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Abstract: Producing dynamic, real-time reliable data on the performance of 
timber harvesting operations has gained lately a lot of momentum due to the 
necessity to proactively manage the fleets of machines and machine allocation 
and to better monitor them in different operational environments to be able to 
understand their capability and performance. Techniques of Artificial Intelligence 
(AI) have been used recently to get accurate data at a low cost in many fields of 
science. In particular, the use of Artificial Neural Networks (ANN) has been proved 
to enhance classification accuracy in many applications. This work deals with the 
effect of factors that are typically used to set up an ANN on the performance of 
classification, by a case time-and-motion study implemented for motor-manual 
tasks under an experimental approach. A protocol was designed to vary the 
number of neurons in a hidden layer, number of iterations to train the ANN and 
the number of folds for cross-validation of data during training. The protocol was 
applied to a set of median-filtered vector-magnitude data collected at a 1Hz 
sampling rate by a triaxial accelerometer which was documented by a video 
approach to encompass five types of events. The results were promising, showing 
that it is possible to accurately classify the data by various performance metrics. 
The overall recall, for instance, may be as high as 98%. However, the number of 
iterations and neurons used to train the ANN are factors that significantly affect 
the classification performance. We conclude that implementing the ANN 
architectures to learn from filtered acceleration data has a lot of potential in long-
term monitoring of motor-manual work and that future studies should be 
implemented to resemble the variation of operational conditions.  
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1. Introduction 

 
Timber harvesting can be carried out by 

the operational implementation of a wide 
set of technical systems [28], which can be 
operationalized in various conditions [33]. 
The choice of a harvesting system, 
however, needs to meet sustainability 
criteria in several performance areas [17], 
[26] that aim at increasing the system’s 
overall performance. Moreover, to ensure 
their sustainable use, such systems need 
to be adaptable and flexible enough for 
the operations carried out by their owners 
[11] and from an optimization point of 
view they need mathematical approaches 
to balance their resource allocation and 
outputs in different key performance 
areas [40]. Such approaches are often 
relying on the data provided by time and 
motion studies [5] which nowadays are 
seen to group all the ways in which time 
consumption is measured and analyzed in 
different work situations, whether the 
work is performed by people, machines or 
is automated [15]. 

Mechanical chainsaws are among the 
tools often used in timber harvesting 
operations [4], [28] being widely 
recognized for their flexibility and 
adaptation to various operational 
conditions [6]. As such, they enable 
cutting functions for a wide set of tree 
dimensions, starting with small trees [9] 
and ending with very large trees [18, 19]. 
Such a variability of conditions in tree 
felling and processing operations is known 
to affect the shape of performance 
functions that could be obtained by 
modelling approaches [2], [18], [38], while 
the derived functions themselves need 
substantial sets of data which is 
challenging in terms of collection, 
processing and analysis [8], [29]. In 

addition, there is often a trade-off 
between the resolution of data collection 
and the accuracy of the collected data 
[37], and taken together, these challenges 
may prevent data availability for system’s 
analysis and design [39] which is the 
backbone of timber harvesting 
optimization. 

Progress has been made to automate 
data collection, processing and analysis for 
motor-manual operations, which are 
known to be carried out by tools not 
equipped with internal production 
monitoring or management systems. For 
instance, [10] and [12] have used external 
acceleration dataloggers to collect event 
data and artificial arbitrary thresholds to 
classify it, an approach that was enabled 
by a clear data separability in the time 
domain. [27] used the same type of 
dataloggers to classify the work intensity 
in manual cultivation work based on 
readily known thresholds, while [22] have 
used sensors incorporated into 
smartphones to monitor and classify the 
work in motor-manual felling. Still, the 
performance of different data 
classification alternatives is under-
investigated in forest operations while a 
promising approach in event separation 
and classification is that of using the 
techniques of Artificial Intelligence (AI). 
Methods of artificial intelligence (AI) 
based on artificial neural networks (ANN) 
are already well-known in multivariate 
computing applications where they are 
used to predict the output of complex 
systems and to solve nonlinear 
multilateral problems [30]. In general, 
ANN is seen as an alternative to traditional 
modelling methods and holds a higher 
generalization, lower susceptibility and 
the ability to model nonlinear 
relationships [16]. As such, when there is a 
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mix of many quantitative and qualitative 
variables, the most effective approaches 
have been nonlinear [3]. In particular, 
Artificial Neural Networks (ANN) stand for 
a group of AI techniques that are used for 
supervised learning from a data sample 
followed by testing the learned algorithms 
on the rest of the data set [16]. The 
technique itself is a promising tool, 
including in forest operations where it was 
found to be able to deal with quite 
complex datasets [36]. 

