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Abstract: In the context of the Bonn Challenge, Pakistan started Forest 

Landscape Restoration (FLR) in 2014. This study assessed growth 

performance and the survival rate of young plantations and developed linear 

regression models by using Landsat-8 data. The results showed that fast 

growing species such as Eucalyptus camaldulensis and Robinia pseudoacacia 

have shown good growth rate as compared to Pinus roxburghii and Cedrus 

deodara. Landsat-8 vegetation indices include Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil 

Adjusted Vegetation Index (MSAVI), Difference Vegetation Index (DVI) and 

Green Normalized Vegetation Index (GNDVI), which were correlated with 

volume (m
3
). RVI has the highest correlation with R

2
 value of 0.88 followed 

by NDVI, SAVI, and GDVI with R
2
 value of 0.83. Stepwise linear regression 

(SLR) showed that MASVI and SAVI have a strong significant relationship 

with volume compared to the rest of the indices. Simple linear regression 

model of RVI and volume has the lowest RMSE (1.19 m
3
/ha) and is 

considered the best for plantation mapping. The temporal assessment of 

afforestation (2013-2018) by Landsat-8 images showed that plantation was 

successful in the sampled sites. The RVI differencing and threshold measured 

area under vegetation was 7,309.7 ha in 2013 and was increased to 9,224.9 

ha in 2018. The study suggested that Landsat-8 data have potential for 

monitoring FLR activities and can be enhanced further when combined with 

other datasets.  
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1. Introduction 

 
Forest areas throughout the world have 

been cleared and degraded due to various 

anthropogenic activities which not only 
decreased tangible and non-tangible 
forest benefits but also contributed to 
climate change. Large scale forest 
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restoration and afforestation are needed 
to combat climate change and rehabilitate 
forest areas for various functions [40]. 
About 1.5 billion ha area has been 
identified for restoration activities and 
afforestation activities; such restoration 
are referred to as “mosaics restoration” 
which can restore productivity, decrease 
social pressure, alleviate poverty by green 
income and sustainable forest 
management [28]. Forest landscape 
restoration (FLR) is the on-going process 
of reclaiming ecological functionality and 
enhancing human well-being across 
deforested or degraded forest landscapes 
[28]. FLR has been around since the 
1980sbut was globally recognized in 2011 
when the German government, the IUCN, 
and the World Resources Institute (WRI) 
invited world leaders to initiate forest 
restoration activities in different countries 
with the objective of implementing 
internationally agreed policy objectives, 
primarily in the land use sector. This 
agreement was formally named the Bonn 
challenge [9, 11]. A target of restoring 350 
million ha of degraded forest land by 2030 
was set in 2014 at the New York Climate 
summit, whereas the previously assigned 
target was restoring 150 million ha of land 
by 2020 [11, 28]. This target is not only 
similar to the Aichi Biodiversity Target 15 
of the Convention of Biodiversity, which 
aimed at the restoration of 15 percent of 
degraded ecosystems [8], but it also 
contributes to the UN goal of enhancing 
forest carbon stocks through 
afforestation, reforestation, and forest 
restoration [43]. 

In the context of the Bonn Challenge, 
the Govt of Khyber Pukhtunkhwa (KP) 
province of Pakistan has shown 
commitment to the FLR through the Green 
Growth Initiative (GGI) [21] under which 

wide-scale afforestation and mosaic 
restoration were promised. Through GGI, 
the KP government started large scale 
afforestation activities in 2014 under a 
project named “Billion Tree Afforestation 
Project (BTAP)” and allocated 150 billion 
USD for forest restoration [25]. BTAP had 
set a target of 0.35 million hectares 
restoration by 2018 and additionally 
thousands hectares plantation were 
planned throughout the Pakistan [25]. The 
main goals of BTAP are (1) restoration of 
forest resources and afforestation on 
degraded areas through participatory 
forest management, (2) generating green 
jobs, (3) combating climate change and its 
adverse impacts by improving existing 
forest ecosystems [19].  BTAP planned to 
plant a billion trees both by planting and 
natural regeneration and this target was 
completed in two phases; Phase-I was 
started in 2014-15 while Phase-II was 
implemented from 2015 to 2018. Besides 
forest restoration, BTAP has multifold 
benefits such as the fact that hundreds of 
private nurseries have been developed 
and have generated green jobs (including 
for young people and women), which has 
boosted local income and livelihood. The 
province forest area has been divided into 
three major circles, i.e., Southern and 
Central, the Malakand, and the Hazara 
circles. The BTAP project was 
implemented throughout the province in 
all three forest circles. The potential 
economic and climatic benefits will be 120 
million USD and 0.04 GtCO2 
sequestrations, respectively. The KP Govt 
claimed that BTAP will increase the forest 
area in KPK from 20 to 22%, tree cover 
from 20 to 30%, and protected areas from 
11 to 15%, by 2018 [26]. 

