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EXISTENCE AND STABILITY OF SOLUTIONS FOR FUZZY
FRACTIONAL MULTI-PANTOGRAPH DIFFERENTIAL

EQUATIONS WITH ψ-CAPUTO DERIVATIVE
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Abstract

In the current work, we examine a novel type of fuzzy fractional multi-
pantograph differential equations involving ψ-Caputo derivative. Firstly, we
establish the existence result by using Schaefer fixed point theorem and then
the uniqueness is proved by using Banach fixed point theorem. Secondly, with
aid of generalized Grönwall inequality, we investigative the Ulam–Hyers–Mittag-
Leffler stability of solution for the problem under consideration. Lately, two
examples are provided to illustrate the theoretical results.
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1 Introduction

In the realm of mathematical modeling and differential equations, the study of
fuzzy fractional multi-pantograph differential equations has emerged as a power-
ful and innovative approach. This specialized field brings together concepts from
fuzzy logic, fractional calculus, and multi-pantograph differential equations to ad-
dress the complexities of real-world problems where uncertainty, multiple factors,
and non-integer order dynamics coexist.
Fuzzy logic [32], with its capacity to handle imprecise and uncertain information,
provides a foundation for understanding problems in which conventional mathe-
matics falls short. Fractional calculus, on the other hand, extends the traditional
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notion of derivatives and integrals to non-integer orders, enabling the modeling
of phenomena with memory, hereditary properties, and fractal behavior. In this
context, the ψ-Caputo derivative [5] further enhances the flexibility of fractional
calculus by introducing a modifying function ψ that adapts the derivative to the
specific characteristics of the problem under consideration.
Multi-pantograph differential equations, distinguished by their inclusion of mul-
tiple delayed terms with distinct time scales, are particularly suited for describ-
ing complex problems where various factors interact with differing intensities.
These equations offer a rich framework for exploring how various components
influence the rate of change of a variable. Recently, the theory of fractional
pantograph differential equations have been the subject of important studies,
then many scientists extended these equations into new forms and presented
the solvability aspect of those problems both numerically and theoretically, see
[11, 29, 6, 30, 18, 19, 3, 21, 27, 24, 12, 1]. Agilan et al. [2] studies the existence of
solutions of the non-linear fuzzy fractional panto-graph equations using fixed point
technique. Bica et al. [16] have used a numerical method based on an iterative
algorithm to obtain the approximate solution of pantograph type fuzzy Volterra
integral equation. In [26, 20] the authors used the homotopy analysis method to
solve the fuzzy pantograph equation in approximate analytic form. Furthermore,
several scientists [13, 3, 14, 4, 15] used various fractional derivatives to investigate
the existence and Ulam-Hyers stability. What’s more, Derbazi et al. [17] studied
the existence and uniqueness of solution for initial value problem of fractional
differential equations. Also, Wang et al. [31] studied the existence and stability
of solutions of Caputo type FFDEs with time-delays. They established existence
results by Schauder’s fixed point theorem and a hypothetical condition. Also they
showed the uniqueness of the solution by using Banach contraction principle. In
addition, with aid of generalized Grönwall inequality the Ulam-Hyers stability are
discussed. Arhrrabi et al. [7, 8, 9, 10, ?, ?, ?, ?, ?, 23] studied different types
of fuzzy stochastic and fuzzy fractional differential equations. To the best of our
knowledge, no results have been published on the existence of solutions for fuzzy
fractional multi-pantograph differential equations with ψ-Caputo derivatives. As
a consequence, we want to fill the gap in the literature and advance this field of
study.
Here, we are concerned with a novel class of fuzzy fractional multi-pantograph
differential equations with ψ-Caputo derivative that are motivated by the afore-
mentioned studies: D

q;ψ
0+

z(u) = f
(
u, z(u), z(λ1u), z(λ2u)

)
, u ∈ I := [0,M ],

z(0) = z0,

(1)

where λ1, λ2 ∈ (0, 1), Dq;ψ
0+

is the ψ-Caputo fractional derivative of order q ∈ (0, 1)
and f : I×E1 ×E1 ×E1 −→ E1 is continuous fuzzy function.
The format of this paper is as follows. The background information and pre-
liminary materials needed for our investigation are provided in Section 2. The
existence and uniqueness results of problem under consideration are given in Sec-
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tion 3. Afterwards, in Section 4 Ulam–Hyers–Mittag-Leffler stability result of (1)
is established via generalized Grönwall inequality. Section 5 includes two exam-
ples to demonstrate the usefulness of our findings. The last section is where you
come to a conclusion.

