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Abstract: Classical techniques such as simple and multiple parametric 
regression analyses assume the linearity of the relationship between the 
response and independent variables. Moreover, these classical techniques 
rely on the rigid assumptions of constant variance and the independent and 
identical distributions of the error terms. Consequently, a consideration of a 
more flexible approach can greatly influence the accuracy of our analysis.  
The objectives of this study are to evaluate and suggest an alternative 
approach to the classical parametric methods.  The stem radius data 
obtained from Sappi landholdings in eastern South Africa were used. Stem 
radius of two hybrid clones, namely Eucalyptus grandis × Eucalyptus 
urophylla and E. grandis × E. Camaldulensis clone was used as the response 
variable. Additive mixed effects model that incorporates a non-parametric 
smooth function is used. Different additive mixed models were fitted to show 
the functional relationship between stem radius and tree age. The 
relationship between stem radius and tree age depends on clone and season. 
This study suggests semi-parametric approach as an alternative to the usual 
parametric approaches especially when the functional relationship between 
the response and the covariate is not known.  
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1. Introduction 
 
Statistical methods like normal 

regression models, the logistic regression 
model for binary data and Cox’s 
proportional hazards model for survival 
data assume a linear, or some parametric 
form, for the covariate effects. However, 
in several applications, this assumption of 

linear dependence of the response on the 
predictors is not appropriate. Some 
authors reviewed and fitted stem radius 
data using parametric regression methods 
for longitudinal data [16], [17], [18], [19], 
[20], [21]. These parametric models 
provide a powerful tool for modelling the 
relationship between the responses and 
the covariates. However, parametric 
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models suffer from inflexibility in 
modelling complicated relationships 
between the responses and covariates. In 
parametric methods, the form of the 
underlying relationship must be known in 
advance except for the values of a finite 
number of parameters. That means the 
relationship between the mean of the 
longitudinal response and the covariates is 
fully parametric.  

The main drawback of parametric 
modelling is that it may be too restrictive 
or limited for many practical cases. This 
limitation has motivated a demand for 
developing non-parametric regression 
methods for analysis of longitudinal data. 
These methods can help to estimate a 
more flexible functional form between the 
responses and the covariates in the data. 
As a result, complicated relationships 
between longitudinal responses and 
covariates can possibly be captured from 
the data. The main idea behind the non-
parametric approach is to let the data 
decide the most suitable form of the 
functions. According to Wu and Zhang 
2006 [30] non-parametric and parametric 
regression methods should not be 
regarded as competitors, instead they 
complement each other. In some 
situations, non-parametric techniques can 
be used to validate or suggest a 
parametric model.  A combination of both 
non-parametric and parametric methods 
is more powerful than any single method 
in many practical applications. 

Although parametric models may be 
restrictive for some applications, non-
parametric models may be too flexible to 
make concise conclusions in comparison 
with parsimonious parametric models.  
Semi-parametric models are good 
compromises and retain nice features of 
both the parametric and non-parametric 

models [4]. Significant changes in non-
parametric and semi-parametric 
regression methods for longitudinal data 
have taken place in the past 20 years. The 
presence of the within-subject correlation 
among repeated measures over time 
presents major challenges in developing 
kernel and spline smoothing methods for 
longitudinal data [14]. As a result, the 
extension of classical local likelihood 
based kernel methods and their natural 
local estimating equation fails to account 
for the within-subject correlation. This 
leads to the development of a non-local 
kernel estimator. Some advanced kernel 
and spline-based methods for longitudinal 
data, have been developed recently. One 
such method is the extension of spline 
smoothing to longitudinal data.  This 
extension entails clearly accounting for 
the within-subject correlation in building 
the penalized likelihood function. In this 
paper, the focus is on a class of splines 
referred to as penalized splines. Three 
motivational reasons for focusing on 
penalized splines are: (1) they are direct 
extensions of linear models (2) they are 
closely connected with linear mixed 
models and (3) their mixed model 
representation makes their extension to 
the longitudinal setting relatively 
straightforward. 

