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Abstract: Willow cultivation is an important activity that can provide 

greater amounts of cleaner and renewable energy. To support the 

development of this farming sector, data is required on the spatial 

distribution of planted plots, as well as on the performance of operations 

typically required in willow crop management. Unfortunately, this kind of 

data is largely unavailable, while documenting it is a challenging task. GPS 

data, which may be feasibly collected during operations, may be a good 

carrier of information not only to document the spatial location of plots, but 

also to learn about the frequency of typical events as specific to willow 

operational management. Based on a GPS dataset characterizing two plots, 

which was collected during planting operations and labelled manually (8,385 

observations), a neural network was used in this study to spatially classify 

events such as driving (hereafter called D), maneuvering (hereafter called 

M), planting (hereafter called P), and being stopped (hereafter called S). 

Three models were trained and validated based on features such as GPS 

speed (hereafter called model S), GPS speed and leg length (hereafter called 

model S&L), and GPS speed, leg length, and heading (hereafter called model 

S&L&H), respectively. Classification performance was found to be impressive, 

with an overall accuracy of 92.0 (S), 92.1 (S&L), and 93.3% (S&L&H), 

respectively. The quality of the models was then checked visually using a 

dataset containing unseen data characterizing two plots of different cardinal 

orientation, indicating an acceptable generalization ability. The methods 

described in the paper may be useful when dealing with large datasets and 

limited resources and expertise in labelling the data manually, as they 

provide location and event specific data with high accuracy. Improvements 

in accuracy are possible by integrating the raw data in deep learning, an 

approach that should be explored further. 
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1. Introduction 

 

Concerns about global warming, energy 
sufficiency and security have shaped many 
local, national and international policies, 
emphasizing the need of producing energy 
sustainably [22, 32]. Short rotation willow 
represents one of the most valued sources 
of renewable energy, and it is cultivated in 
many countries worldwide [3, 13, 20, 25, 
27, 41, 48]. To be able to sustain the effort 
of efficiently producing renewable 
bioenergy from willow, aggregated data is 
required on the size of the plots, their 
spatial distribution, yield, the effects of 
the rotation period on yield, and 
performance of the operational 
management. Typically, this kind of data 
supports decision-making in several ways, 
such as having the information required 
for census purposes, particularly when 
such data is not available [5], providing 
incentives to stimulate the practice of 
farming, and last but not least, evaluating 
and accounting for the environmental and 
economic performance of willow 
management [10, 18, 39]. 

Despite these benefits, such data is 
commonly unavailable, particularly data 
characterizing operational performance, 
which is a prerequisite for environmental 
and cost assessment. In short rotation 
willow management, there are many 
operations required, starting with 
establishment and ending with harvesting 
[19, 46, 47], and the performance of these 
operations has been commonly assessed 
by various methods [8, 17, 34, 40, 42, 43]. 
Since cultivated plots are typically 
unobstructed, GPS (Global Positioning 
Data) has been increasingly used to 

support operational performance studies 
[7, 9, 12, 21], mainly because it can 
provide location-specific, accurate spatial 
data which can be then classified by the 
human eye to extract useful information. 
In addition, GPS receivers have become 
cost-affordable, while the consumer-grade 
ones can provide reliable data on several 
parameters such as location and speed of 
movement [6, 28, 30]. While these 
features make them valuable tools in 
collecting the necessary data, the 
classification of events still requires 
dedicated human expertise and resources 
which are not largely available and may be 
prone to error. 

Conventional machine learning could be 
one of the solutions to classify the 
operational events based on GPS data. 
This is because operational events are 
typically researched in time studies some 
of which include classification problems 
[2, 44]. Accordingly, operational 
management of willow grown in short 
rotation coppice could benefit to a large 
extent from integrating GPS data with 
machine learning, due to some specific 
spatial features of the operational events, 
such as their development on relatively 
linear trajectories, a repetition pattern 
which is similar, a shape of the plots which 
is typically a simple geometrical feature 
such as a rectangle, and a relatively 
constant speed when operating. In terms 
of GPS data, these features can be 
measured in terms of speed, heading, and 
distances between the collected locations. 
Then they can be labelled and fed into 
machine learning algorithms such as 
neural networks to learn specific patterns 
and make predictions on unseen data. 
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While the learning process can be 
intensive in regards to computational 
resources, the benefits that one may 
account for are promising since the 
developed models may be used to classify 
in a short time very large datasets lacking 
classification labels. 

