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Abstract: Climate change is a challenge for forest managers and owners. 
The trees regenerated in forest stands today will have to cope with changing 
conditions during their lifetime. Adaptive forest management includes a large 
variety of silvicultural measures: changes in species composition by converting 
monocultures to mixed forests, changes in forest structure, intensified thinning, 
or the reduction of rotation time. The aim of this review is to highlight the 
silvicultural measures and practices that have been recommended for 
adaptation to climate change, and to apply Bolte’s classification of adaptation 
strategies in order to identify which type of strategy is recommended in the 
literature. The literature review shows that active adaptation strategy tends to 
dominate as compared with passive adaptation or forest conservation 
measures. On the other hand, active adaptation with intensified thinning, 
shorter rotation periods, and change in the forest structure presents the risk of 
being rejected by a part of society for which climate change adaption should be 
a natural process. In addition, the current policy framework may limit the 
freedom of active adaptation measures. 
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1. Introduction 
 
1.1. Climate Change 

 
Forests are affected fundamentally by 

climate change as a combination of 
warming, alteration of precipitation 
regime, an unpredictable pattern of 
extreme events, and a changing 
disturbance regime [54].  

For forestry, climate change is a 
challenge due to the direct impacts on 
forest ecosystems and the lag effect of 
management decisions on forests [127]. 
The expected effects on forests ranging 
from a different distribution of tree 
species [44], effects on forest productivity 
[97], to increased risk of storms [62] and 
fires [22], increased frequencies of insects, 
pests [99], and drought [1]. 
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Climate change at large scales may have a 
strong influence on forest species 
composition, forest communities, and the 
dynamics and structure of a forest [44], 
[69], [97], [115] because forest response to 
the climate is influenced by topography, 
spatial distribution, and site-specific growth 
conditions, the last two being the result of 
past forest management [33], [114]. 

A large number of studies show that 
climate change is altering flowering, fruiting 
(phenological processes) [6], [92], seed 
establishment and germination, the early 
growth and physiological processes, 
respiration [23, 71], the suitable habitat for 
individual species, community composition, 
and species distributions [24], [94].  

On the other hand, climate change may 
have positive effects on forest 
productivity in some parts of Europe [30, 
78], influencing forest growth in areas 
where the limiting factors are low 
temperatures and short growing seasons 
(higher altitudes and latitudes, oceanic 
NW parts of Europe) [3], [8]. For example, 
Norway spruce forests from Sweden and 
Finland [60] will probably increase their 
productivity [7], if they are not affected by 
insect attacks [14] or windthrows. The 
increased concentration of atmospheric 
CO2 has a fertilizing effect that may boost 
tree productivity, tree growth, and water 
stress tolerance. The effect on drought 
tolerance differs, being dependent on 
many other factors (e.g. altitude, site, tree 
dimensions etc.) [37], [47], [121].  

The interspecific tree competition is 
expected to be altered by increasing 
temperatures [79]. The recent drought 
induced dieback in Central Europe forests 
[1], [74] acknowledged that drought is the 
most significant threat to forests [14], [69]. 

Drought and climate warming may also 
make the growing conditions suboptimal for 

some tree species like Norway spruce, 
affecting mortality, growth, and tree species 
composition in forests [1], [4], [44, [69], 
[117]. In Southern Finland, the reduced soil 
water availability combined with severe 
climate warming is expected to lead to a 
decrease in the growth and increment of 
Norway spruce [21], [58], [100], [117]. In 
Spain, Scots pine forests declined in areas 
close to their dry distribution limit [98] and 
in Flanders, during the late 20th century, the 
growth of common beech (Fagus sylvatica) 
declined [61] and the tree mortality 
increased [1], [10]. 

The high occurrence of environmental 
changes raised concerns because the 
adaptation of trees is not fast enough 
[27]. During their evolutionary history, 
tree species have been exposed to long-
term environmental changes and have 
shown the capability to respond and adapt 
to these changes [43]. However, the pace 
of climate-induced changes would require 
active human intervention for adaptation, 
because the trees regenerated in forest 
stands today will have to cope with 
changing environmental conditions during 
their lifetime [65]. There is a need of 
changing the forest management to help 
forests adapt to the climate change, 
particularly in those highly sensitive 
forests which are most exposed to 
stresses like heavy grazing or extreme 
events (storms, fires) [16]. 

Adaptation to climate change is now 
perceived as a prime challenge for modern 
society [31], [52]. The climate change 
progress represents a new source of change 
and uncertainty which needs attention in 
adaptive forest management [125].  