In addition to field monitoring, the KP 
forest department has used remote 
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sensing and GIS techniques to validate 
departmental plantation activities. Despite 
the importance of forest inventories for 
reliable estimates and information, they 
are expensive and tedious. Remote 
sensing has emerged as an attractive and 
cost-effective method for various forestry 
applications, monitoring, mapping, and 
temporal changes over decades on various 
scales [3, 35].  Landsat data are widely 
used for global, continental, regional, and 
national scales for vegetation research. 
Landsat-8 has relatively fine spectral 
resolution, and its free data availability, 
spatial coverage, and temporal capabilities 
make it one of the most extensive and 
boundless used data for vegetation 
analysis [10]. Various remote sensing 
techniques have been used for forestry 
applications, including spectral indices 
(such as Normalized Difference Vegetation 
Index, Soil Adjusted Vegetation Index, 
Enhanced Vegetation Index, etc.), and the 
spectral band analysis and classification 
methods [24, 27]. Previously, various 
studies used remote sensing and 
geographical information science for 
afforestation and suitable species 
selection [12, 14]. Afforestation, 
landscape restoration, and temporal 
change detection were assessed by the 
NDVI differencing technique [32, 37, 39]. 
This study is advancement to available 
monitoring data on BTAP activities. We 
used Landsat-8 temporal images to study 
the temporal response of vegetation 
indices computed from these images. The 
main objectives of the present research 
are (1) to assess the survival percentage 
and growth rate of afforestation, (2) to 
assess the natural regeneration status 
within plantation areas, and (3) to develop 
the best linear regression models by 

integrating vegetation indices and bands 
to plantation volume (m3).  

 
2. Materials and Methods 

2.1. The study area 

 
The current research was conducted on 

various plantation sites of District Buner of 
Pakistan. The district lies between 340-10′ 
and 34°-43′ North latitudes and 720-11′ 
and 72°-49′ East longitudes (Figure 1). The 
forest types of the area are: dry 
subtropical broadleaved, pure chir pine 
(Pinus roxburghii Sarg.), dry oak (Quercus 

baloot Griff.), and mixed forests of chir 
pine (Pinus roxburghii Sarg.) and blue pine 
(Pinus wallichiana A.B. Jacks.). The forest 
inventory for the present study was 
mainly conducted in chir pine forests. 
These forests extend from about 1,000 to 
1,500 m in elevation. The broadleaved 
species found in these forests are wild 
olive (Olea cuspidate (Perete. & G. Don) 
Cif.), sacred fig (Ficus religiosa L.), pyrus 
(Pyrus pashia Linnaeus), white oak 
(Quercus alba L.), sticky hop bush 
(Dodonaea viscose Jacq.), hackberry (Celtis 

australis L.), blackberry (Rubus fruticosus 

L.), Monotheca (Monotheca buxifolia 

Falc.), and Malabar Nut (Adhatoda vassica 

L.), etc. Regarding the BTAP activities in 
district Buner, the plantation activities 
were conducted in Phase-I (2014-15) as 
well as Phase-II (2015-17). The total area 
for afforestation activities was 2,422 ha; 
out of which 1,130 ha were planted in 
Phase-I, while in Phase-II an additional 
1,292 ha area was afforested. The main 
target areas were Chamla, Daggar, and 
Pacha sub-divisions. The main species 
planted were Eucalyptus camaldulensis 

Dehnh., Pinus roxburghii Sarg., Cedrus 

deodara (Roxb.) G.Don., Robinia 
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pseudoacacia L., and Alianthus altissima 
(Mill.) Swingle. 

 

 

 

Fig. 1. Map of the study area 

 
2.2. Forest Inventory 

 
The simple random sampling technique 

was used to collect data from the 
plantation sites. This design was selected 
for the field measurements because it 
requires less time, less labor, a low cost, 
and easy implementation. The names of 
the selected sites were recorded and the 
areas were accessed with the help of local 
Forest Guards. For this purpose, ten sub 
divisions were selected and circular plots 
were used for data collection. The total 
plantation area to be sampled was about 
936 ha from which a total of 100 plots 
were sampled. Firstly, the center point in 
the plot was located by a GPS receiver and 
a radius of 17.84 m was measured in all 
directions followed by an assessment of 
survival and growth in 5.46 m. All the 
regeneration inside the circle was 

counted, followed by height and diameter 
measurement [3, 34]. Slope correction 
was made with the help of a clinometer. 
The height of the trees was calculated 
with the help of the given formula (Eq. 1): 

 

( ) adtanθH +⋅=                    (1) 

 
where:  

H is the total height of tree [m];  
θ – the angle of tree to the top of the 

tree from observer’s eyes [degrees]; 
d – the distance between the tree base 

and the observer [m];  
a – the observer eye height [m]. 
 