Willow planting is one of the very first 
steps in the operational management of 
willow short rotation crops which, by GPS 
data collection, can provide the spatial 
context of the cultivated plots. In addition, 
at the level of the technical development 
implemented in practice, willow planting 
is still a partly mechanized process, 
typically requiring a machine that acts as a 
carrier and manual labor for the effective 
planting operation [7, 12, 34, 44]. The goal 
of this study was to check the degree to 
which GPS data can be used along with 
conventional machine learning to 
document and predict the operational 
events in willow planting operations. The 
first objective of the study was to train 
and validate a set of neural models able to 
recognize and predict the typical events in 

willow planting operations based on GPS 
features such as speed, distance between 
locations, and heading. The second 
objective of the study was to subjectively 
check the performance of the developed 
models on unlabelled data showing a 
variety in events and geometrical GPS 
features. 

 

2. Materials and Methods 

2.1. Study Location, Description of 

Operational Events, and Data Collection 

 

The data supporting this study was 
collected in the center of Romania (Figure 
1), in the counties of Brasov and Covasna. 
Although willow farming is typical to the 
whole country, the center of Romania has 
more tradition with such crops, with 
important areas established with willow 
over time [5]. The climate of the area is 
also favorable for willow cultivation; 
however, the size of the plots is rather 
small, and they are typically spatially 
dispersed.  

 

 

Fig. 1. Study Location. Legend: the green dot indicates the location of the first dataset 

(D1), while the red dot indicates the location of the second dataset (D2) 
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Two datasets were collected and used in 

this study. A first dataset (hereafter called 
D1) was collected near the village of 
Tărlungeni, Brasov County, and it was 
used for the training and validation of the 
neural network models. It featured a 
number of 8,385 data points collected at a 
rate of five seconds by a consumer-grade 
GPS receiver placed on the cab of a tractor 
used as a carrier for planting. The second 
dataset (hereafter called D2) was 
collected near the village of Poian, 

Covasna County, and it was used for the 
visual assessment of the generalization 
ability of the developed neural network 
models. It featured a number of 43,594 
datapoints collected at a rate of one 
second. Both D1 and D2 covered two 
planted plots each, as well as the typical 
events in willow planting described in 
Table 1. The difference between the 
datasets was in regards to plot 
orientation, as well as the relative 
distribution of events in the data. 

 
Table 1 

Typical events in willow planting operations by the machine and work team used 

Event Abbreviation Description 

Driving D 

Moving the machine between planting locations, from 
the garage to a planting location, or from the last 

planted location to the garage. It also includes 
movements within the plot and it is typically done at 

higher speeds compared to the rest of the events. 

Maneuvering M 
Maneuvers taken at the headlands to exit or enter a 
planting row, as well as in the plot to avoid potential 

obstacles. 

Planting P 

Effective planting consisting of machine movement 
along a straight path while the workers insert the 

cuttings into the soil; movement is typically done at 
low and constant speed to allow the workers to keep 

the planting pace. 

Stopped S 
Various events in the plot or at the headland during 

which the machine does not move. 

 
While there are several technical 

options used to plant willow, one is 
dominant in Romania. It consists of a farm 
tractor equipped with a wheeled 
aggregate designed to carry the workers 
and the willow cuttings that are manually 
inserted into the soil during the actual 
planting. The machine works in legs by 
entering the plot, driving in a straight line 
at low speed while the workers insert the 
cuttings manually into the soil, exits a 

given planted row, and takes maneuvers 
to re-enter the plot. When the operations 
in a given plot are finished, the machine 
drives to a new location to be planted. 
Driving may also occur within a given plot 
to accommodate the planting when the 
plots are not rectangular. All of these 
events are intercalated with stops caused 
by various reasons. A detailed description 
of the machine and way of working can be 
found in [7, 44]. 
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The typical planting work includes 
effective planting, maneuvering, driving 
between plots, and events in which the 
machine is stopped. Although the machine 
and methods used are different to those 
from other parts of the world, the typical 
operational events are similar [7, 12, 34, 
44]. By continuous recording in the 
tracking mode, GPS data provides the 
context of spatial location in terms of 
coordinates. The data comes along with 
other important features such as 
movement speed, heading, and distance 
between the collected locations. 