The aim of this study was to test the 
performance of an ANN in classifying the 
time consumption on events specific to 
motor-manual work under a controlled 
experiment. The focus was on the 
parameters set to train the ANN to see 
which combination of neurons set, 
iterations performed and number of cross-
validation folds used does affect the 
learning and discrimination ability of an 
ANN setup to learn from data collected by 
accelerometers. 
 
2. Materials and Methods 
2.1. Description of the Study Area and 

Protocol Used in the Field 
Experiment 

 

The field phase of the study was carried 
out at the practical learning station of the 
Faculty of Silviculture and forest 
engineering of Brasov (Brasov, Romania, 
45˚37 '00.89'' N - 25˚37'20.08'' E, 660 m 
a.s.l.), in the early spring of 2017. This 
study location was chosen due to the 
possibility of controlling to some extent 
the experimental conditions. Simulations 
of typical motor-manual events were 
carried out by the use of a 2.8 kW 
mechanical chainsaw (Figure 1) 
manufactured by Husqvarna (Husqvarna 
550 XP model). The model is characterized 
by a displacement of 50.1 cm3, idling 
speed of 2800 rpm, maximum power 
speed of 10,800 rpm, and a weight of 4.9 
kg. The experiment was carried out with 
the help of an experienced operator, who 
simulated different tasks specific to tree 
felling and processing (Figure 1). These 
consisted in events of making the felling 
cuts, movements along the logs and 
crosscutting to buck the logs, which were 
intercalated with the observation of the 
chainsaw on the soil and in the hand of 
the operator, both, turned off and in the 
idle state. 

 

 
Fig. 1. Description of the experimental study. Legend: from left to right: operator and the 

chainsaw used, placement of the datalogger on the chainsaw, making felling cuts and 
bucking 

 
The used logs were purchased from a 

harvesting contractor working near the 
study area and they could be classified 
into two groups. The first group that has 
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been used to simulate the felling cuts had 
an average diameter of 30 cm and 
consisted of logs of Norway spruce, while 
the second group had an average 
diameter of 44 cm and beech logs. The 
logs of both categories had a mean length 
of about 4.5 m.  

The main data used in this study was 
collected by a VB 300 datalogger equipped 
with a triaxial accelerometer sensor 
produced by Extech® (FLIR Systems, 
Waltham, Massachusetts, United States). 
The device was chosen mainly due to its 
small size (95×28×21 mm, 20 g), technical 
capabilities (sampling range ±18 g, 
resolution 0.00625 g, accuracy ±0.5 g, 
sampling rates between 50 ms and 24 h, 
internal memory of 4 Mb) and due to the 
possibility to attach it to the chainsaw in 
such a way that would not obstruct the 
tool’s handling (Figure 1). As a trade-off 
between data accuracy and battery life, 
and given the results reported by other 
studies using the same datalogger [10], 
[12] it was set using the dedicated 
software to collect data at a sampling rate 
of 1Hz. In parallel, a high-resolution video 
camera (16 MP) integrated into a 

smartphone (S5, Samsung) was used to 
collect the comparative field data by a 
continuous monitoring of all the tasks 
simulated by the operator. 

 
2.2. Data Preprocessing 

 
Data recorded by the video camera and 

the acceleration datalogger were 
downloaded into a personal computer. 
Video files were transferred from the 
internal memory of the phone, using the 
usual download procedures and were 
stored in a folder, while the data stored in 
the internal memory of the datalogger 
was downloaded through the dedicated 
software and saved in a Microsoft Excel 
worksheet (Microsoft Corporation, 
Redmond, USA, 2010) along with its time 
labels. Then, the video data was analysed 
in slow motion and the observed events 
were separated on their specific time 
intervals. Each event was coded by a string 
(Table 1) and the respective codes were 
used to document the accelerometer’s 
outputs, resulting in a data set (hereafter 
E, containing a number of e = 5 events). 