A departmental procedure was adopted 

for the enumeration of pit density and 
later it was upscaled area-wise. The 
average spacing was 10 by 10 feet and a 
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pit density of 1070 was obtained per 
hectare. Pit density was calculated as (2): 

A

23.28D
N

÷
=                      (2)        

where: 
N is the number of pits per hectare; 
D – the distance between two plants 

[feet]; 
A – the area in square meters. 
 
To know about the success or failure of 

any planted species, growth and survival 
of different species were indicators of 
plantation success [29, 44, 48]. The total 
number of pits and empty pits in a plot 
give the overall view of the survival of 
species as lower empty pits depict higher 
survival rate. The sowing was also done in 
the pits and also outside the pits which 
showed better results. The empty pits 
were calculated simply by counting. Plot-
wise survival rates were determined by 
Eq. (3) and were upscaled to site by using 
pit density data and plantation areas. 

100

tN

eN

pS ⋅=           (3) 

where: 
Sp is the survival percentage; 
Ne – the number of empty pits per 

hectare; 
Nt – the number of total pits per 

hectare. 
Sowing of various seeds was also carried 

out in pits either during the plantation 
operation or after plantation. In addition 
to planted or sowed seedlings, natural 
regeneration appeared in areas where 
conservation activities were conducted. 
Assisted Natural Regeneration (ANR) was 
also assessed by counting in areas closed 
for raising plantations which was a simple 
and cost-effective restoration approach 

for FLR [16], because the expenditure on 
ANR is half compared to other restoration 
techniques [5]. Height was a key factor to 
distinguish regeneration establishment. 
Regeneration was considered established 
if it had more than nine inches in height 
and un-established when height was less 
than nine inches. It was found that five 
different species were planted under BTAP 
in the selected sites; therefore species 
composition was also taken into account. 
Moreover, polygon data were developed 
from GPS receiver point data from sites of 
natural regeneration and the same 
polygon data was used in temporal 
assessment using Landsat data. Separate 
polygon data were developed for forest 
covered areas in order to differentiate 
them from grass cover. 
 
2.3. Landsat-8 Image Processing 

 
The remote sensing part used Landsat-8 

for BTAP assessment. Landsat 8 has two 
instruments on board: Operational Land 
Imager (OLI) and Thermal Infrared Sensor 
(TIRS). The Landsat-8 series images were 
downloaded from USGS website 
(https://earthexplorer.usgs.gov/) for the 
years 2013, 2016, and 2018. All the images 
were acquired with minimum cloud cover 
because high quality images were selected 
for spectral indices of BTAP plantations. 
Landsat-8 was passed through a 
rectification process to improve its quality. 
The main preprocessing steps for Landsat-
8 were radiometric calibration, reflectance 
correction, and dark object subtraction 
[3]. After preprocessing, subsets of the 
study area were made both from the 
rectified images to decrease analysis 
computation time. Based on previous 
studies, five vegetation indices (VIs) were 
computed from the rectified images [1, 3]. 
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Among the spectral bands Red and Near 
Infrared (NIR) Bands were used in VIs. In 
the case of Landsat-8, Band 4 was Red and 
Band 5 was NIR. The indices computed 
from Landsat-8 (2018 image) were used to 
assess vegetation indices response for 
model development. Further, the 
reflectance values for all bands were also 
extracted from Landsat-8 images. The 
various spectral indices that were 
computed for all these images were 

Normalized Difference Vegetation Index 
(NDVI), Soil Adjusted Vegetation Index 
(SAVI), Modified Soil Adjusted Vegetation 
Index (MSAVI), Green Normalized 
Vegetation Index (GNDVI), and Ratio 
Vegetation Index (RVI). All indices’ 
formulae and bands are shown in 
(supplementary file Table 1) and they are 
used for forest stock assessment, 
mapping, and monitoring [16, 32].  