 
2.2. Data Preprocessing and Machine 

Learning 

 

Data from D1 and D2 was saved as GPX 
files and imported in two Microsoft Excel 
(www.microsoft.com, accessed on 1 
September 2024) files via Garmin 
Basecamp (www.garmin.com/en-
US/software/basecamp/, accessed on 1 
September 2024) software. Garmin 
Basecamp software enables the 
estimation of movement speed, distance 
between the collected locations, and 
heading, among other features such as 
elevation and geographical coordinates. 
D1 was checked in detail in Garmin 
Basecamp and labelled point by point in a 
Microsoft Excel database by string codes 
designating the events described in Table 
1. Data labelling was based on the location 
geometry and movement speed, along 
with the expertise over the events gained 
during the field observations. 

Machine learning was implemented in 
Orange Visual Programming software [16], 
where D1 was imported and a neural 
network in the form of a single layer 
perceptron with backpropagation was 
implemented as a final training and 

validation attempt. The specifications of 
the neural network hyperparameters and 
their function in the performance of the 
neural network are described for instance, 
in [36]. Several tests designed to check the 
classification performance were 
implemented by varying the number of 
layers, the number of neurons in the 
hidden layers, and the regularization 
parameter. These were carried out to see 
what would be the best architecture of 
the model, as well as to tune the 
regularization parameter. At the end, a 
neural network with a single layer of 100 
neurons, trained with a regularization 
parameter of 0.0001 in 1,000,000 
iterations using the RELU activation 
function [1, 33, 35] and the ADAM solver 
[31] was found to be the best option in 
terms of classification performance when 
feeding the network successively with up 
to three features: speed (hereafter called 
model S), speed and distance between 
locations (hereafter called model S&L), 
and speed, distance between locations, 
and heading (hereafter called model 
S&L&H). A training and validating 
procedure that involved cross validation 
by five folds was used to check the 
performance of the three models in this 
step. Classification performance was 
evaluated by using classification accuracy 
(CA) as a metric. However, other common 
metrics of classification performance such 
as the area under receiver operating curve 
(AUC), F1 score (F1), precision (PREC), 
recall (REC), and cross entropy (LOSS) 
were estimated as well at event and 
overall level. Definitions for most of these 
metrics can be found, for instance, in [23, 
26]. The machine learning algorithm used 
has the ability to treat the magnitude in 
values by standardization of the data [37], 
therefore such a scaling technique can 
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accommodate to some extent the 
variability in features, thus removing the 
bias of the models towards larger values 
[38]. In addition, metrics such as precision, 

recall, and F1 score can be more 
appropriate when dealing with class 
imbalance [45]. 

 

 

Fig. 2. Workflows used in Orange Visual Programming software to train and validate the 

models on D1 (1) and to test the models on D2 (2). Legend: the file widget connects to a 

database stored in Microsoft Excel format and allows for the selection of feature and 

target variables, the Neural Network widget allows for tuning of the network, training 

and validating the models, the Test and Score widget allows for the estimation of 

relevant classification performance metrics, the Save Model widget enables model 

saving, the Predictions widget enables predictions made by the model, the Data Table 

widget enables data manipulation, and the Load Model widget enables loading a model 

from the location in which it was saved 

 

The developed neural network models 
were saved and tested over the unlabelled 
data with the aim of visually checking their 
performance. In both machine learning 
steps, maps were produced in QGis 

(version 2.18) based on the GPX files that 
were joined with the Microsoft Excel data. 
For the first step (training and validation), 
classification performance was reported 
as tabulated data for all the metrics, while 
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the classification accuracy was (CA) 
graphically compared between the models 
at the event and overall levels. 
Classification made by the human labeler 
was developed in the form of a map of 
GPS locations, and it was reported along 
with the maps of the misclassifications 
made by the three machine learning 
models.  

For the second step, the predictions 
made by the models were associated to 
the spatial data of the GPX file to visually 
assess their accuracy. Although this was 
done for two plots in each step, for 
simplicity of visualization this study 
reports on a single plot example in the 
first step and for two plot examples in the 
second step. To design, train, validate and 
test the neural networks, the widgets 
“File”, “Neural Network”, “Test & score”, 
“Save Model”, “Load Model”, 
“Predictions”, and “Data Table” of the 
Orange Visual Programming software 
(Widget catalog, available at: 
https://orangedatamining.com/widget-
catalog/, accessed on 3 September, 2024) 
were used in purposely developed 
workflows (Figure 2). After training and 
validating the models, the Excel database 
of D1 dataset was updated with the 
necessary information related to the 
predictions made by the models. Based on 
these, misclassifications were detected 
and added as new attributes in the 
database, which was connected to the 
QGis GPX data for mapping purposes. 