Climate change adaptation involves 
monitoring and anticipating changes, 
avoiding negative consequences, and taking 
advantage of the potential benefits of those 
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changes [103]. The aim of the adaptation 
strategies is to reduce the vulnerability to 
the increasing threats of natural disasters or 
extreme events, to support and assist the 
stress resistance of forest ecosystems, to 
increase the resilience capacity, and to 
respond to the progressive changes or 
climate extremes [14].  

The adaptation of managed forests to the 
changing environmental conditions must be 
achieved by modifying the traditional forest 
management strategies [67]. 

Reducing stand susceptibility to 
disturbances, lowering disturbance 
impacts, and improving forest resilience 
are urgent requirements for adaptive 
management. Adaptive management 
approaches are recommended at local and 
regional scale with the aim to reduce 
uncertainty and risk.  

In forest management, adaptation 
actions can be grouped into general land 
management options, site-specific 
silvicultural practices, planning options, 
building social and community skills and 
policy [14].  

 
1.2. Silvicultural Measures and Practices 

 
In recent years, the interaction between 

management actions and the climate 
change impacts on forests has been the 
focus of a growing body of empirical 
studies as well as advanced simulations 
[97], [104], [114], [118]. 

In particular, management approaches 
intend to foster adaptation through 
maintaining complex forest composition 
and structure [26], [28]. 

Forest management means a whole 
range of decisions that should be 
considered: choice of species, 
provenances, regeneration approach, 
thinning and tending practices, harvest 

age or size, drainage, protection 
measures, afforestation, deforestation, 
etc. [125]. These measures are not new, 
having been used in forestry long before 
climate change issues [110]. Firstly, forest 
management directly influences the state 
of the forest, but it may also modify other 
existing relations: susceptibility to 
windthrows, consequences of drought, 
and the economic impact of a given 
ecological response (cutting losses, 
enhancing benefits) [125].  

Adaptive forest management includes a 
large variety of silvicultural measures: 
changes in species composition by 
converting monocultures to mixed forests, 
changes in forest structure (conversion 
from even-aged to uneven-aged or 
coppice to high forest), intensified 
thinning or the reduction of rotation 
length [127]. 

The rotation length reduction decreases 
the exposure time of timber crops to risk 
[101, 102], limits the top height reached, 
reducing the risk of windthrows [101] and 
generally reduces uncertainty, allowing 
better adapted species to be replanted. 
Changing the species composition can 
avoid the risks associated with certain 
species, e.g. windthrows and bark beetles 
in Norway spruce [109] or drought-
intolerant species. Trying to use more 
species than recommended is also a risk, 
called in the literature insurance 
hypothesis [36]. 

Forest thinning needs to be more 
aggressive than traditionally practiced, in 
order to stimulate the growth of large 
residual trees, improve drought 
resistance, and provide greater resilience 
to future climate-related stress [59]. 

A range of studies demonstrated that 
repeated thinning during a forest rotation 
increases carbon storage rather than 
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directly clear-cutting short rotation stands 
with no thinning [45]. Also, the carbon 
stock differs according to the thinning 
method (e.g. thinning from above versus 
from below) [26, 90]. For successfully 
coping with forest vulnerability to climate 
change, Austrian Federal Forests has 
promoted mixed stands of species well 
adapted to the changing environmental 
conditions, silvicultural techniques 
fostering complexity and a more intensive 
management [108]. 

The uncertainty is still large regarding 
several climate change aspects [68]; 
changing climate conditions are generally 
foreseen to alter European forests 
significantly, most severely in Southern 
regions [44]. The regional policy 
frameworks, with different degrees of 
freedom in choosing the forest 
management options [81], limit the range 
of possible adaptive management 
activities, yet it is important to have 
flexibility in the adaptation to different 
objectives and perceived future risks [46].  

This study aims to review the literature 
addressing the issue of forest adaptation 
to climate change, with particular focus on 
the recommended silvicultural measures 
and practices, and to provide an overview 
of the potential options to increase forest 
adaptation to climate change for forest 
owners and managers. We applied Bolte’s 
classification of adaptation strategies to 
identify the types of strategies 
recommended in the literature and to 
what extent these strategies are linked to 
a certain climate change threat or a 
certain forest management tradition. 