2 Preliminaries

The definitions and propositions that are utilized throughout this paper will
be introduced in this part.

Definition 1. [31] The set of fuzzy subsets of R is denoted by E1 := {Υ : R −→
[0, 1]} which satisfies:

(i) Υ is upper semi-continuous on R,

(ii) Υ is fuzzy convex, i.e, for 0 ≤ λ ≤ 1

Υ
(
λz1 + (1− λ)z2

)
≥ min {Υ(z1),Υ(z2)} , ∀z1, z2 ∈ R,

(iii) [Υ]0 = {z ∈ R : Υ(z) > 0} is compact,

(iv) Υ is normal, i.e, ∃z0 ∈ R such that Υ(z0) = 1.

Remark 1. E1 is called the space of fuzzy number.

Definition 2. [31] The p-level set of Υ ∈ E1 is defined by:
For p ∈ (0, 1], we have [Υ]p = {z ∈ R|Υ(z) ≥ p} and for p = 0 we have [Υ]0 =
{z ∈ R|Υ(z) > 0}.

Remark 2. From Definition 1, it follows that the p-level set [Υ]p of Υ, is a
nonempty compact interval and [Υ]p = [Υ(p),Υ(p)]. Moreover, len([Υ]p) =
diam([Υ]p) = Υ(p) − Υ(p), where the parametric form [Υ]p = [Υ(p),Υ(p)] is the
p-level set of Υ. Υ,Υ are called the left and right end points of [Υ]p, respectively.

Definition 3. [31] For addition and scalar multiplication in fuzzy set space E1,
we have

[Υ1 +Υ2]
p = [Υ1]

p + [Υ2]
p = {z1 + z2 | z1 ∈ [Υ1]

p, z2 ∈ [Υ2]
p},

and
[αΥ]p = α[Υ]p = {αz | z ∈ [Υ]p},

for all p ∈ [0, 1].

Definition 4. [31] The Hausdorff distance is given by

D∞
(
Υ1,Υ2

)
= sup

0≤p≤1

{
|Υ1(p)−Υ2(p)|, |Υ1(p)−Υ2(p)|

}
,

= sup
0≤p≤1

DH

(
[Υ1]

p, [Υ2]
p
)
.
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Remark 3. Note that E1 is complete metric space with the above definition (see
[31, 32]) and we have the following properties of D∞:

D∞
(
Υ1 +Υ3,Υ2 +Υ3

)
= D∞

(
Υ1,Υ2

)
,

D∞
(
λΥ1, λΥ2

)
= |λ|D∞

(
Υ1,Υ2

)
,

D∞
(
Υ1,Υ2

)
≤ D∞

(
Υ1,Υ3

)
+D∞

(
Υ3,Υ2

)
,

for all Υ1,Υ2,Υ3 ∈ E1 and λ ∈ R.

Definition 5. [31] Let Υ1, Υ2 ∈ E1, if there exists Υ3 ∈ E1 such that Υ1 =
Υ2+Υ3, then Υ3 is called the Hukuhara difference of Υ1 and Υ2 noted by Υ1⊖Υ2.

Definition 6. [28] The generalized Hukuhara difference (gH-difference) of Υ1,Υ2 ∈
E1 is defined as follows:

Υ1 ⊖gH Υ2 = Υ3 ⇔


(i) Υ1 = Υ2 +Υ3, if len([Υ1]

p) ≥ len([Υ2]
p).