Once the models were used to make 
predictions on D2, their predictions were 
saved in the Microsoft Excel database as 
new attributes provided as string codes. 
An updated version of the database was 
then connected to its corresponding GPX 
file in QGis and used to map the 
predictions made by the three models on 
the unseen data of D2. 
 

3. Results 

3.1. Description of Data 

 

D1 contained 8,385 datapoints (Table 2), 
and showed a high-class imbalance, where 
the “Planting” event dominated the 
dataset by close to 67% of the data, while 
the “Stopped” event accounted almost for 
the rest of the data (26%). While the data 
on the “Heading” feature showed a 
limited variability due to the geometry of 
the plot, the data on speed was rather 
heterogeneous in nature, indicating the 
type of events labelled by the human 
expert. Figure 3 shows a classification of 
the data from D1 (a plot given as example) 
based on GPS speed and natural breaks 
rule, where the color intensity denotes the 
magnitude in speed from lower to higher. 

In terms of speed, the operational 
events were heterogeneous. “Planting” 
had a lower variability in speed, which was 
close to 1.2 km/h, “Maneuvering” had a 
higher variability in speed, and “Driving” 
by was characterized by speeds that 
commonly exceeded 4 km/h. 

 
Frequency of events in D1                                             Table 2 

Event Abbreviation Absolute frequency Relative frequency [%] 

Overall O 8,385 100 

Driving D 168 2 

Maneuvering M 461 5 

Planting P 5,586 67 

Stopped S 2,170 26 
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Fig. 3. GPS speed classification in QGis based on data from D1: an example for a planted 

plot using natural breaks as a classification rule. Note: the map is rotated 90 degrees to 

the right 

 

3.2. Classification Performance 

 
Classification performance was high for 

all the models. For instance, classification 
accuracy achieved values of 92 to 93.3% 
(Figure 4), with events such as “Driving” 
being characterized by excellent 
classification performances (99.1%). 
Overall, the “Stopped” events were clearly 
identified by the machine learning 

algorithms, returning classification 
accuracies of 96 to 96.5%. This was due to 
their low, constant speed. Although 
“Planting” and “Maneuvering” returned 
high and similar classification accuracies, 
their classification performance was likely 
influenced by variability at least in speed 
and inter-point distance; for these events, 
classification accuracy was from 94.5 to 
95.9%. 

 

 

Fig. 4. Classification accuracy compared between the three neural network models (S, 

S&L, S&L&H) at event level. Legend: O – overall, D – driving, M – maneuvering, P – 

planting, S – stopped 
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The use of inter-point distance improved 

only marginally (0.1%) the overall 
classification accuracy of the model. 
However, using the inter-point distance 
and heading in addition to the GPS speed 
improved to a higher extent the overall 
classification accuracy of the model 
(1.3%), as shown in Figure 4. These 
improvements seem to come from a 
particular improvement in classification 
over the M, P, and S events, since the 
performance in classifying the D event was 
the same, irrespective of the model. 
Figure 5 shows the misclassifications of 
the models against the ground truth 
labelled by the human expert by 
considering a single plot taken as an 
example, and by indicating two important 
things.  

 

First, the localization of the 
misclassifications seemed to be similar, 
irrespective of the model used to make 
predictions. These were located in those 
areas in which maneuvering took place 
dominantly (i.e., at the headlands). 
Secondly, the model S&L&H performed 
better, showing fewer misclassifications, 
while the models S&L and S, respectively, 
seemed to have a similar behavior in 
misclassifying the data. In addition, Table 
3 gives an overview on the event-based 
classification performance metrics for the 
three models. In particular, the data 
showed an excellent recall (REC) for the 
“Planting” and “Stopped” events which 
were the highest for the S model, while 
recall stands for the correctly identified 
true positive examples from all true 
positive data. 