 A very flexible semi-parametric 
regression approach using the linear 
mixed model representation of penalized 
splines is described by Ruppert et al., 2003 
[23]. The generalized additive models [9] 
are among those widely used non-
parametric methods for independent 
data. The generalized additive models 
(GAM) can be represented using penalized 
regression splines.  GAM with continuous 
response is called additive models. 
Additive models replace the linear 
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relationship between the response and 
covariates to a relationship between the 
response and sum of smooth functions of 
covariates.  

Regarding GAM, the works of Hastie and 
Tibshirani ([9], [12]),  Faraway [5] and 
Wood ( [27], [29]) can be cited as 
examples of good references. The 
underlying assumption on GAM is that the 
data are independent, which is not the 
case for longitudinal data. The extended 
form of GAM is called the generalized 
additive mixed model (GAMM). A GAMM 
with a Gaussian response is called additive 
mixed model (AMM). The aim of this 
paper is to review AMM and fit them to 
stem radius data. The objectives of this 
study were to develop semi-parametric 
linear mixed model for stem radius of two 
Eucalyptus (E. grandis × E. urophylla and E. 
grandis ×  E. camaldulensis)  hybrid clones 
and compare their growth potential by 
comparing the estimates for each clone.   

 
2. Materials and Methods 
2.1. Data  

 
A dendrometer trial focused on the 

growth of an Eucalyptus grandis ×  E. 
urophylla (GU) and an E. gradis ×  E. 
camaldulensis (GC) hybrid clones, and the 
trial established on Sappi landholdings 
near the town of KwaMbonambi, in the 
KwaZulu-Natal province of South Africa 
[16], [17], [18], [19], [20], [21]. The trial 
was designed to run over at least nine 
years with separate growth monitoring 
phases. Several wood characteristics are 
measured, and a huge database is 
acquired from the trial. The data used in 
this study are based on the data collected 
from April 2002 when trees were 39 
weeks–old until August 2003 when trees 
were 107 weeks old. Using dendrometers 

repeated measurements of stem radius 
were obtained, during this time, for a 
sample of 18 trees, nine from each clone. 
Nine trees per plot were selected from 
each clone for intensive monitoring of 
radial growth [2], [3], [16], [17], [18], [19], 
[20], [21].  

From the 18 sampled trees (nine per 
clone), longitudinal data of 1242 weekly 
stem radial measurements were obtained. 
The response variable investigated in this 
study was the weekly stem radial growth, 
which is of interest because it can be used 
to understand the underlying processes of 
fiber development in fast-growing 
Eucalyptus plantations. In addition, the 
study of young trees may be very 
important in the selection of a more 
productive tree species. Some studies 
have been made from the data extracted 
from the same Sappi data base. These are 
the study by Drew et al. [3] and studies by 
Melesse and Zewotir [16], [17], [18], [19], 
[20], [21]. One can refer to these studies 
for details of data collection, field 
preparations and soil survey. Some of 
these studies have considered the 
longitudinal nature of the data. However, 
these studies considered the parametric 
modelling approach and none of these 
studies considered the non-parametric or 
semi-parametric approaches.      

 
2.2. Methods 

 
The classical linear regression model and 

cross-sectional study only deal with the 
average change and does not provide any 
information about how individuals change 
over time. The detection of changes in the 
characteristics of the target population at 
both group and individual level can only 
be achieved within a longitudinal study. A 
distinguishing feature of longitudinal data 
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is that observations within the same 
individual are correlated. It is important to 
account for the effect of correlation to 
avoid an erroneous estimation of the 
variability of parameter estimates. This 
interdependence can be modelled using 
mixed models.  