(ii) Υ2 = Υ1 + (−1)Υ3, if len([Υ2]
p) ≥ len([Υ1]

p).

Definition 7. [31] Let a fuzzy function Υ : [a, b] −→ E1. If for every p ∈ [0, 1],
the function u 7−→ len[Υ(u)]p is increasing (decreasing) on [a, b], then Υ is called
d-increasing (d-decreasing) on [a, b].

Remark 4. If Υ is d-increasing or d-decreasing, then we say that Υ is d-monotone
on [a, b].

Remark 5. The last definition is equivalent to [Υ]p ⊆ [Ψ]p ([Υ]p ⊇ [Ψ]p), for all
p ∈ [0, 1].

Notation:
• C

(
[c, d],E1

)
denote the set of all continuous fuzzy functions.

• AC
(
[c, d],E1

)
denote the set of all absolutely continuous fuzzy functions on

[c, d] with value in E1.
• Cq;ψ

(
[c, d],E1

)
denote the weighted space of the fuzzy function z on [c, d] defined

by

Cq;ψ
(
[c, d],E1

)
=

{
z : [c, d] −→ E1,

(
(ψ(u)− ψ(c))

)q
z(u) ∈ C

(
[c, d],E1

)}
.

Definition 8. [28] The ψ-Riemann-Liouville fractional integral of order q > 0 of
function z ∈ E1 on [c, d] with respect to the non-decreasing differentiable function
ψ : [c, d] −→ R+ with ψ

′
(u) ̸= 0 is defined by

I
q;ψ
c+ z(u) =

1

Γ(q)

∫ u

c
ψ

′
(v)

(
ψ(u)− ψ(v)

)q−1
z(v)dv,
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Definition 9. [28] Let z ∈ Cn
(
[c, d],E1

)
and ψ ∈ Cn

(
[c, d],R+

)
be two functions

such that ψ is non-decreasing with ψ
′
(u) ̸= 0 for all u ∈ [c, d]. The ψ-Caputo

fractional derivative of order q > 0 of a continuous function z is given by

D
q;ψ
c+ z(u) := I

n−q;ψ
c+

(
1

ψ′(v)

d

du

)n
z(u),

where n = [q] + 1 for q /∈ N and q = n for q ∈ N.

Definition 10. A d-monotone fuzzy function z(·) ∈ C
(
I,E1

)
is a solution of the

problem (1) if and only if z(·) satisfies

z(u)⊖gH z0 =
1

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv, (2)

and u 7→ I
q;ψ
0+

f
(
u, z(u), z(λ1u), z(λ2u)

)
is d-increasing on I.

Remark 6. • If z(·) ∈ C
(
I,E1

)
is d-increasing, then (2) becomes

z(u) = z0 +
1

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv. (3)

• If z(·) ∈ C
(
I,E1

)
is d-decreasing, then (2) becomes

z(u) = z0 ⊖
(−1)

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv. (4)

Remark 7. • Let ψ(u) = u, then the equation (2) becomes the following Rie-
mann–Liouville fuzzy pantograph fractional integral equations

z(u)⊖gH z0 =
1

Γ(q)

∫ u

0

(
u− v

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv.

• Let ψ(u) = uρ, then the equation (2) becomes the following Katugampola fuzzy
pantograph fractional integral equations

z(u)⊖gH z0 =
ρ1−q

Γ(q)

∫ u

0
vρ−1

(
uρ − vρ

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv.

• Let ψ(u) = ln(u), then the equation (2) becomes the following Hadamard fuzzy
pantograph fractional integral equations

z(u)⊖gH

(
ln(u)− ln(v)

)q−1
z0

Γ(q)

=
1

Γ(q)

∫ u

0

(
ln(u)− ln(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)dv
v
.
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3 Existence and uniqueness

We make the following hypotheses concerning the coefficients of the problem
under consideration:

(H1) For all a1, a2, a3 , b1, b2, b3 ∈ E1 and u ∈ I, there exist ϖ > 0 such that

D∞
[
f(u, a1, a2, a3), f(u, b1, b2, b3)

]
≤ ϖ

(
D∞[a1, b1] +D∞[a2, b2] +D∞[a3, b3]

)
,

(H2) For u ∈ I, there exists ϱ, ς > 0 such that

(i) D∞
[
f(u, a1, a2, a3), 0̂

]
≤ ϱ,

(ii) D∞
[
f(u, 0̂, 0̂, 0̂), 0̂

]
≤ ς.