 
 

Summary of the event-based classification performance metrics          Table 3 
of the three neural network models 

Model Event (Abbreviation) AUC CA F1 PREC REC LOSS 

S & L & H 

Overall (O) 0.950 0.920 0.903 0.902 0.920 0.276 

Driving (D) 0.964 0.991 0.758 0.815 0.708 0.031 

Maneuvering (M) 0.760 0.945 0.176 0.505 0.106 0.182 

Planting (P) 0.964 0.945 0.959 0.938 0.982 0.174 

Stopped (S) 0.986 0.960 0.925 0.900 0.951 0.116 

S & L 

Overall (O) 0.950 0.921 0.905 0.904 0.921 0.276 

Driving (D) 0.962 0.991 0.767 0.828 0.714 0.031 

Maneuvering (M) 0.761 0.946 0.201 0.533 0.124 0.182 

Planting (P) 0.965 0.945 0.960 0.939 0.982 0.175 

Stopped (S) 0.986 0.960 0.925 0.900 0.951 0.116 

S 

Overall (O) 0.973 0.933 0.923 0.923 0.933 0.229 

Driving (D) 0.970 0.991 0.755 0.824 0.696 0.030 

Maneuvering (M) 0.873 0.952 0.374 0.663 0.260 0.148 

Planting (P) 0.985 0.959 0.970 0.952 0.988 0.127 

Stopped (S) 0.988 0.965 0.933 0.914 0.953 0.109 
Note: AUC stands for the area under the receiver operating curve, CA – classification accuracy, F1 

– F1 score, PREC – precision, REC – recall, LOSS – cross entropy 
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a. b. 

  
c. d. 

Fig. 5. Misclassifications of the models against the data labelled by the human expert.  

An example for a plot from D1: a. data as it was labelled by the human expert;  

b. misclassifications of the S&L&H model; c. misclassifications of the S&L model;  

d. misclassifications of the S model. Legend: in panel (a.) green stands for “Planting”, 

yellow for “Maneuvering”, orange for “Driving”, and red for “Stopped” as the ground 

truth; in panels (b.) to (d.) red stands for misclassifications
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3.3. Models’ Predictions of Unseen Data 

 

Figures 6 to 8 give examples on the 
performance of the three models (S&L&H 
– Figure 6, S&L – Figure 7, and S – Figure 
8) on two plots which were different in 
terms of event heading data. The S&L&H 
model tended to correctly classify the data 
from that plot which had a similar heading 
of events. For instance, “Planting” was 
generally well classified (Figure 6), 
although some “Maneuvering” events 
were placed within the plot and some of 
the “Stopped” events were confused with 
“Planting”. 

In turn, the plot characterized by a 
different heading data as compared to 
that used for training and validation 
showed a higher number of 
misclassifications (Figure 6a). This points 
out that the inclusion of heading in the 
models may bring some important 

limitations even though the models use 
preprocessed data. Figure 7 shows some 
examples on how the S&L model 
performed on the same data. 

Given the geometry of the points, it is 
evident that prediction of the “Planting” 
event improved in the first example 
(Figure 7a), while it remained quite 
unchanged (although good) in the second 
example (Figure 7b). However, the 
“Driving” events seemed to be 
misclassified as “Maneuvering” in both 
examples. Only a small part of the data 
remained classified as “Driving” even for 
the plot example that was similar in 
geometry to the one used to train the 
model. Accordingly, the limitation of the 
model was that related to misclassifying 
the events which ran at higher speeds. 
Finally, Figure 7 shows some examples on 
how the S model performed on the same 
data. 

 
 

  
a. b. 

Fig. 6. Examples of predictions made by the S&L&H model on two plots: a. plot with a 

different heading on the events compared to those of D1; b. plot similar in geometry with 

that of D1. Legend: green stands for “Planting”, yellow for “Maneuvering”, orange for 

“Driving”, and red for “Stopped” as predicted on the model on unseen data 
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a. b. 

Fig. 7. Examples of predictions made by the S&L model on two plots: a. plot with a 

different heading on the events compared to those of D1; b. plot similar in geometry with 

that of D1. Legend: green stands for “Planting”, yellow for “Maneuvering”, orange for 

“Driving”, and red for “Stopped” as predicted on the model on unseen data 

 
The “Planting” event remained 

predicted in a way that was similar to 
what S&L can do. In addition, prediction of 
the “Driving” events improved and was 
delimited more clearly from  
“Maneuvering”, irrespective of the 
general geometry of the plot. As such, for 
the unseen data, the model based on GPS 

speed seemed to perform the best. This 
may be explained if one rechecks Figure 5 
showing that in the training and validation 
phase the models differed only to a small 
extent in terms of misclassification, with 
these misclassifications being more 
related to the “Maneuvering” events. 