The current data set consisted of 
repeated measurements of the same 
subjects over time. Numerous linear and 
nonlinear mixed-effects have been 
proposed [6], [22], [25], [26] in the 
analysis of the longitudinal data.  Models 
for the analysis of such data recognize the 
relationship between serial observations 
on the same unit.  Most of the work on 
methods of repeated measures data has 
focused on data that can be modelled by 
an expectation function that are either 
linear or non-linear in its parameters [13], 
[18]. However, none of these studies 
considered the non-parametric functions 
in their model. The main objective of this 
study is to show the application of semi-
parametric (additive mixed models) to the 
stem radius data described above.  

The additive model can be formulated 
by admitting the smooth function of some 
predictor variables in the classical linear 
regression model.   
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where: *X  is a model matrix for the 
parametric components of the model, 
α is the corresponding parameter vector 

and the ).(jf  is a smooth arbitrary 

function of a covariate jx ,  ε is the 

vector of random errors. The assumptions 

of the additive model are the same as the 
assumptions in the linear model except for 
the assumption of linear relationship 
between the response and covariates. 
These are homoscedasticity, the error 
variance is the same whatever is the value 
of the explanatory variable, the error is 
normally distributed, and the errors are 
uncorrelated. The inclusion of the random 
effects into the additive model (1) gives us 
the additive mixed model.        
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where: Z is the design matrix for random 
effects b. ε is a vector of random error 
which is independent of b.  
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Both R and Gθ are positive   definite 

covariance matrices. These matrices are 
also assumed to depend on a 
parsimonious set of covariance 
parameters.  The AMM that can have non-
normal response is the GAMM. A GAMM 
has the following structure. 
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where: G (.) is a monotonic differentiable 
function.   A GAMM represents the model 
with higher flexibility and complexity, 
where mixed effects, smooth terms and 
non-normal responses are included [15]. 
These models can be viewed as additive 
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extensions of the generalized linear mixed 
models.   

Statistical inference in generalized 
additive mixed models comprises 
estimations of the non-parametric 
functions (.)jf , the smoothing parameters, 

λ , and all the variance components. In 
the case of Gaussian response and identity 
link function, the estimation of non-
parametric functions, smoothing and 
variance parameters in the context of 
GAMM is achieved using Restricted 
Maximum Likelihood (REML).  

For non-Gaussian response, PQL 
(Penalized Quasi Likelihood) [1] and DPQL 
(Double Penalized Quasi Likelihood) are 
used to estimate the parameters and non-
parametric function [15]. Both PQL and 
DPQL take their origin from maximum 
likelihood (ML) technique. The ML has 
direct application only in fixed models 
with Gaussian response.  The maximum 
likelihood approach is also used in linear 
mixed models; however, the maximum 
likelihood estimators (MLE) of variance 
are, in general, biased. As a result, REML 
estimators are used instead of maximum 
likelihood estimators. 

Both ML and REML assume that the 
response is normally distributed. The 
assumption of normality is often easily 
violated in practice making the likelihood 
inference difficult. In the absence of the 
random effects and errors distributions, 
the likelihood function cannot be 
available. Even in the presence of non-
normal distributions of the random effects 
and errors with some unknown 
parameters, the likelihood function can 
involve quite formidable difficulty in 
calculation and may not have an analytic 
appearance. Moreover, the distributional 
assumptions for any non-normal 
distribution may not hold in practice. 

These problems have led to the attention 
of methods other than maximum 
likelihood. One such method is the quasi-
likelihood also known as Gaussian 
likelihood approach. The computational 
difficulty of the maximum likelihood 
method can be avoided by using quasi-
likelihood.  The REML estimates can be 
derived from a quasi-likelihood [11]. 
Therefore, the Gaussian REML estimation 
can be considered as a method of quasi-
likelihood.   

When the exact likelihood function is 
computationally intractable, there are no 
simple solutions to get the parameter 
estimates. One viable option is to use 
numerical integration techniques. Some of 
these are Gaussian quadrature, numerical 
integration like Markov chain, Monte 
Carlo algorithms, stochastic 
approximations algorithms and penalized 
quasi-likelihood [31]. Penalized likelihood 
estimation has been proposed as a 
computationally simple alternative to 
methods based on numerical quadrature, 
especially when the number of random 
effects is relatively large [6]. The key 
concept in quasi-likelihood is Laplace 
approximation. For details of Laplace 
approximation one can refer to [6], [8], 
[15], [24], [31].  