We will now use Schaefer’s fixed point theorem to demonstrate the existence result.

Theorem 1. Suppose that the hypotheses (H1) and (H2) are hold, then the
problem (1) has at least one solution in C

(
I,E1

)
.

Proof. Let define a mapping L : C
(
I,E1

)
−→ C

(
I,E1

)
as follow

Lz(u) = z0 ⊚
1

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv, (5)

where ⊚ := {+,⊖(−1)}. We divide the subsequent proof into three steps.
Step 1: L is continuous. Indeed, let (zn(u))n ⊂ C

(
I,E1

)
such that zn converges

to z in C
(
I,E1

)
, then by using hypothesis (H1), we have for u ∈ I

D∞
[
Lzn(u),Lz(u)

]
≤ 1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞

[
f
(
v, zn(v), zn(λ1v), zn(λ2v)

)
, f
(
v, z(v), z(λ1v), z(λ2v)

)]
dv,

≤ ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)−ψ(v)

)1−q

(
D∞[zn(v), z(v)]+D∞[zn(λ1v), z(λ1v)]+D∞[zn(λ2v), z(λ2v)]

)
dv,

≤ 3ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞[zn(v), z(v)]dv,

≤ 3ϖ

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
sup
u∈I

D∞[zn(u), z(u)].

We can conclude that D∞
[
Lzn(u),Lz(u)

]
−→ 0 as n −→ ∞. Therefore, L is

continuous on C
(
I,E1

)
.

Step 2:
aO- Let us prove that L is bounded. For this, let prove that there exists a pos-

itive constant ξ1 and for all ς1 > 0 satisfying for all z(u) ∈ Bς1 :=
{
z(u) ∈
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C
(
I,E1

)
|D∞[z(u), 0̂] ≤ ς1

}
one has D∞

[
Lz(u), 0̂

]
≤ ξ1. In fact, for all u ∈ I and

z(u) ∈ Bς1 , by using hypothesis (H2) we get

D∞
[
zn(u), 0̂

]
≤ 1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−qD∞
[
f
(
v, zn(v), zn(λ1v), zn(λ2v)

)
, 0̂
]
dv,

≤
(
ψ(M)− ψ(0)

)q
ϱ

Γ(q + 1)
:= ξ1,

this implies that L(Bς1) ⊆ Bξ1 . Thus, L(Bς1) is bounded.
bO- Let prove that L(Bς1) equicontinuous. For each z(u) ∈ Bς1 and u1, u2 ∈ I
such that u1 < u2, we have

D∞
[
z(u1), z(u2)

]
≤ 1

Γ(q)
D∞

[ ∫ u1

0

ψ′(v)(
ψ(u1)− ψ(v)

)1−q f(v, z(v), z(λ1v), z(λ2v))dv,∫ u2

0

ψ′(v)(
ψ(u2)− ψ(v)

)1−q f(v, z(v), z(λ1v), z(λ2v))dv],
since ∫ u2

0

ψ′(v)(
ψ(u2)− ψ(v)

)1−q f(v, z(v), z(λ1v), z(λ2v))dv
=

∫ u1

0

ψ′(v)(
ψ(u2)− ψ(v)

)1−q f(v, z(v), z(λ1v), z(λ2v))dv
+

∫ u2

u1

ψ′(v)(
ψ(u2)− ψ(v)

)1−q f(v, z(v), z(λ1v), z(λ2v))dv,
we get

D∞
[
z(u1), z(u2)

]
≤ 1

Γ(q)

∫ u1

0
ψ′(v)

∣∣(ψ(u1)− ψ(v)
)q−1 −

(
ψ(u2)− ψ(v)

)q−1∣∣
D∞

[
f
(
v, z(v), z(λ1v), z(λ2v)

)
, 0̂
]
dv,

+
1

Γ(q)

∫ u2

u1

ψ′(v)(
ψ(u2)− ψ(v)

)1−qD∞
[
f
(
v, z(v), z(λ1v), z(λ2v)

)
, 0̂
]
dv.