 
2. Methodology 

 
To access and collect the papers 

relevant for this review, a systematic 

search involved a keyword driven 
approach. We used a combination of the 
following terms: “climate change” AND 
[“forest management” OR “forest 
measures”] and “adaptation” to search 
article titles and abstracts. Two search 
engines were used: “Web of Science” and 
”Google Scholar” and our search yielded a 
gross list of 162 articles. These 
publications were screened and 98 articles 
did not in fact describe silvicultural 
measures or practices for adaptation. We 
created a literature database with 
remaining papers, which provides 
information about author, title, year, 
journal, region, and silvicultural measures 
for adaptation.  

Bolte et al. [13, 14] identified different 
adaptation strategies: 
1. Active adaptation, using silvicultural 

methods (e.g. tending, thinning) to 
change stand structure and 
composition for a forest better 
adapted to climatic change impacts; 

2. Passive adaptation, using spontaneous 
adaptation processes such as natural 
succession and species migration. The 
input efforts are minimized and there 
are reduced possibilities to control 
forest composition, stand structure 
and forest functioning; 

3. Forest structure conservation, with the 
aim to maintain a constant forest 
structure even against the increased 
successional pressure due to 
environmental changes.  

 Based on Bolte and his collaborator’s 
[13, 14] classification of adaptation 
strategies, we grouped the silvicultural 
measures identified as follow:  

1. Active adaptation: increase thinning 
frequency - ITN, increase thinning 
intensity - ITI, reduced rotation length 
- RRL, mixed tree species composition 
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- MTSC, introduction of more adapted 
species - MAS, change in stand 
structure (uneven-aged stand) - UEA;  

2. Passive adaptation: conversion to 
natural vegetation - CNV, increase 
rotation length - IRL, low intensity - 
LI, shelterwood / natural 
regeneration - SNR; 

3. Forest structure conservation: no 
management - NOM, increasing 
afforestation - IAFF (Annex 1). 

We analysed the relations between the 
different variables identified in the 
scientific papers, with the aim to identify  
the factors that discriminate to a great 
extent the set of measures proposed by 
the retained articles [12]. For this purpose, 
we used multiple correspondence analysis 
(MCA). The method is suitable for 
describing, analyzing, and visualizing 
qualitative information contained in a 
table of categorical variables [12].  

Data analysis was performed with R and 
multivariate processing was performed 
with the library FactoMineR [49].  

 
3.  Results and Discussion 
 
3.1. The Scientific Literature Analysed 

 
Our analysis included 64 articles 

published in 30 different journals (Annex 
2). If in the early 2000s there were just a 
few occasional publications, the number 
of publications increased between 2000-
2012 with a drop in 2013-2014, followed 
by a high increase in 2015-2017 and a 
decline after 2017 (Figure 1). The majority 
of studies focused on temperate oceanic, 
temperate continental, and boreal regions 
(Figure 2). The “general” category 
represents review articles or articles 
analyzing all bioclimatic regions.

 

 
Fig. 1. Publications dealing with forest climate change adaptation measures 
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Fig. 2. The number of publications per bioclimatic region 

 
For the articles reviewed, we identified 

12 options of adaptive silvicultural 
practices and measures (Figure 3). The 
two most frequent practices were “mixed 
tree species composition – MTSC” and 
“increase thinning intensity – ITI” 
recommended in 36 articles, followed by 

“reduce rotation length – RRL” (30 
articles) and “introduction of more 
adapted species – MAS” (29 articles). The 
silvicultural measure “low intensity – LI” 
and “increase afforestation – IAFF” were 
recommended in only three articles.  

 

 
Fig. 3. Recommended silvicultural practices in the analysed articles 
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3.2. Correlations between Silvicultural 
Measures and Practices and Types of 
Forests or the Climate Change 
Challenge 

 
The first two dimensions of the MCA 

explain together 37.4% of the variance 
(Figure 4). Dimension 1 is defined by the 
silvicultural measures UEA – change in 
stand structure (uneven-aged stand), IRL – 
increase rotation length, MTSC – mixed 

tree species composition, and ITI – 
increase thinning intensity. The second 
dimension is determined by ITN – increase 
thinning frequency, LI – low intensity, and 
IAFF – increase afforestation. The first 
dimension (green circle) expressed an 
active adaptation strategy, focusing on 
uneven aged forests, with a good mixture 
of species, well thinned and with high 
rotation length.  

 

 
Fig. 4. Multiple Correspondence Analysis of silvicultural practices and measures. 