 

  
a. b. 

Fig. 8. Examples of predictions made by the S model on two plots: a. plot with a different 

heading on the events compared to those of D1; b. plot similar in geometry with that of 

D1. Legend: green stands for “Planting”, yellow for “Maneuvering”, orange for “Driving” 

and red for “Stopped” as predicted on the model on unseen data 
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4. Discussion 

 

As found in this study, integrating GPS 
data into conventional machine learning 
models may help to successfully and 
accurately detect operational events in 
willow planting operations, which can 
sustain the informed decisions based on 
large amounts of data. Such data can be 
procured in a relatively inexpensive way, 
and would be helpful to understand the 
operational events and to have an 
updated database of the established plots. 
These features are of particular 
importance when such plots are small in 
size and spatially dispersed [5, 44], which 
makes it difficult to keep track of willow 
farming areas. 

The human eye can make a good 
classification of the events based on 
previous knowledge, the spatial 
architecture of the GPS locations and 
other features such as moving speed. 
However, humans have a limited ability to 
work with and annotate large datasets 
without error. The results of this study 
indicate that GPS data and conventional 
machine learning may help in overcoming 
this limitation since classification 
performance was very high, exceeding 
90%. In a highly unbalanced dataset such 
as that from D1, recall was also higher for 
the most important events such as 
“Planting” and “Stopped”. The ability to 
automatically detect movement from non-
movement data points is important since 
other events that take place at the 
headlands and on dirt roads may be easily 
identified and classified based on other 
geospatial features. In other words, what 
happens in the plot can be accurately 
detected based on GPS features such as 
speed, inter-point distance, and heading.  

However, not all of these models had a 
good generalization ability. This is because 
the heading feature, for instance, will 
return plot specific values for a given 
event, varying in a rather limited range for 
that event. For example, planting on a 
north-south direction will, in theory, 
return headings close to 0 and 360 
degrees, assuming that the datapoints 
follow a linear trajectory. It seems that 
conventional machine learning models 
such as neural networks have a limited 
ability to remove this bias, even though 
they preprocess the data by 
standardization. One solution to this 
problem will be labelling larger amounts 
of data to capture the variability in 
heading (and other features). This would 
not only take important resources, but will 
also question the availability of such 
spatial configurations of the data points, 
while it will bring at least intra-class 
similarity in features [11, 14], which can 
be a difficult problem to overcome. 
Another solution would be using statistical 
descriptors and kernels to preprocess the 
data [4, 29], since these techniques would 
be able to extract better features of 
central tendency and dispersion, providing 
some degree of invariance (stability) as 
opposed to the instant readings by the 
sensors, which was the approach that was 
taken in this study. Extracting these 
derived features would not be 
computationally intensive, but they would 
require additional data processing steps. 

Last but not least, deep learning could 
remove many of these inconveniences and 
will potentially increase classification 
performance. This is because deep neural 
network models are able to learn more 
complex features [24], while there are 
already deep learning networks able to 
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accommodate time series data, which is a 
typical case of activity recognition, such as 
the Recurrent Neural Networks (RNNs) 
[15]. This class of networks use sequential 
feeding, while their input consists of the 
current data and previous examples. 
Subtypes of such networks are Long Short-
Term Memory (LSTM), Gated Recurrent 
Unit (GRU), and Bidirectional RNNs [15]. 
Typically, these types of networks require 
specialized software for annotation which 
can also work on 1D channel data such as 
GPS speed, heading, and inter-point 
distances, and it is likely that they would 
better capture the complexity in data, a 
reason for which further studies could 
check their performance. 

 
5. Conclusions 

 

Integration of GPS data in conventional 
machine learning models provides a useful 
and easy-to-use tool for operational 
monitoring in willow planting operations. 
Once the models based on GPS features 
are sufficiently accurate in the training 
and validation steps, they can be easily 
deployed in an offline approach to classify 
such events for large datasets. However, 
this approach still requires some 
programming to extract the numerical 
features out of text strings produced by 
the software used, as well as an offline 
(although free) approach as in this study. 
While some of these gaps can be bridged 
programmatically, future studies could 
check the additional potential power and 
utility of deep learning techniques in 
classifying operational events, as well as 
the potential of developing dedicated 
tools based on deep learning models. 
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