Thus, by using (H2), we obtain

D∞
[
z(u1), z(u2)

]
≤ ϱ

Γ(q + 1)

((
ψ(u1)− ψ(0)

)q
+ 2

(
ψ(u2)− ψ(u1)

)q − (
ψ(u2)− ψ(0)

)q)
,

≤ 2ϱ

Γ(q + 1)

(
ψ(u2)− ψ(u1)

)q
:= Ψ.
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We have Ψ is independent of z(u) and Ψ −→ 0 as u2 −→ u1. Then, we obtain

D∞
[
Lz(u1),Lz(u2)

]
−→ 0.

It means that L(Bς1) is equicontinuous. Then, according to Arzela-Ascoli theo-
rem, L is relatively compact. As a result of the previous steps, L is completely
continuous.
Step 3: we will prove that Bδ =

{
z(u) ∈ C

(
I,E1

)
|z = δ(Lz), δ ∈ (0, 1)

}
is

bounded. Let z ∈ Bδ, then z = δ(Lz) for δ ∈ (0, 1). So for each u ∈ I, we have

z(u)⊖gH δz0 =
δ

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv. (6)

Therefore, using hypothesis (H2), we have

D∞
[
z(u), 0̂

]
≤ δD∞

[
z0, 0̂

]
+

δ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−qD∞
[
f
(
v, z(v), z(λ1v), z(λ2v)

)
, 0̂
]
dv,

≤ δD∞
[
z0, 0̂

]
+
δ
(
ψ(M)− ψ(0)

)q
ϱ

Γ(q + 1)
<∞,

which implies that Bδ is bounded. As a consequence of Schaefer’s fixed point
theorem, L has a fixed point which is a solution of problem (1).

For the uniqueness result, we have the following theorem:

Theorem 2. Assume that the hypothesis (H1) hold. If

3ϖ

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
< 1,

then the solution of problem (1) is unique.

Proof. We know that z(u) is a solution of problem (1) if

z(u)⊖gH z0 =
1

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv. (7)

hold. If z(u) ∈ C
(
I,E1

)
is a fixed point of L which define as in Theorem 1, then

z(u) is a solution of problem (1). Let z1(u), z2(u) ∈ C
(
I,E1

)
. For all u ∈ I, we

have

D∞
[
Lz1(u),Lz2(u)

]
≤ 1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞

[
f
(
v, z1(v), z1(λ1v), z1(λ2v)

)
, f
(
v, z2(v), z2(λ1v), z2(λ2v)

)]
dv,

≤ ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q

(
D∞[z1(v), z2(v)] +D∞[z1(λ1v), z2(λ1v)]

+D∞[z1(λ2v), z2(λ2v)]

)
dv,

≤ 3ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞[z1(v), z2(v)]dv,

≤ 3ϖ

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
D∞[z1(u), z2(u)].
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Based on the Banach fixed point theorem, we can deduce that L has a unique
fixed point, which is the solution of problem (1).

4 Estimate on the solution

Here, we demonstrate an estimate of the solution to problem (1) using the
generalized Grönwall inequality.

Theorem 3. Assume that the function f : I × E1 × E1 × E1 −→ E1 satisfies
the hypothesis (H1) and (ii) in (H2). If z(·) ∈ C

(
I,E1

)
is any solution of the

problem (1) then following holds:

D∞
[
z(u), 0̂

]
≤

[
D∞

[
z0, 0̂

]
+

ς

Γ(q + 1)

(
ψ(M)− ψ(0)

)q]
Eq

(
3ϖ(ψ(u)− ψ(0))q

)
.