The Software for GAMM -although 
several R packages (R core team, 2013) 
are developed to fit GAMM, the most 
versatile that can handle modelling the 
correlation structure is the package mgcv 
[28]. This uses the nlme implementation 
of nonlinear mixed models.  It also fits 
non-Gaussian responses by calling MASS’s 
generalized linear mixed model penalized 
quasi-likelihood (glmmPQL). The main 
advantage of this package is that it is 
possible to include serial and/or spatial 
correlation structures of the random 
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effects. In this paper, the package mgcv 
[28] is used to fit the additive mixed 
models. 

 
3. Results and Discussions 

 
At the beginning the AMM that involves 

only tree age as an explanatory variable is 
considered.  The estimated smoothed 
curve together with its 95% confidence 
interval is shown in Figure 1.  

Figure 1 indicates that the relationship 
between stem radius and tree age is 
nonlinear. In this plot the stem radius is 
expressed in mean deviation form, the 
smooth terms )(xs jj , where   jx   stands 
for the covariate tree age is centred and 
hence the plot represents how stem 
radius change relative to its mean, with 
change in covariate under consideration. 

 The interpretation of the scale of the 
graph is as follows: A plot of the variable 
age versus the smooth term, s(Age) , 
shows  the relationship between tree age 

and stem radius. However, the stem 
radius is expressed in mean deviation 
form. Therefore, the smooth term, s(Age) , 
is also centred and thus each plot 
represents how stem radius changes 
relative its mean with change in age. 
Hence, the value of zero on the vertical 
axis is the mean of stem radius. As the line 
moves away from zero in a negative 
direction we subtract the distance from 
the mean to determine the fitted value. If 
the line moves in a positive direction, we 
add a similar distance. For instance, to get 
the fitted value for stem radius when tree 
age is 46 weeks, we need to add the value 
the smooth term, ( s(Age) ) corresponding 
to age is equal to 46 (-10000) in Figure 1 
and   the mean radius (16240.27). That 
means the fitted value when tree age is 46 
weeks is equal to 6240.27. The fitted value 
will be around 21240 micro meters when 
the tree age is about 90 weeks. 

 

 
Fig. 1. Estimated smoothing curve for the simplest AMM model (the solid line is the 

smoother and the dotted lines are 95% confidence intervals) 
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The non-linearity was tested using a 
formal test by comparing a model 
specifying the smooth term with a model 
specifying a linear trend. The difference 
between the two models (linear trend 
versus smooth terms) is statistically 
significant (p-value less than 0.0001). 
Moreover, the estimated effective degree 
of freedom is 7.3 confirming the non-
linearity of the relationship. This indicates 
the inclusion of the non-parametric part is 
important. The effect of tree age on stem 
radius may vary with clone or season. 

Instead of applying one smoother for both 
clones, a model with two smoothers (one 
smoother for each clone) is fitted to study 
the effect of tree age on stem radius. The 
model with clone added is better judged 
by likelihood ratio test statistics (255.7, 
df=2 and p-value < 0.0001).  Therefore, a 
model with one smoother per clone is 
preferable to the model with one 
smoother for both clones. The results of 
the fitted additive mixed model with two 
different smoothers (one per clone) are 
presented in Figure 2 and Table 1.  

 

 
Fig. 2. Estimated smoothing curve for the GAMM model that uses tree age by clone as an 

explanatory variable (the solid line is the smoother and the dashed lines are 95% 
confidence intervals) 

 
The effect of tree age is estimated as 

smooth curves with 6.806 and 6.954 
effective degrees of freedom for GU and 
GC clones respectively. The p-values for 

both smoothed terms are very small (p-
value < 0.0001) and very large value of F 
with corresponding p-value less than 
0.0001 (Table 1). This indicates that the 
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relationship between tree age and stem 
radius remains non-linear after adding the 
clone to the model. The adjusted R2 (the 
square of the correlation coefficient 
between observed and fitted values) is 
0.821.  This shows that there is a strong 
relationship between observed and fitted 
values of the model. 