Abbreviations description: ITN - increase thinning numbers, ITI - increase thinning 
intensity, RRL - reduce rotation length, MTSC - mixed tree species composition,                             

MAS - introduction of more adapted species, UEA - change in stand structure (uneven-
aged stand), CNV - conversion to natural, IRL -  increase rotation length,                                          

LI - low intensity, SNR - shelterwood/natural regeneration, NOM - no management,                                           
IAFF - increase afforestation 

 
If most of the silvicultural measures 

which correlated with the first dimension 
can be included in “active adaptation 
strategy”, those which are correlated with 
the second dimension are not included in 
one single adaptation strategy. ITN is 
included in active adaptation, LI in passive 

adaptation, and IAFF in forest structure 
conservation. However, the second 
dimension expresses a trend to propose 
more frequent interventions, but of lower 
intensity as a means of forest adaptation 
to climate change (blue circle).   
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The Multiple Correspondence Analysis 
results do not offer a clear differentiation 
of silvicultural measures according to 
bioclimatic region.  

Increasing thinning frequency (ITN) was 
recommended in 20 articles, specifically in 
those which analyzed forests from boreal 
(8) and temperate continental regions (5), 
and in only 4 articles, regarding forests in 
Mediterranean regions. This measure 
seems not to be recommended in 
temperate oceanic regions. Instead, 
increase of thinning intensity was 
recommended in 36 articles, 18 articles 
analyzed temperate oceanic and 
temperate continental regions, and only 7 
proposed this measure in boreal forests.  

Reduction of rotation length does not 
represent a viable silvicultural practice for 
Mediterranean regions (recommended in 
only 2 articles), but it represents a 
potential solution for both boreal (8) and 
temperate regions (13). We expected that 
mixed tree species composition would 
dominate the recommended measures in 
temperate regions (16), but we also found 
in 9 cases recommendations of mixed tree 
species in boreal regions. Furthermore, 
the introduction of more adapted species 
was strongly recommended in articles 
which analyzed temperate regions (13) 
and boreal regions (8). Changing forest 
structure from even-aged to uneven-aged 
was recommended in 23 articles dealing 
with forests equally distributed across 
regions.  Increasing rotation length was 
recommended in 13 articles which 
focused on opposite regions: boreal (4) 
and Mediterranean (4). 

Shelterwood or natural regeneration 
measures (16 articles) were 
recommended only for temperate forests 
and in general, since boreal and 
Mediterranean regions are dominated by 
conifers. “No management” was 
recommended as a silvicultural measure 

for adaptation in 11 articles, most 
probably used as a reference for 
comparison with other options.  

 
3.3. Categories of Silvicultural Practices 

and Measures Identified 
 
3.3.1. Active adaptation 

 
The species selection in the 

regeneration phase has a long-term 
impact, but the practices applied after the 
stand is established in order to promote 
target species composition, stand stability, 
quality, and a certain structure have 
effects in the short-term [65].  

Changing the frequency or intensity of 
the thinning activities [65] should support 
mixed stands with more adapted tree 
species coping with climate change via 
diversification [112]. The aim is to increase 
the growth rates of the forest stands from 
the boreal zone [21], [40], and the high 
altitude forests and forest stands from 
drought prone sites [64], [112]. The 
mature and structurally uniform forests 
need measures to increase their structural 
diversity and reduce standing stocks 
through adapted thinning frequency and 
intensity [108].  

Shortening the rotation length 
generates a large volume to be harvested 
and a faster species conversion speed 
[103]. However, shortening the rotations 
period by 10 years and more intense 
thinning proved to have only a moderate 
effect on species composition and total 
biomass [17], therefore the expected 
adaptation effect may not occur at all. An 
increased adaptive potential of tree 
species is believed to be higher in mixed 
stands [63]. These stands are considered 
to be superior to the pure stands in terms 
of productivity [89], ecosystem 
functioning, and resilience [63].  
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The conversion from even-aged Norway 
spruce stands to uneven-aged forests 
influences the competition and has strong 
consequences for forest biodiversity. The 
transformation to uneven-aged forests 
can lead to higher species diversity [5]. In 
the conversion process to uneven-aged, 
the resulted mosaic of uneven and even-
aged structures has higher species 
diversity than each forest structure 
separately. 

 
3.3.2. Passive adaptation 

 
Increasing rotation length usually means 

a higher risk of windthrows and a high risk 
of quality losses [93].  

The promotion of harvesting systems 
which support the natural regeneration of 
suitable species was recommended due to 
increased spatial heterogeneity and 
biodiversity at landscape level [112].  

Natural regeneration offers a direct and 
immediate opportunity to manipulate 
species or stand composition. The 
adaptive response of forest regeneration 
is to increase genetic diversity by 
benefiting from successive fruiting years 
or through weeding and planting in 
natural regenerated stands [65].  

