fix also the soliton parameters a = 0.01, qs = 1, and c = 0.1,
and the phase parameters ϕ = φ = 0. Finally, we consider the parameters of the
nonlinearity q = 0.73, and p = 1.5.

For small amplitudes of the noise, corresponding to small values of the param-
eter ε, we may see that the solitary wave is not strongly perturbed and the noise
does not prevent its propagation. This is clearly expressed in the particular case

where λ1 = λ3 = λ =
1

5
, and µ1 = µ3 = µ =

1

3
by Figure 1 (e,f,g). It is also

confirmed, in the more general case, where λ1 ̸= λ3, and µ1 ̸= µ3, by Figure 3
(b,c,d). However, from Figure 1 (c,d,e), we notice that as the noise level becomes
higher, the wave is progressively destroyed. We remark the same behavior in the
general case, especially in Figure 2 (c,d,e), and Figure 3-a. For the deterministic
case, corresponding to ε = 0, and physically interpreted by the absence of noise,
the solution of the problem is given, in the first case by Figure 1-h, and in the
second one by Figure 3-j. It represents the stationary wave.

Now, in both cases, taking the amplitude of the noise ε ≥ 0.3, it is clearly seen
that the wave explodes under the influence of the additive noise. The phenomenon
appears respectively in Figure 1 (a,b and slightly c) for the particular case where
λ1 = λ3, and µ1 = µ3, and in Figure 2 (a,b and slightly c) for the more general
case where λ1 ̸= λ3, and µ1 ̸= µ3.

In the next, we will look at the general case. Being interested in the right
side of Figures 2 and 3, we can see that the infinite norm of u presents many
observable peaks. As we decrease the value of ε, the amplitude of the noise
decreases consequently and its influence on the deterministic solution disappears
progressively. That is why the blow-up phenomenon appears less and less, and
so are the peaks. More precisely, we can remark that the soliton wave starts to
appear with small perturbations of the deterministic equation, corresponding to
weak values of the parameter ε. As examples, we can cite ε = 0.04, ε = 0.02 and
ε = 0.01 respectively in Figures 3-b,c,d.

Finally, taking ε = 0 in Figure 3-e, we can say that we did proceed to a
simulation of the solution in the deterministic case and the infinite norm’s figure
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tends to a linear shape. We can say that we did start with a blow-up phenomenon
to convert it into a soliton wave, also we did straightening the infinite norm of
the solution. Looking at the effect of noise on one trajectory, we show, in Figure
4, the profiles of the solution with additive noise at a final computation time for
several values of ε. We see that in any case the profile has the same shape as
the solitary wave and has been diffused and damped. In some cases, we see in
Figure 4 that the noise effect is really strong and the wave has been completely
destroyed.
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Figure 1: Plots of (t, x, |u(t, x)|) for λ1 = λ3 = λ =
1

5
and µ1 = µ3 = µ =

1

3
, (a)

ε = 0.45, (b) ε = 0.35, (c) ε = 0.25, (d) ε = 0.15, (e) ε = 0.1, (f) ε = 0.05, (g)
ε = 0.04, (h) ε = 0.
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Figure 2: Left: (t, x, |u(t, x)|), (a) ε = 0.45, (b) ε = 0.35, (c) ε = 0.3, (d) ε = 0.25,
(e) ε = 0.15, Right: ∥u∥∞ = f(ε).
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Figure 3: Left: (t, x, |u(t, x)|), (a) ε = 0.1, (b) ε = 0.04, (c) ε = 0.02, (d) ε = 0.01,
(e) ε = 0. Right: ∥u∥∞ = f(ε).
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Figure 4: (x, |u(t, x)|) for t fixed (one trajectory), (a) ε = 0.45, (b) ε = 0.35, (c)
ε = 0.3, (d) ε = 0.25, (e) ε = 0.15, (f) ε = 0.1, (g) ε = 0.04, (h) ε = 0.02, (i)
ε = 0.01, (j) ε = 0.
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7 Conclusion

It is noted that the stochastic nonlinear equation (1) can be considered as a
white noise random perturbation of the deterministic equation defined by (ε = 0).
Such a perturbation occurs when the size of the noise, described by the real-value
parameter ε, is positive. We proved, in this work, that as ε → 0, the solution of the
perturbed case converges to the unique trajectory of the deterministic equation.
Then, we may conclude that the stochastic model would be more realistic, and
we thus observe a similar evolution phenomena about the solution as that given
by the deterministic case. We propose in future directions to investigate the case
where the noise depends on the solution u, and also the case of other types of
noise such as the multiplicative case, correlated noises, and so on.
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