(8)

Proof. From Definition 10, we have

z(u)⊖gH z0 =
1

Γ(q)

∫ u

0
ψ′(v)

(
ψ(u)− ψ(v)

)q−1
f
(
v, z(v), z(λ1v), z(λ2v)

)
dv.

Thus, by using hypothesis (H1) and (ii) in (H2), we get

D∞
[
z(u), 0̂

]
≤ D∞

[
z0, 0̂

]
+

1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−qD∞
[
f
(
v, z(v), z(λ1v), z(λ2v)

)
, f
(
v, 0̂, 0̂, 0̂

)]
dv

+
1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−qD∞
[
f
(
v, 0̂, 0̂, 0̂

)
, 0̂
]
dv,

≤ D∞
[
z0, 0̂

]
+

3ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−qD∞
[
z(v), 0̂

]
dv

+
ς

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
,

then, using the generalized Grönwall inequality, we obtain

D∞
[
z(u), 0̂

]
≤

[
D∞

[
z0, 0̂

]
+

ς

Γ(q + 1)

(
ψ(M)− ψ(0)

)q]
Eq

(
3ϖ(ψ(u)− ψ(0))q

)
.

Hence we obtain (8).

5 Ulam–Hyers–Mittag-Leffler stability result

The Mittag-Leffler function can be defined in terms of a power series as

Eq(z) :=
∞∑
i=0

zi

Γ(qi+ 1)
, q > 0.
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Definition 11. [22] The solution of problem (1) is said to be Ulam–Hyers–Mittag-
Leffler stable with respect to Eq

(
(ψ(u)−ψ(0))q

)
if there exist a constant ∆Eq > 0

such that for all ε > 0 and for each solution w(u) ∈ C
(
I,E1

)
of the following

inequality

D∞

[
D
q;ψ
0+

w(u), f
(
u,w(u), z(λ1u),w(λ2u)

)]
≤ ε, (9)

there exist a solution z(u) ∈ C
(
I,E1

)
of problem (1), such that

D∞

[
w(u), z(u)

]
≤ ∆EqEq

(
(ψ(u)− ψ(0))q

)
ε, u ∈ I.

Remark 8. An d-monotone fuzzy function w(u) ∈ C
(
I,E1

)
is a solution of (9)

if and only if ∃ϕ ∈ C
(
I,E1

)
such that

(i)- D∞
[
ϕ(u), 0̂

]
≤ Eq

(
(ψ(u)− ψ(0))q

)
ε,

(ii)- For u ∈ I, D
q;ψ
0+

w(u) = f
(
u,w(u),w(λ1u),w(λ2u)

)
+ ϕ(u), u ∈ I,

w(0) = z(0) = w0 = z0

(10)

Theorem 4. Assume that the hypotheses (H1) and (H2) hold. Then, the problem
(1) is Ulam–Hyers–Mittag-Leffler stable.

Proof. Let w(u) be the solution of the problem (9) and z(u) be the solution of
the proposed problem (1). then by Remark 8, there exist ϕ ∈ C

(
I,E1

)
such that

D∞
[
ϕ(u), 0̂

]
≤ Eq

(
(ψ(u)− ψ(0))q

)
ε,

and
D
q;ψ
0+

w(u) = f
(
u,w(u),w(λ1u),w(λ2u)

)
+ ϕ(u), u ∈ I.

Thus, from Definition 10, we have

z(u)⊖gH z0 =
1

Γ(q)

∫ u

0

ψ′(v)
f
(
v,w(v),w(λ1v),w(λ2v)

)(
ψ(u)− ψ(v)

)1−q dv +
1

Γ(q)

∫ u

0

ψ′(v)ϕ(v)(
ψ(u)− ψ(v)

)1−q dv.