 

Vegetation Indices Landsat-8 Product                                       Table 1 

Indices Formula 
Original 

Author 

Normalized Vegetation 
Index (NDVI) 

R)(NIRR)(NIR +÷−  [2] 

Soil Adjusted Vegetation 
Index (SAVI) 

L)(1L))R(NIRR)((NIR +⋅++÷−  [3] 

Modified Soil Adjusted 
Vegetation Index (MSAVI) 

R))-8(NIR-1)NIRsqrt((2-1NIR2[21 +⋅+⋅÷  [3] 

Ratio Vegetation Index 
(RVI) 

RNIR ÷  [49] 

Green Normalized 
Vegetation Index (GNDVI) 

BNIRB-NIR +÷  [4] 

Indices Landsat-8 
Original 

Author 

Normalized Vegetation 
Index (NDVI) 

B4)(B5B4)-(B5 +÷  [2] 

Soil Adjusted Vegetation 
Index (SAVI) 

0.5)(10.5))B4(B5AB4)-((B5 +⋅++÷  [3] 

Modified Soil Adjusted 
Vegetation Index (MSAVI) 

B4))-8(B5-1)B5sqrt((2-1B52[21 +⋅+⋅÷  [3] 

Ratio Vegetation Index 
(RVI) 

(B4)(B5) ÷  [49] 

Green Normalized 
Vegetation Index (GNDVI) 

B2B5

B2-B5

+
 [4] 

 
NDVI is one of the most common indices 

used for vegetation studies. The output 
values range from -1 to +1, the negative 
values represent no plantation and the 
positive values indicate plantation 
success. RVI is ratio between NIR and the 
Red portion of the spectrum because of its 

importance in photosynthesis. The range 
of RVI is from 0 to higher positive values; 
RVI values for bare soils are normally zero, 
but as the vegetation or greenness 
increases, the value increases per pixel, 
thus higher RVI values show more 
vegetation. The SAVI overcome the soil 
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interference in the reflectance values by 
considering the soil factor, which is why 
SAVI can be used in combination with 
NDVI. MASVI is the modified SAVI, which 
enhances its spectral rationing quality 
further. Both SAVI and MSAVI have the 
same range similarly to NDVI. The 
plantations shape file created via ArcGIS 
10.3 was overlaid on computed VIs of 
both sensors’ images. The masked pixels 
values were extracted for all the indices 
and arranged properly in excel sheets. 
Further, temporal change of afforestation, 
NDVI differencing, and change over time, 
were assessed in Landsat-8 [32, 35]. 
 

2.4. Statistical Analysis 

 
The statistical analysis was used to 

assess the relationships of volume (m3) 
against bands and indices [7] which 
include correlation, simple regression with 
one predictor (indices), and stepwise 
linear regression. The independent 
variables for step-wise linear regression 
were spectral indices and bands which 
were regressed against dependent volume 
(m3). The models were developed using 
70% of the field data and 30% data were 
used for validation purposes. Outliers 
were removed during model 
development. The accuracy of the model 
was evaluated by Root Mean Square Error 
(RMSE). The model selection was based on 
highest R2 value, lowest RMSE, and lowest 
p-value. The RMSE  formula is (4): 

 

2

1

^
1
∑ = −= 










n
i

iYYi
n

RMSE      (4) 

where: 
Yi is the measured volume from field data; 

Ŷi – the estimated volume predicted from 
Landsat-8 images; 
n – the number of samples.  
 

3. Results and Discussion 

3.1. Pit Density and Survival Percentage 

 
Results on pit density of all the 

plantation sites is summarized in Table 2. 
Amnawar had the highest number of 400 
empty pits per hectare while Char had the 
lowest number of 26.2 empty pits per 
hectare. Similarly, Char had the highest 
survival percentage 97.5%, while 
Amnawar had the lowest survival rate of 
62.7%. Overall, most sites showed 
excellent survival rate (more than 90%) 
while few sites (Sulay, Gumbat, Amnawar) 
had a good performance. When the 
survival rate was upscaled, to subdivision 
level, the results in Daggar subdivision 
showed that the survival rate was of 
92.24%, whereas in Chamla Forest Range 
the survival rate was estimated at 95.28%. 
The survival rate for Eucalyptus 

camaldulensis Dehnh.m Pinus roxburghii 

Sarg., Robinia pseudoacacia L., Cedrus 

deodara (Roxb.) G. Don was 92, 96, 97, 
and 96%, respectively. Similar findings 
have been reported by [46], who 
estimated the survival rate in Daggar 
subdivision at 94% and in Chamla Forest 
Range at 95%, while in [47] report phase II 
the survival rate in District Buner was 
82.50%. The success behind this survival 
rate (95%) was reasoned by 
supplementing the failed plant pits with 
new ones and proper maintenance. The 
data further revealed that there was no 
significant variation in the survival rate of 
all selected species. Watanabe et al. [45] 
reported a survival rate in the range 23.3- 
97.3% for the Eucalyptus camaldulensis 

Dehnh. plantation. Our results were 
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consistent with FAO findings which 
reported not only quite high survival rates 
(91-95%) for Eucalyptus camaldulensis 

Dehnh. in six months, but also recognized 

Eucalyptus camaldulensis Dehnh. and chir 
pine as suitable exotic tree species for 
afforestation. 