 
Table 1  

Codes used to document the data and their description 

Event Numerical code Description 
Off 0 Time spent with the engine off 
IdleH 1 Time spent with the engine in idle state, chainsaw held in 

hand 
IdleS 2 Time spent with the engine in idle state, chainsaw on the 

ground 
Throt 3 Time spent with the engine throttled, chainsaw on the ground 
Cut 4 Time spent in cutting, chainsaw held in hand 

 
The data measured by the 

accelerometer and used to build the initial 
database was pre-processed in two more 
steps. First, the vector magnitudes 
(Equation 1) were taken as primary inputs 

from the acceleration dataset because 
they normalize the data collected on the 
three axes and, therefore, they provide a 
magnitude measurement which is 
independent of the datalogger orientation 
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in the three-dimensional space. 
Accordingly, the magnitude of data, 
measured in terms of amplitude in the 
time domain was expected to provide a 
sufficient variation to enable the 
separability of events. This would have 
been true based on the results shown by 
other studies [10]. However, given the 
succession of events at short time 
intervals as well as the transitions in the 
data amplitude (Figure 2), it was necessary 
to filter the initial data to provide a better 
separability. 

Vmj =              (1) 

 
where:  

Vmj is the magnitude of the acceleration 
vector j;  

xj – response on the x axis for 
observation j;  

yj – response on the y axis for 
observation j;  

zj – response on the z axis for 
observation j. 

 

 
Fig. 2. Variation of acceleration’s magnitude data in the time domain showing intra- and 

inter-event amplitude 

 
Filtering of initial data has been done by 

the use of a median filter (MF) and a 
window size (kernel) of 3 seconds (MFk = 3). 
The choice of a median filter was related 
to its ability to preserve the edges at 
transitions in the amplitude’s range [24], 
therefore to preserve the correct timing of 
the observed events. The choice of the 
kernel size set at k = 3 was also a trade-off 
between preserving the acceleration 
signal’s shape in the time domain and 
enhancing the signal-to-noise ratio, with 
the first one trying to preserve short 
spikes that characterized real event 
changes (see, for instance, the 
acceleration magnitude at time frame 660, 
Figure 2). 

2.3. Configuration of the Artificial Neural 
Network 

 
Setup of the ANN was carried out using 

the Orange Visual Programming Software 
[13] and it assumed the use of the 
rectified linear unit function (ReLu) as an 
activation function because it can solve 
nonlinear problems at high performances 
[25], [31]. The stochastic gradient-based 
optimizer (Adam solver) was chosen 
mainly due to its low training costs [23]; in 
addition, it was used a L2 penalty 
regularization term set at 0.0001. Then, all 
the dataset was used for training purposes 
by following a protocol (hereafter Pf×i×n) 
designed to vary the number of folds used 
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for cross-validation (f = 5, 10 and 20, 
respectively), number of iterations (i = 10, 
100 and 1000, respectively) and the 
number of neurons in the hidden layer (n 
= 5, 10, 15, 20, 25, 30, 50, 75 and 100, 
respectively). The approach resulted in the 
successive training of data using a set of 
81 (3 × 3 × 9) combinations which was 
done for the aggregated average data 
contained in E (Overall) as well asfor each 
event (class) contained in E (e= Off, IdleH, 
IdleS, Throt and Cut, respectively). For 
each Pf×i×n and E, a set (RAUC×PREC×REC) of 10 
repetitions were undertaken to train the 
ANN to be able to stabilize its tests 
outputs. Each repetition in R considered 
the computation of the area under curve 
(AUC), precision (PREC) and recall (REC) as 
the ANN training performance parameters 
used in this study. The choice of these 
performance metrics was based on 
approaches commonly used in similar 
studies [20]. Based on the initial data 
contained in each R both, the mean and 
standard deviation values were extracted 
to be able to produce the comparative 
results of this study. The setup of the ANN 
training, as described above, was based on 
the fact that there are many methods 
described to choose the number of 
neurons and hidden layers [21], [34], with 
no consensus so far on the best one to be 
applied to a given case. Also, the meaning 
and interpretation of the AUC, PREC and 
REC performance metrics is described in 
detail in [14] and in other sources such as 
[32] and they are not given herein. 
 