For u ∈ I, we use (H1) and (H2), we get

D∞
[
w(u), z(u)

]
≤ 1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞

[
f
(
v,w(v),w(λ1v),w(λ2v)

)
, f
(
v, z(v), z(λ1v), z(λ2v)

)]
dv,

+
1

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞
[
ϕ(v), 0̂

]
dv

≤ ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)−ψ(v)

)1−q

(
D∞[w(v), z(v)]+D∞[w(λ1v), z(λ1v)]+D∞[w(λ2v), z(λ2v)]

)
dv

+
ε

Γ(q)

∫ u

0

ψ′(v)
(
ψ(u)− ψ(v)

)q−1
Eq

(
(ψ(v)− ψ(0))q

)
dv

≤ ε

Γ(q + 1)
Eq

(
(ψ(M)− ψ(0))q

)
+

3ϖ

Γ(q)

∫ u

0

ψ′(v)(
ψ(u)− ψ(v)

)1−q D∞[w(v), z(v)]dv.
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Thus, using the generalized Grönwall inequality, we obtain

D∞
[
w(u), z(u)

]
≤ ε

Γ(q + 1)
Eq

(
(ψ(M)− ψ(0))q

)
Eq

(
3ϖ(ψ(u)− ψ(0))q

)
,

It follows that

D∞
[
w(u), z(u)

]
≤ ∆EqEq

(
(ψ(u)− ψ(0))q

)
ε,

where ∆Eq =
Eq

(
(ψ(M)−ψ(0))q

)
Γ(q+1) .

Therefore, from Definition 11, the problem (1) is Ulam–Hyers–Mittag-Leffler sta-
ble.

6 Examples

In this section, we provide an illustration of the results from the previous part.
Note that the fuzzy number considered as initial value in the initial condition for
Example 1 and Example 2 is triangular fuzzy number.

6.1 Example 1

Let 
D

1
2
;u2

0+
z(u) = −u2z(u)− 2z(0.3u) + 1

2z(0.7u), u ∈ (0, 1
10 ],

z(0) = (1, 0, 0),

(11)

where f(u, z(u), z(λ1u), z(λ2u)) = −u2z(u)− 2z(0.3u) + 1
2z(0.7u).

Here q = 1
2 , ψ(u) = u2, λ1 = 0.3 and λ2 = 0.7. The hypothesis (H1) is satisfied

by choosing ϖ = 5. Moreover, we have

3ϖ

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
=

3 · 5
Γ(0.5 + 1)

(
ψ(0.1)− ψ(0)

) 1
2 ≃ 0.14 < 1.

The verification demonstrates that all assumptions in Theorem 1 are met in
full. Then, the problem (11) has a unique solution. Also, we can verify that
problem (11) satisfies all assumptions in Theorem 4. Then, problem (11) is
Ulam–Hyers–Mittag-Leffler stable.

6.2 Example 2

Consider the following problem
D

4
10

;u4

0+
z(u) = z2(u) + z3(0.2u)− sin(u)z(0.8u), u ∈ (0, 2

10 ],

z(0) = (0.1, 0, 1),

(12)
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where f(u, z(u), z(λ1u), z(λ2u)) = z2(u) + z3(0.2u)− sin(u)z(0.8u).
Here q = 4

10 , ψ(u) = u4, λ1 = 0.2 and λ2 = 0.8. The hypothesis (H1) is satisfied
by choosing ϖ = 6

10 . Moreover, we have

3ϖ

Γ(q + 1)

(
ψ(M)− ψ(0)

)q
=

3 · 0.6
Γ(0.4 + 1)

(
ψ(0.2)− ψ(0)

) 4
10 ≃ 0.933 < 1.

The verification demonstrates that all assumptions in Theorem 1 are met in
full. Then, the problem (11) has a unique solution. Also, we can verify that
problem (11) satisfies all assumptions in Theorem 4. Then, problem (11) is
Ulam–Hyers–Mittag-Leffler stable.

7 Conclusion

In this study, we have examined a class of ψ-Caputo fuzzy fractional multi-
pantograph differential equations. The method of Schaefer and Banach fixed point
theorem are employed under Lipschitz conditions to demonstrate the existence and
uniqueness of solutions. Finally, by using the generalized Grönwall inequality,
Ulam–Hyers-Mittag-Leffler stability result for the main problem is provided.
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