 
 

Pit density and survival rate                                     Table 2 

Name of 
Plantation 

Site 

Area 
[ha] 

No of 
sample 

Plots 

Empty 
Plots* 

Empty/ha 
Total 
No. of 
pits** 

Total 
Empty 

pits 

Survival 
rate 
[%] 

Najdara 56 6 19 31.6 60200 1773 97.0 

Sulay 24 2 58 290 25800 6960 73.0 

Gumbat 58 8 208 260 62350 15080 75.8 

Char 79 12 21 26.2 84925 2073 97.5 

Shuprang 220 13 43 35.8 236500 7883 96.6 

Amnawar 24 4 160 400 25800 9600 62.7 

Jubra 120 13 71 64.5 129000 7745 93.9 

Ambela 
Dara 

43 9 31 38.7 46225 1666 96.3 

Mian 
Dhand 

92 8 35 43.7 98900 4025 95.9 

Korea 
Dara 

120 8 52 65 129000 7800 93.9 

Gharay 
Saparay 

42 8 65 81.2 45150 3412 92.4 

Azghar 58 9 76 84.4 62350 4897 92.1 

Total 936 100   1006200   
* Empty plots are total number of empty pits that were counted in all plots  
**This total number of pits was calculated @ 1075 per hectare. 
 

3.2. Species Composition and Natural 

Regeneration 

 
Out of the planted species (Eucalyptus 

camaldulensis Dehnh., Pinus roxburghii 
Sarg., Robinia pseudoacacia L., Cedrus 

deodara (Roxb.) G. Don, Aliantus altissima 

(Mill.) Swingle), Eucalyptus camaldulensis 
Dehnh. has the highest share, i.e., 83.80%, 
followed by Pinus roxburghii Sarg. With 
14.21%, whereas the percentages of the 
remaining species (Robinia pseudoacacia 

L., Cedrus deodara (Roxb.) G. Don, 
Aliantus altissima (Mill.) Swingle) were 

1.6, 0.32, and 0.09%, respectively. 
Eucalyptus camaldulensis Dehnh. was 
selected for plantation purposes by taking 
into consideration the priority of the 
concerned community due to its fast 
growth, more chances of survival in dry 
conditions, and quick return [47]. 
Regarding ANR (data are provided in Table 
3), the highest regeneration per hectare 
(52570) was observed in Amnawari, 
followed by Sulay and Jubra with 23890 
and 21540 individuals per hectare, 
respectively. While Char, Korea, and 
Ghagary Sparry had the lowest 
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regeneration, there was no natural 
regeneration observed in Ambela Dera 
and Mian Dhand. The composition of 
natural regeneration was 70% of Dodonea 

viscosa Jacq., 24% of Acacia modesta 
Wall., 5% of Zizyphus Mill., 1% Pinus 

roxburghii Sarg., 0.06% Kamila L., and 
0.012% Robinia pseudoacacia L.. Similarly, 
previous studies reported that Eucalyptus 

camaldulensis Dehnh. species was 
selected for dry land industrial and rural 
afforestation [15], greater biomass 
production [36], as bioenergy crop, and to 
meet timber requirements [31]. It can 
tolerate soil salinity problems in denuded 
lands [22]. However, the percentage of 

native species (Pinus roxburghii Sarg.) 
should be increased keeping in view the 
ecological condition of the area. Because 
excess of Eucalyptus camaldulensis 
Dehnh. may have negative impacts on 
natural vegetation in the future, Farias et 
al. [12] reported that the indigenous 
species (Tachigali vulgari L.F. Gomes da 
Silva & H.C. Lima)  should be promoted as 
compared to the exotic Eucalyptus 

camaldulensis Dehnh. Sajwaj et al. [41] 
and Miles et al. [33] also reported similar 
results regarding the exotic species’ 
negative influence on indigenous 
vegetation. 