2.4. Data Analysis 

 
Data analysis and comparison was done 

based on simple graphical reporting of the 
values computed for the classification 
performance metrics. Such an approach is 

commonly used to evaluate the 
performance of ANNs and many studies 
have opted for this technique when 
comparing either the performance of AI 
algorithms and methods [22] or the 
performance of different treatments by 
ANN [35]. As such, the classification 
performance metrics were computed R 
times for each E, resulting in 1,458 
average values that characterized the 
possible combinations in P. Based on 
these results, it was assumed that the 
classification performance metrics (AUC, 
PREC and REC) can be cumulated for each 
Pf×i×n such as the values close to 5, 
cumulatively computed for the events Off, 
IdleH, IdleS, Throt and Cut, would have 
been characterizing the best outcomes. 
The Overall event was treated separately 
and reported as such, while for 
comparison, the rest of events were 
plotted graphically for each Pf×i×n. Based on 
the graphical assessment described above, 
each Pf×I was used to see the effect of n on 
the classification performance metrics. 
However, only the findings which met the 
best values of the classification 
performance metrics were plotted as 
results (nine cases), while the rest (18) 
were only discussed in the text. 

 
3. Results and Discussion 
 
3.1. Performance Metrics 
3.1.1. Area Under Curve 

 
As a metric to characterize the 

performance of a classifier, the area under 
curve (AUC) is often used in evaluating the 
performance in the area of receiver 
operating characteristics (ROC) graphs and 
it holds an important statistical property, 
because it is equivalent to the probability 
that a classifier (ANN in this work) will 
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rank a randomly chosen positively 
instance highly than a randomly chosen 
negative instance [14]. In general, the 
higher the AUC, the better the 
performance of a classifier. Figure 3 shows 
the cumulated AUC for each Pf×i×n taken 
into study. It is mentioned that values 
close to 5 were considered to give the 
best performance of the ANN. Two things 

may be discussed as seen in Figure 3. The 
first one refers to the fact that the number 
of iterations (i) had a high effect on the 
AUC performance. As such, those Pf×i×n 
that were fitted using a number of i=1000 
of iterations produced, in general, the 
best results for this classification 
performance metric. 

 

 
Fig. 3. Cumulated AUC for the protocol used to train the ANN 

 
Nevertheless, some cases which had 

used an i=1000 have failed to provide 
good performances (Figure 3), a fact that 
has been associated with the number of 
folds used for cross-validation (f). As a 
fact, the data set from which the ANN was 
trained covered a length of 993 seconds, 
therefore it seems that some events were 
too short to enhance the training of the 
ANN or they were particularly distributed 
across the folds in such a way that 
prevented this attempt. In general, this 

was specific to f=10 and f=20. However, as 
the number of neurons in the hidden layer 
(n) increased, only f=20 has preserved this 
low performance. Therefore, one can 
assume that for better recognition 
performance the number of folds should 
be managed based on the quantity and 
quality of the input data and, as the 
number of neurons increases this can 
balance to some extent also the number 
of folds used. For i=1000 and f<20, it 
seems that the minimum number of 
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neurons needed to produce good results 
were, in general, n≥15. For lower values 
used to setup the ANN, the Off event was 
either unrecognized or poorly recognized 
(Figure 3, left side). For such situations, 
the AUC of the Overall event was found to 
have the minimum value of 0.625 (P5×10×5), 
while the maximum value was of 0.998 

(several Ps). 
Figures 4 to 6 show the effect of n on 

the AUC for i=1000, under the attempt to 
present the best results of the AUC 
classification performance metric. They 
also consider the number of folds used for 
cross-validation. 

 

 
Fig. 4. AUC for P5×1000×n 

 
Fig. 5. AUC for P10×1000×n 

 

 

Fig. 6. AUC for P20×1000×n 
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As shown, increasing the number of 

neurons and decreasing the number of 
folds used for cross-validation can 
contribute to the enhancement of the 
AUC. As a fact, some of the best results 
could be associated to f=5 and to a 
number of neurons n>30 where the AUC 
of the Throt event began to stabilize itself 
(Figure 4). In this case, it seems that one 
could also use a lower number of neurons 
and get a good classification performance 
but still, if f=10, the data shows that for 
n≥10, the performance in terms of AUC 
was more stable for all the events taken 
into study (Figure 5). In comparison, for 
f=20, AUC for the Off event was rated at 0 
(Figure 6). 
 