Low-intensive silviculture compared to a 
clear cut system showed a gain in 
biodiversity at stand level. Older stands 
with big trees and great structural 
diversity also mean an increase in 
deadwood. A benefit from low intensive 
silviculture systems was the increased 
number of larger trees despite less 
valuable small-diameter wood [93]. 
However, the sawmill industry and the 
wood-based panel industry are not 
necessarily capable of processing larger 
diameters [101]. 

Assisted migration of more adapted 
species represents an important tool in 
reducing the vulnerability of forest 

ecosystems [29], [123] whereby species 
(often non-native) are intentionally 
transferred to regions outside their 
natural range. Many forest conversion 
activities in Europe in the past decades 
have already applied this approach [73]. In 
regions with significant land degradation, 
the transfer of suitable non-native species 
proved successful in establishing forest 
ecosystems [113]. Assisted migration also 
comprises the choice of appropriate 
provenances, tolerant to extreme weather 
events [20].  

 
3.3.3. Forest structure conservation 

 
Although the “no management” option 

seems to benefit the biodiversity 
objectives [116] and carbon storage [106], 
this cannot be an economically viable 
adaptive management strategy for state 
and private forest owners [119]. Besides, 
some studies show that “no management” 
leads to only a minor increase in species 
diversity at lower elevation and no change 
at medium and higher elevation. This 
means that forests tend to keep their 
monospecific composition even if the 
forest damage increases [48]. The result of 
the no management measure is a high 
number of old trees, whose production 
rate may be less sensitive to climate 
change compared to young trees resulted 
after management intervention, which 
have higher growth rates [48]. 

In afforestation, there are a range of 
measures recommended to respond to 
the climate change challenge. For 
example, planting in drought prone areas 
can be adapted through a wider initial 
spacing of trees in combination with 
rigorous weed control to reduce water 
competition [112]. Shifting planting 
season from spring to autumn and adding 
site preparation could enhance the 
drought resistance of planted trees as a 
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result of initial rooting.  
Since 2017, we have observed a 

decreasing trend in articles about 
silvicultural measures for adapting 
forests to the climate probably due to 
the fact that silvicultural practices will 
not change in the near future [18]. One 
other explanation may be the fact that 
the marginal gain of forest adaptation to 
climate change is low compared to the 
challenges of implementing radical 
changes in the forest management 
strategies. On the other hand, the 
measures proposed should be interpreted 
in the context, e.g. increasing rotation 
length is an option when the forest is 
managed on 80 years’ rotation basis, but it 
may be a risky decision when the forest is 
managed on 140 years’ rotation basis. 

Not only may the implementation be 
fastidious and lengthy in time, but some 
measures assume longer rotation and a 
change towards more drought resistant 
species that may finally lead to a decrease 
in timber production and future incomes 
from the forestry sector [65]. These may 
enhance social opposition, either from 
private forest owners that are directly 
affected by these measures or from 
environmental NGOs that would oppose 
increased human intervention in forests.  

“No management” is not a 
recommended measure for adaptation 
because forest dieback and disturbances 
at large scales following “no 
management” would probably have a 
more drastic economic impact [65].  

 
4. Conclusions 

 
A lot of knowledge about forest 

adaptation and potential silvicultural 
measures has been identified in the 
literature, but practical implementation is 
still lagging behind.  There are few case 
studies where silvicultural measures for 

adapting forests to climate change were 
applied in forest modelling.  

For a successful adaptation of forest 
management to climate change we need a 
difficult-to-reach combination between 
the fundamental research on climate 
change and forest modelling with results 
available at local or regional level, local 
foresters’ expertise on forest 
vulnerabilities and resilience, and an open 
regional political process for negotiating 
the measures to be implemented for 
forest climate change adaptation. 
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SUPPLEMENTARY MATERIAL 
 

Silvicultural measures and practices in bioclimatic regions                     Table 1 
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2      1   1    Temperate 
Oceanic [126] 

3          1   Mediterranean [34] 
4 1      1   1   Mediterranean [85] 
5 1         1   Mediterranean [39] 

6  1 1 1         Temperate 
Continental [72] 

7    1      1   Boreal [91] 

8    1         Temperate 
Oceanic [124] 

9 1          1  Mediterranean [42] 

10  1 1      1    Temperate 
Oceanic [93] 

11             Temperate 
Oceanic [104] 

12 1 1 1          Temperate 
Continental [17] 

13    1         Temperate 
Continental [35] 