 
Natural regeneration status                                     Table  3 

Site 
Height 

[inches] Total 
Average number 

of Reg/plot 
Reg/ha 

Total 
regeneration 

<9" >9" 

Najdara 6911 4923 11835 1972 19720 1104320 

Sulay 1914 2864 4778 2389 23890 573360 

Gumbat 5127 3224 8333 1041 10410 603780 

Char 0 3 3 0.38 3.8 300.2 

Shuprang 974 2551 20738 1728 17280 3801600 

Amnawar 11802 9228 21031 5257 52570 1261680 

Jubra 13711 9989 23701 2154 21540 2584800 

 
3.3. Growth Performance  

 
The results of species growth data 

collected in terrestrial measurements are 
reported in Table 4. The results show river 
redgum (Eucalyptus camaldulensis 

Dehnh.) has attained an average girth of 
4.36 cm and a height of 1.5 m in 19 
months, and the average girth and height 
for chir pine (Pinus roxburghii Sarg.) was 
6.53 cm and 0.6 m, respectively in 26 
months. Similarly, the mean girth and 
height of black locust (Robinia 

pseudoacacia L.) was 13.88 cm and 3.65 m 

in 36 months, respectively, while in the 
case of deodar (Cedrus deodara (Roxb.) 
G.Don), the growth was slow as girth was 
3.94 cm and height was 0.70 m in 60 
months. The results show that fast 
growing species including black locust 
(Robinia pseudoacacia L.), tree of heaven 
(Ailanthus altissima (Mill.) Swingle), and 
river redgum (Eucalyptus camaldulensis 

Dehnh.) performed well and were 
considered suitable for social forestry 
programs. In contrast, coniferous species 
are slow growing species and are suitable 
for enclosures within natural forests. 
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Leslie et al. [29] reported similar height 
growth for river redgum (Eucalyptus 

camaldulensis Dehnh.) and found 0.5, 1.4, 
1.5, 2 m height in 5, 14, 29 months, 
respectively. [38] evaluated the monthly 
diameter and height growth of river 

redgum (Eucalyptus camaldulensis 

Dehnh.) over 12 months. Diameter 
increment was recorded from 3.35 cm to 
10.27 cm and height increment was from 
2.15 to 6.56 cm. 

 
 

Age wise growth rate of different species                         Table  4 

Species Site 
Age 

[months] 

Girth at base 

[cm] 

Height 

[m] 

Eucalyptus camaldulensis Shuprang 7 1.8 0.75 

Eucalyptus camaldulensis Jubra 8 1.67 0.78 

Eucalyptus camaldulensis Gumbat 13 2.10 0.94 

Eucalyptus camaldulensis Amnawar 14 1.73 0.68 

Eucalyptus camaldulensis Azghar 20 3.79 1.69 

Eucalyptus camaldulensis Najdara 27 5.98 1.80 

Eucalyptus camaldulensis Mian Dhand 28 3.88 1.52 

Eucalyptus camaldulensis Korea Dara 31 5.01 1.91 

Eucalyptus camaldulensis Ambela Dara 37 10.49 3.13 

Eucalyptus camaldulensis Sulay 50 11.54 3.07 

Ailanthus altissima Jubra 28 6.50 1.75 

Pinus roxburghii Shuprang 14 1.54 0.34 

Pinus roxburghii Amnawar 21 1.98 0.41 

Pinus roxburghii Najdara 34 8.78 0.50 

Pinus roxburghii Mian Dhand 35 5.93 0.72 

Pinus roxburghii Ambela Dara 44 10.18 0.93 

Cedrus deodara Char 60 3.94 0.70 

Robinia pseudoacacia Jubra 28 9.9 2.37 

Robinia pseudoacacia Char 38 14.87 3.97 
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Fig. 2. Spectral Indices of Landsat-8 
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3.4. Correlation and Single Predictor 

Regression (SPR) 

 
Vegetation indices computed from 

Landsat-8 images include NDVI, SAVI, 
MSAVI, DVI, and GNDVI (Figure 2).  The 
correlation matrix shows that RVI had the 
highest correlation among the indices with 
R2 value of 0.88 followed by NDVI, SAVI, 
and GDVI, with R2 value of 0.83. MSAVI 
had the least correlation with volume. 
Regarding correlation between bands and 
volume, negative correlation was 
observed for all of the bands except Band 
5. The highest correlation was observed 
for Band 7 with the R2 value of -0.39 while 
the lowest correlation was shown by Band 
1 (R2 0.27) as depicted in Figure 3. Linear 
regression models were developed 
between vegetation indices and volume. 
The results from Figure 3 show that the 
best performance among the five indices 

was obtained by RVI with R2 = 0.76, while 
the lowest performance was observed for 
MSAVI with R2 = 0.66.  Overall, all the 
indices performed well and showed that 
SPR explained more than 60% of the data 
variation. Barati et al. [7] compared 
various vegetation indices (NDVI, SAVI, 
MSAVI, GNDVI, TVI, DVI, etc.) and has 
found that the MLR model increased the 
R2 values from 0.66 to 0.79. Lu [30] 
studied the impact of forest structure 
attributes in above ground biomass 
estimation using Landsat TM data and 
found that the MLR model was better 
than simple regression. Hese et al. [23] 
used multi-date field inventory and 
Landsat-5 data (TM and ETM) as well as 
techniques of change detection and 
artificial neutral network to map 
afforestation, reforestation, and 
deforestation. 