The QQ plot and the histogram of 
residuals show some non-normality 
(Figure 3). The residuals versus predictor 

plot shows that there is a clear violation of 
homogeneity of variance. The plot of the 
response against fitted value shows that 
there is a strong linear relationship 
between the observed response and the 
fitted value.  Before fitting more 
complicated models (e.g. additive mixed 
models with more complex covariance 
structure), an attempt to extend the 
current model with the effect of more 
than one covariate was made.  

 
Table 1 

The fitted additive mixed model with one smoother of tree age per clone (Maximum 
likelihood estimates) 

Parametric coefficients Estimate Standard error t-value p-value 
Intercept 16240.3 671.6 24.18 < 0.0001 

Approximate significance of smooth terms 
 Edf Ref. df F-value p-value 

s(Age, clone=GU) 6.806 6.806 2925 < 0.0001 
s(Age, clone=GC) 6.954 6.954 1951 < 0.0001 
R-sq.(adj) =  0.821     

 

 
Fig. 3. Model validation graphs for the additive mixed model that has two smooth curves 

of tree age (one per clone) 
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An attempt to fit eight smoothers (one 
for each clone and season combination) 
was not successful due to numerical 
problems encountered.  Instead a model 
with four smoothers for each clone is 
fitted after separating the data into two, 
namely the data for GU and the data GC 
clone. For GU clone, the smoothers for all 
seasons have very large values of F in each 
case with corresponding small (p-values < 
0.0001). This indicates the relationship 
between tree age and stem radius appears 
to be nonlinear for all seasons with a slight 
variation in the values of effective degrees 
of freedom (edf) (Table 2).   

For GC clone, the smoothers for all 
seasons are significant (p < 0.0001) (Table 
3). This shows that the two clones grow in 
an analogous manner which means, in 
both cases, the relationship between tree 
age and stem radius is nonlinear and the 
non-parametric part of the model is highly 
significant. Moreover, the estimates for 
the intercept in Tables 3 and 4 indicate 
the estimates for parametric part of the 
model. The estimated intercept for GU 
clone is larger than that of GC. This shows 
that the GU hybrid is economically viable 
hybrid cross as reported elsewhere [7], 
[18], [19]. 

 
Table 2 

The fitted additive mixed model with four different smoothers of tree age (one per 
season) for the GU clone (Maximum likelihood estimates) 

Parametric coefficients Estimate Standard error t-value p-value 
Intercept 17563 1073 16.37 < 0.0001 

Approximate significance of smooth terms 
 Edf Ref. df F-value p-value 

s(Age, season = Summer) 2.162 2.162 103.45 < 0.0001 
s(Age,  season = Autumn) 3.541 3.541 2469.08 < 0.0001 
s(Age,  season =    Winter) 3.286 3.286 1343.93 < 0.0001 

s(Age,  season = Spring) 2.183 2.183 53.16 < 0.0001 
R-sq.(adj) =  0.818     

 
Table 3 

The fitted additive mixed model with four different smoothers of tree age (one per 
season) for the GC clone (Maximum likelihood estimates) 

Parametric coefficients Estimate Standard error t-value p-value 
Intercept 15101.9 641.1 23.55 < 0.0001 