3.1.2. Precision of Classification 
 

As a classification performance metric, 
precision (PREC) or the positive predicted 
value stands for the fraction of the 
instances identified by a classifier as true 
positives within the total number of 
positively classified instances [14]. For 
multi-class problems, such as that 
described herein, the precision is 
calculated by averaging among the classes 
[20], [32]. By taking into consideration this 
metric, Figure 7 shows the results at Pf×i×n 
level for the same events as described for 
the AUC metric. In this case, however, it 
was quite clear that the number of 
iterations had the greatest effects, with 
i<1000, in general, giving poorer results 

and missing some classes. 
Also, it can be observed (Figure 7, right 

side), that in those cases in which i was set 
to 1000, the number of folds (f) had also a 
low effect. In general, and as the number 
of neurons used to train the ANN 
increased, f=5 provided the best 
performance in terms of precision. For 
i=100, Throt and Off events were missed 
(PREC=0) irrespective of the number of 
neurons, with the worst cases being those 
specific less than 10 neurons. From this 
point of view, n<10 provided poor results 
also in the case of i=1000. Therefore, for 
the analyzed case, good precisions could 
be attained by setting the number of 
neurons to more than 10, holding the 
cross-validation folds to the minimum (see 
the explanations provided to AUC) and 
using at least 1000 iterations. By 
considering the number of iterations, 
some argued that this should be set as 
high as possible providing that it is 
computationally feasible and some have 
used as much as 1,000,000 iterations to 
train their ANNs [36]. However, as the 
value of the i parameter increases, the 
computational cost will increase also, a 
fact that has been found during the 
simulations taken in this study (results not 
shown herein). While in this study the 
background data was limited, under the 
assumption that datasets will be produced 
to cover longer time periods, the 
computational cost could be less 
manageable. 
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Fig. 7. Cumulated PREC for the protocol used to train the ANN 

 
Figures 8 to 10 show the best results of 

the precision as a classification 
performance metric. In general, the 
poorest results were those associated to 
the Throt event, which were similar to the 
situation shown for the AUC. Concerning 

the number of neurons used, it seems that 
n≥30 provided the best results in the case 
of PREC, a fact that was somehow similar 
to the results shown for AUC, and which 
showed a better stability only for f set at 
5. 

 

 
Fig. 8. PREC for P5×1000×n 
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Fig. 9. PREC for P10×1000×n 

 

 

Fig. 10. PREC for P20×1000×n 

 
3.1.3. Classification Recall 

 
Assuming a good performance of the 

AUC, which should not be random, 
probably the most important classification 
performance metric for studies and 
applications such those presented herein 
is the recall metric (REC). This is because it 
shows the fraction of those instances 
classified as true positives (those instances 
that are positive and were classified as 
such) from the total number of positive 
instances [14], even tough some are 
misclassified as negatives [20]. In short, it 
shows how many of the data within a true 
class has been correctly identified by a 
classifier to belong to that class. From this 
point of view, Figure 11 is showing the 
cumulated situation by considering the 

protocol taken into study. Similar to AUC 
and PREC, those Ps that were 
characterized in general by i=1000, and 
n≥30 provided the best results. For n≥25 
and i=100, Off and Thort events were 
missed and for n=5 the results were the 
poorest. The best overall REC was that of 
P20×1000×75 while the worst was, in general, 
that of Pf×10×5. Similar to AUC and PREC, a 
number of more than 30 neurons 
provided the best REC results for each 
event taken into study, as shown in 
Figures 12-14. However, Throt event 
provided the worst results among the 
events taken into study, a fact that was 
similar to those shown for PREC metric; 
also, the data on this metric has shown 
stability for all the events excepting Throt, 
in the range of approximately 30 to 100 
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neurons. Therefore, and by considering 
the importance of this metric from the 
perspective of operational monitoring and 
provision of accurate data to complement 
the traditional time studies and to 
automate to a greater extent this activity, 
one should count on at least 30 neurons in 
the hidden layer as well as on at least 

1000 iterations to train the ANN. Given 
the better stability of the Thort event in 
the case of f=5, one should consider also 
less folds for cross-validation. 
Nevertheless, this is dependent on the 
amount of data used in training and on its 
pattern in the time domain. 

 

 
Fig. 11. Cumulated REC for the protocol used to train the ANN 

 
Fig. 12. REC for P5×1000×n 
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Fig. 13. REC for P10×1000×n 

 

 

Fig. 14. REC for P20×1000×n 

 
3.2. Overall Performance and Impli-

cations for Motor-Manual Work 
Monitoring 

 
While all the metrics used in this study 

are important for the evaluation of 
classification performance, and since they 
stand just for a small part of the 
commonly used metrics (see for instance 
[20]), it is important for applications such 
as that of monitoring and getting time 
consumption data in motor-manual work 
to restrict the available set to those that 
bring the most important contribution. 
Thus, in time and motion studies the 
researcher tries to best describe the 
events and to quantify, as accurate as 
possible, the time consumption on distinct 
events [7], a fact that enables other data 
analysis approaches such as modelling by 
regression or data comparison [1]. From 

this point of view, the most important 
thing is to have a good signal as an input 
as well as a classifier that correctly puts 
the right data in the right category. 
Obviously, this is described by the REC 
metric of the MFk = 3 and, as such, this will 
be discussed further here. 