 

 

 

Fig. 3. Correlation Matrix of Landsat-8 Spectral Indices and Bands with Volume [m
3] 
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3.5. Stepwise Linear Regression (SLR) 

 
The results summarized in Table 5 reveal 

that MASVI and SAVI were selected in 
stepwise linear regression as they had 
strong significant relationship with volume 
(p-value less 0.000), while the rest of the 
indices (NDVI, GNDVI, and RVI) were 

excluded (p-value greater than 0.05). The 
model summary showed that R2 value 
(0.79) was a bit smaller than MLR R2 
(0.80), but a step-wise model has less 
predictor variables (2 variables). As 
compared to MLR, the SLR model is 
resistant to inter-correlation effects 
between model predictors.  

 

Stepwise Linear Regression (SLR) – Indices versus Volume                        Table 5 

Model Summary ANOVA 

R 
R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

.892 .796 .790 1.226 

Regression 394.176 2 197.088 130.940 .000
d
 

Residual 100.847 67 1.505   

Total 495.022 69    

      

Coefficients 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig 

Correlations 

 B 
Std. 

Error 
Beta 

Zero-
order 

Partial Part 

(Constant) .795 .846  .940 .351    

MSAVI 
-

58.723 
8.968 -2.388 -6.548 .000 .752 -.625 -.361 

SAVI 64.332 7.386 3.177 8.710 .000 .816 .729 .480 

Excluded Variables 
Model Equation 

 

Index Sig a. Dependent Variable: Volume 
b. Predictors in the Model: (Constant), MSAVI, SAVI 

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= 
.100). 

Ndvi .875 

Gndvi .875 

Rvi .351 

 
Regarding the SLR of bands and volume 

(Table 6),  Band 7 and Band 5 were 
selected in stepwise method as their 
relationships were strongly significant 
with volume (p-value less 0.000) while the 
rest of the bands (Band 1, Band 2, Band 3, 
Band 4, and Band 6) were excluded (p-
value greater than 0.05). The model 
summary shows that R2 value increased 
from 0.418 to 0.436 as compared to MLR. 
Estornell et al. [18] developed stepwise 
regression analysis for biomass mapping 

using various variables such as spectral 
bands, NDVI, and height metrics derived 
from LiDAR data. The study found that 
using a combination of datasets with Lidar 
improved the accuracy (R2 = 0.79) of 
biomass estimation. Model accuracy was 
assessed with Root Mean Square Error 
(RMSE) and it was found that the Simple 
linear regression model of RVI with 
volume (m3) has the lowest RMSE (1.19), 
therefore considered best spectral index 
for mapping and monitoring plantations. 
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However, the stepwise model (MSAVI and 
SAVI) with RMSE 1.81 can be used for 

mapping (Table 7).  

 
Stepwise Linear Regression (SLR) – Bands versus Volume                   Table  6   

Model Summary
b
 ANOVA

b
 

R 
R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

.661
b
 .436 .420 2.040 

Regression 216.041 2 108.021 25.942 .000
b
 

Residual 278.981 67 4.164   

Total 495.022 69    

      

Coefficients 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig 

Correlations 

 B 
Std. 

Error 
Beta 

Zero-
order 

Partial Part 

(Constant) -.481 1.699  -.283 .778    

band_7 -2.441 .414 -.546 -5.890 .000 -.481 -.584 -.540 

band_5 5.802 1.175 .457 4.936 .000 .380 .516 .453 

Excluded Variables 
Model Equation 

 

Index Sig 

a. Dependent Variable: Volume 
b. Predictors in the Model: (Constant), Band 5 & Band 7 

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= 
.100). 

band_1 .186 

band_2 .179 

band_3 .098 

band_4 .229 

band_6 .069 

 
RMSE for Linear Regression Models                                 Table 7 

Model Regression RMSE 

0.446RVI0.8899
2

RVI0.8553Volume +⋅−⋅=  
Simple Linear 

Regression 
1.19 

0.795savi64.332Volume +⋅+⋅−= msavi723.58  
Stepwise Linear 

Regression 
1.81 

481.0441.2802.5 75 −⋅−⋅= BBVolume  
Stepwise Linear 

Regression 
2.20 

 
3.6. Temporal Change-Afforestation  

 
Temporal assessment of afforestation by 

Landsat-8 images showed that plantation 
was successful in the sampled sites. Figure 
4 shows the values of RVI for the year 
2013, 2016, and 2018. The RVI values 
increased over time due to seedlings or 
regeneration growth. Moreover, this is 