14 1         1 1  Boreal [119] 
15  1           Mediterranean [87] 
16   1          General [103] 
17   1  1        Boreal [58] 
18 1  1 1       1  Boreal [50] 

19    1 1        Temperate 
Oceanic [67] 

20 1 1  1       1  Temperate 
Continental [105] 

21  1   1      1  Temperate 
Oceanic [46] 

22   1      1 1 1  Temperate 
Oceanic [15] 

23 1         1 1  Boreal [88] 

24  1  1 1 1   1    Temperate 
Oceanic [114] 

25   1 1         General [82] 
26   1 1 1        Boreal [86] 
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 Bioclimatic  
region Author 

27 1 1 1  1   1     General [57] 
28    1         General [11] 
29 1 1  1      1   Boreal [51] 

30           1  Temperate 
Continental [48] 

31       1 1     Temperate 
Oceanic [25] 

32  1 1  1   1   1  Temperate 
Oceanic [38] 

33 1         1  1 General [55] 

34  1  1 1 1       Temperate 
Oceanic [70] 

35 1 1 1 1 1 1       Boreal [84] 
36  1  1  1  1     General [19] 

37  1 1 1 1   1     Temperate 
Continental [13] 

38 1  1  1    1 1   Temperate 
Continental [109] 

39  1 1 1 1 1       Temperate 
Oceanic [122] 

40 1 1 1 1 1 1  1     Boreal [83] 
41   1 1 1 1       Boreal [84] 
42 1 1  1 1        Boreal [9] 

43  1  1 1        Temperate 
Oceanic [2] 

44  1 1 1  1   1    Temperate 
Continental [112] 

45  1    1    1   Temperate 
Oceanic [32] 

46  1 1 1 1 1      1 Temperate 
Oceanic [75] 

47  1           Boreal [21] 
48  1 1  1      1  Boreal [40] 
49  1 1 1 1 1  1 1  1  Mediterranean [109] 
50  1   1 1       Mediterranean [80] 

51 1 1 1 1 1 1  1     Temperate 
Continental [77] 

52    1 1 1   1    General [111] 
53    1  1       General [76] 

54  1  1    1     Temperate 
Oceanic [66] 

55  1 1 1  1  1     General [56] 
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56  1  1    1     Temperate 
Continental [53] 

57   1 1  1  1     Temperate 
Continental [107] 

58 1 1 1  1   1 1    Temperate 
Continental [96] 

59    1 1 1       Temperate 
Oceanic [73] 

60  1 1  1 1  1     Temperate 
Continental [108] 

61 1 1 1 1 1 1 1      Boreal [41] 
62 1 1 1  1  1 1  1  1 Mediterranean [95] 
63 1 1 1 1 1 1  1  1   General [65] 
64  1  1 1 1       Mediterranean [120] 

Tota
l 20 36 30 36 29 23 4 16 9 13 11 3   

*ITN - increase thinning numbers, ITI - increase thinning intensity, RRL - reduce rotation length, 
MTSC - mixed tree species composition, MAS - introduction of more adapted species, UEA - change 
in stand structure (uneven-aged stand), CNV - conversion to natural, IRL -  increase rotation length, 
LI - low intensity, SNR - shelterwood/natural regeneration, NOM - no management, IAFF - increase 
afforestation. 
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Number of articles published in journals                              Table 2 

Journal/Book Number of 
publications 

Regional Environmental Change 9 

Forest Ecology and Management 5 

Forest Policy and Economics 5 

Forestry 4 

Journal of Environmental Management 3 

Ecological Applications 3 

Annals of Forest Science 3 

Climatic Change 3 

Ecology and Society 3 

Forests 2 

Forestry Chronicle 2 

Canadian Journal of Forest Research 2 

Biological Sciences 1 

Journal of Forestry 1 

Environmental Reviews 1 

Conservation Biology 1 

Mitigation and Adaptation Strategies for Global Change 1 

Unasylva 1 

European Journal of Forest Research 1 

Western Forester 1 

Journal of Forest Science 1 

Tree physiology 1 

Management of European forests under changing climatic conditions  1 

Ecosystem services 1 

New Forests 1 

Environmental Management 1 

Sustainable Forest Management in a Changing World  1 

Global Change Biology 1 

Journal of Applied Ecology 1 
Buying Time: A User’s Manual for Building Resistance and Resilience to 
Climate Change in Natural Systems. 1 

Adapting to climate change in European forests–results of the MOTIVE 
project 1 

Forest Science 1 
 