Approximate significance of smooth terms 
 Edf Ref. df F-value p-value 

s(Age, season = summer) 2.086 2.086 79.98 < 0.0001 
s(Age,  season = Autumn) 3.888 3.888 3150.49 < 0.0001 
s(Age,  season =    Winter) 3.886 3.886 1715.73 < 0.0001 

s(Age,  season = Spring) 2.092 2.092 48.44 < 0.0001 
R-sq.(adj) =  0.899  
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An attempt to fit the model with four 
smoothers of age (one for each season) 
was made by including the interaction 
between clone and season on the 
parametric part of the additive mixed 
model. The results of the model fit show 
that all parametric coefficients and the 
smooth terms are significant.  For summer 
and spring the smoothers have an 

effective degree of freedom equal to one, 
essentially fitting a straight line (Table 4). 
This shows the relationship between stem 
radius and tree age is linear in summer 
and spring by considering the parametric 
and non-parametric effects of clone and 
season.  Figure 4 also confirms that the 
type of relationship between stem radius 
and tree age depends on season.   

 
Table 4 

The fitted additive mixed model with four different smoothers of tree age (one per 
season) with the interaction between season and clone included in parametric part 

(Maximum likelihood estimates) 

Parametric coefficients Estimate Standard error t-value p-value 
Intercept 20338.8 868.0 23.43 < 0.0001 

Clone (GC) -3796.9 1194.7 -3.18 0.00152 
Season (Autumn) -3291.7 407.9 -8.07 < 0.0001 
Season (Winter) -2722.6 468.3 -5.81 < 0.0001 
Season (Spring) -652.4 299.9 -2.18 0.02982 

Clone (GC) ×   Season (Autumn) 1478.2 233.2 6.34 < 0.0001 
Clone (GC)  ×   Season (Winter) 1327.5 239.4 5.54 <  0.0001 
Clone (GC)  ×   Season (Spring) 1025.0 263.6 3.89 0.00011 

Approximate significance of smooth terms 
 Edf Ref. df F-value p-value 

s(Age, season = Summer) 1 1 70 < 0.0001 
s(Age,  season = Autumn) 3.321 3.321 4823.6 < 0.0001 
s(Age,  season =    Winter) 3.307 3.307 2559.2 < 0.0001 

s(Age,  season = Spring) 1 1 175.4 < 0.0001 
R-sq.( adj) =  0. 85 

 
The upper left and the lower right 

panels of Figure 4 show the relationship 
between tree age and stem radius is linear 
in both summer and spring. The upper 
right and the lower left panels of Figure 4 
show the relationship between tree age 
and stem radius in autumn and winter 
respectively. It seems that the relationship 
is clearly nonlinear for autumn and winter. 
A similar model, but without the 

interaction effect of clone and season in 
the parametric part is fitted for 
comparison with the current model under 
consideration. The value of the likelihood 
ratio test statistic is 43.91 with 3 degrees 
of freedom and p-value <0.0001.  
Therefore, we cannot further simplify the 
model with the interaction of clone and 
season. The output for this model is 
presented in Table 4.  
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Fig. 4. Estimated smoothing curves and 95% confidence bands for the GAMM model that 

uses four smoothers of tree age and includes the interaction of season by clone in the 
parametric part 

 
For all parametric methods, the form of 

the underlying relationship between the 
response and the covariates must be 
known in advance. Only a few numbers of 
parameters must be estimated to get the 
relationship between the response and 
covariates. The semi-parametric methods 
can provide a chance for the underlying 
relationships to be estimated in a data 
driven way. That means the type of 
relationship between the variables is 
decided by the data rather than by 
intuitions.  
 
4. Conclusion  

 
The semi-parametric models are 

introduced and applied. It was found that 

the relationship between stem radius and 
tree age can be better explained by a 
nonlinear relationship.  The effect of tree 
age on stem radius varies with season. The 
adjusted R2 used as a measure of the 
relationship between the observed and 
fitted values shows the relationship 
between observed and fitted stem radius 
is the strongest (R2=0.82).  In summary, 
the conclusions made in the semi-
parametric methods agree with that of the 
parametric methods. Moreover, the semi-
parametric approaches can help to 
describe the relationship between the 
response and the covariates in a data 
driven way. In the absence of known 
functional relationship between the 
response and covariate the semi-
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parametric methods are a more 
appropriate choice to model the stem 
radial growth.    
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