more clearly represented in Figure 5, 
which shows that forested areas have 
increased from 2013 to 2018. The RVI 
differencing and threshold measured area 
under vegetation was 7,309.7 ha in 2013 
and was increased to 9,224.9 ha in 2018. 
WWF [47] also reported similar plantation 
areas in district Buner. Mancino et al. [32] 
used Landsat-TM images to assess the 
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natural expansion of forests from 1984 to 
2010. They computed NDVI and mapped 
vegetation changes over time by NDVI 
differencing and compared it with aerial 
photos. Similarly, Slimani et al. [42] 
adopted NDVI differencing and 
thresholding to highlight vegetation 

density and temporal changes while 
Barakat et al. [6] developed forest density 
classes based on NDVI thresholds and 
Google Earth Images. The classes were 
NDVI <0.1: without vegetation, 0.2 < NDVI 
< 0.4: slightly dense forest, 0.4 < NDVI < 
0.74: dense forest.  

 

  

  

 

Fig. 4. Scatterplots of Spectral indices and Volume [m
3
] 
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Fig. 5. Temporal Change at plantation sites 

 

 

Fig. 6. Plantation Activities of BTAP (Before and After) 
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4. Conclusions 

 
The study concluded that plantation 

activities were successful and have shown 
excellent survival rates and growth 
performance. The composition of natural 
regeneration was 70% sticky hop bush 
(Dodonea viscosa Jacq.), 24% of Acacia 

and some other species including Indian 
jujube (Ziziphus mauritiana Lam.), chir 
pine (Pinus roxburghii Sarg.), kamala tree 
(Mallotus philippensis (Lam.) Muell. Arg.) 
and black locust (Robinia pseudoacacia L.). 
The study indicates that the majority of 
the regeneration, i.e. 75% was established 
(above 9 inches) while only 25% was 
found unestablished (below 9 inches). The 
data revealed that the average survival 
rate was 93.75% which is comprised of the 
Daggar forest sub-division and Chamla 
forest range. In the Daggar Forest Sub-
division the survival rate was 92.24% while 
in Chamla Forest Range it was 95.28%. 
Species composition was 83% river 
redgum (Eucalyptus camaldulensis 

Dehnh.), 14.21% chir pine (Pinus 

roxburghii Sarg.), 1.57% black locust 
(Robinia pseudoacacia L.) and 0.32% 
deodar (Cedrus deodara (Roxb.) G.Don). 
Out of five species that have been 
planted, river redgum (Eucalyptus 

camaldulensis Dehnh.) and chir pine 
(Pinus roxbughii Sarg.) were the major 
species in these plantations. While our 
results showed plantation success, but 
these efforts may largely be unsatisfactory 
in the long-run if issues like lack of local 
community participation, ineffective 
private-sector involvement, and regular 
monitoring, are not addressed [5]. River 
redgum (Eucalyptus camaldulensis 

Dehnh.) was planted in a high number 
which should be reduced and local 

indigenous species should be preferred for 
improving the biodiversity of the area.  

This study used Landsat-8 temporal 
images from 2013 to 2018 to study the 
temporal response of vegetation indices. 
Further, the study provides growth 
performance, i.e., volume, and integrates 
the various spectral indices computed 
from Landsat-8 images. Open-source 
remote sensing products (Landsat-8) have 
a great potential in mapping and 
monitoring large-scale afforestation 
programs. Landsat-8 provides free multi-
date satellite images to forest managers 
for long-term monitoring of forest cover. 
Landsat-8 spectral indices and band ratios 
provide enough information that can 
efficiently be used for Forest Landscape 
Restoration (FLR). However, use of other 
products such as Sentinel-2 can give 
better results because of its higher 
resolution. Further, higher accuracy can 
be obtained by combined use of optical 
datasets, active products (Sentinel-1 or 
SAR), and LiDAR. This integrated approach 
is challenging but possible with additional 
data and expert information. Thus, open-
source products such as Landsat-8, 
Sentinel-2, and Sentinel-1 have great 
potential to map and monitor BTAP 
activities not only in Buner Forest Division, 
but also upscaled to regional or national 
level monitoring with acceptable accuracy. 
There is a need to repeat such studies in 
the future to assess and monitor the 
survival rate and growth performance of 
plantations established under BTAP. Due 
to shortage of time, this study could not 
cover all the sites where plantations were 
established. It is also recommended to 
investigate the impacts of BTAP 
plantations on ecological systems such as 
biodiversity, hydrological patterns, and 
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carbon sequestration after 5-10 years to 
ascertain the impacts on the ecosystem. 
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