The best cumulated REC was found in 
the case of P20×1000×75 that corresponded to 
the maximum REC of Overall, Off and 
Thort but not to the rest of events in E, 
even though all the events were preserved 
and had high values for REC. However, the 
most important events for the practice are 
those of cutting, because they provide the 
conversion of tree shape and they are 
targeted by many studies. It is a fact also, 
that within the time structure of motor-
manual work, other movements and tasks 
will account for greater time shares 
compared to the effective cutting. 
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Nevertheless, cutting itself and idle 
working of the engine are those events 
that affect the fuel intake [18], therefore, 
they are those for which an accurate 
accounting is crucial. From this point of 
view, the Cut event had the best REC value 
for P10×10×25 and P20×10×25, respectively. 
However, these situations missed largely 
other events. 

In the analyzed P, the REC value of the 
Overall event, varied between 0.173 and 
0.981 meaning that the ANN classifier had 
the capability to correctly classify in 
between 17.3 and 98.1% of the cases. 
These figures depended largely on the 
number of neurons used in the hidden 
layer and on the number of iterations 
used to train the ANN, while the number 
of folds used in the cross-validation 
process was important also. Therefore, 
the overall recognition was very good for 
n>30 and i=1000, and it is likely that by 
exceeding the i=1000 it will improve 
further. Since the best value of REC was of 
98.1%, worth mentioning that 
classification performance at similar 
figures is rated as being high [20] or as 
being acceptable for 80% [22] for the 
classification accuracy (CA) metric. 
However, CA differs from REC [20]. Even if 
not explicitly given and described herein, 
the maximum values of CA were of 0.981, 
1.000, 0.999, 0.989, 0.988 and 0.988 for 
the Overall, Off, IdleH, IdleS, Throt and 
Cut, respectively. However, by considering 
the classifier’s performance by the REC 
metric which was found to be of 98.1%, 
one may assume that, overall, from one 
hour of study one will misclassify the data 
coming from approximately one minute of 
observation. Whether this is significant or 
not, should be checked by comparison 
with traditional methods. Nevertheless, it 
is less likely for a field researcher to be as 

accurate as not missing more than 8 
minutes per day of study, provided that he 
or she will carry on the study on long term 
and will be affected by fatigue [37]. 

Taking into account the classification 
performance, this study has shown that it 
was less in the case of Throt event, 
irrespective of the chosen metric to 
characterize it. This is not erratic, since in 
this event the chainsaw was operated at 
high and variable speed but not when 
working the wood, therefore it produced 
acceleration data that was variable in the 
amplitude and in the time domain. It 
would have been interesting to see if finer 
sampling rates (more than 1Hz) would 
have been produced more accurate data, 
but at the end of the day, one should 
account for the trade-off between 
accuracy and data storage capabilities. To 
what extent a signal filtering approach 
using higher widow sizes would have been 
improved the results worth exploring. 
However, as the window size increases the 
data set to be used will gradually lose 
observations, a fact that limited the use of 
this approach in this study. 

Last, but not least, this study’s approach 
was that of trial-and-error, therefore the 
results stand within the approach and 
data used in it. It is to be checked if an 
increment in the number of iterations or 
neurons beyond the figures provided will 
improve the accuracy. However, this will 
also lead to an increased computational 
cost. 

 
4. Conclusions 

 
We conclude that implementing an ANN 

architecture to learn from filtered 
acceleration data has a lot of potential in 
long-term monitoring of motor-manual 
work, and this study provides empirical 
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data on the factors that should be fine-
tuned in such attempts. This study was 
experimental and does not resemble the 
typical way of doing this kind of work but 
it includes typical events that could occur 
in such work. It is likely that its replication 
in the real world, which provides much 
longer time windows of given events as 
well as less events, will produce better 
results, a fact that needs to be checked in 
the future. Nevertheless, one can account 
on a good data classification that could 
support the effort of reaching the 
requirements of Big Data Analytics;this 
could be achievable by designing data 
collection devices that could embed ANNs 
and by integrating them into the 
chainsaws, as a first step in the 
automation of field data collection. 
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