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Abstract: Cable yarding remains an important option in steep terrain 

timber harvesting, a reason for which new or improved operational 

efficiency models are required to support science and practice. Developed 

traditionally, these models are known to require many resources, a reason 

for which new approaches to the problem were researched lately, mainly by 

the use of Global Navigation Satellite System (GNSS) data, spatial and 

statistical inference systems. This study evaluates the possibility of using 

GNSS data and machine learning techniques to classify important cable 

yarding events in the time domain. Three classes were assumed by the study 

as being relevant for cable yarding operational setup, namely carriage 

moving in the uphill (MU) and downhill (MD) directions, as well as carriage 

stopped (S). Data collected by a consumer-grade GNSS unit was processed to 

extract some differential parameters which were coupled with GNSS 

motorial and geometric features to feed a Multi-Layer Perceptron Neural 

Network with Back propagation (MLPNNB) in a pre-evaluation phase which 

aimed at mining the data structure as a strategy to develop the best 

MLPNNB configuration for training and testing. Leg distance, difference in 

elevation, speed of the carriage, and difference in heading were used 

together and interchangeably in this phase, based on logical assumptions. As 

a result of pre-evaluation, a MLPNNB using all these datasets was found to 

be the best scenario. Based on this outcome, the data was split into a 

training (70%) and a testing (30%) subset, then the MLPNNB was used to 

learn and generalize on these subsets. The main results indicate that the 

MLPNNB had an excellent performance, with a classification accuracy of 
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98.7, 98.4, and 98.8% in the pre-evaluation, training, and testing phases, 

respectively. Log-loss errors were also found to be very low (5, 5.9 and 4.1%, 

respectively), indicating a high generalization capability of the MLPNNB 

model. Based on the results, the main conclusion of the study is that original 

and derived GNSS data coupled with machine learning techniques could 

prove to be an important tool for operational monitoring and cable yarding 

efficiency model development, mainly due to the possibility of working with 

large amounts of data. 
 

Key words: steep terrain, time study, efficiency, automation, elemental, 

machine learning, classification, artificial intelligence, big data, Forestry 4.0 

 

 

1. Introduction 
 

Cable yarding technology has been the 

backbone of steep terrain harvesting in 

many countries around the world [1], [18], 

[33], [36] and its use has been 

documented by a well-developed body of 

science. For instance, a review paper of 

Cavalli [4] has pointed out that a lot of 

effort has been put into evaluating the 

efficiency of cable yarding technology, 

environmental impact of operations, and 

simulation of cable systems. Efficiency 

assessment remains an important topic 

for cable-based systems, mainly because 

the developed models are used in 

research and operations management, a 

reason for which their reliability is of first 

importance [23]. However, factors such as 

the variability in operational conditions, 

practices and management of forests as 

specific to different regions may affect the 

shape of cable-based efficiency and 

productivity models, a reason for which 

additional model-developing work may be 

required either to improve the existing 

models or to develop models for new 

machines or operational setups. 

Accurate models, on the other hand, 

may come at the expense of many 

resources when developed by traditional 

studies. This is because they are built from 

empirical data which needs to be collected 

in the right amount based on statistical 

grounds, in challenging environments by 

trained researchers [26]. These reasons 

have guided several scholars in 

researching new solutions to the problem 

of cable yarding efficiency assessment. 

Such solutions aimed at overcoming some 

of the mentioned limitations by 

automating the process of data collection, 

processing and analysis, at least in part, 

and they opened new doors for big data 

analysis. For instance, Gallo et al. [12] 

have developed an inference system to 

map and recognize the cycle time in cable 

yarding operations based on GNSS 

parameters such as movement direction 

and speed, by referencing their system to 

an external, arbitrarily-chosen point. They 

found high agreement between manually-

recorded and system-output gross cycle 

time. Cheţa and Borz [6] have used a 

thresholding procedure to extract useful 

information for cable yarding from GPS 

signals and sound pressure level data. 

They were able to detect operational 

events such as moving and stopping of a 

carriage within an error or ± 2%. Since the 

productivity models require 

documentation of production (i.e., 

payload data), Guerra et al. [17] 

attempted to estimate it from GNSS data 
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based on the measured deflection of a 

single-span cable yarder. More recently, 

Gallo et al. [13] have tested a GNSS-based 

system which was able to recognize 98% 

of the work cycles, with a difference in 

gross cycle time of 1% and the overall 

accuracy of separating work elements of 

less than 3%. 

As all of the mentioned studies have 

used GPS-GNSS data, it is becoming 

obvious that this kind of data could assist 

in future new developments and in the 

improvement of the systems designed to 

recognize and classify operational events 

in cable yarding. This is mainly because 

GNSS data holds capabilities of 

documenting motorial (i.e., speed, 

acceleration, heading, distance etc.) and 

geometric (straightness, sinuosity etc.) 

descriptors which along with machine 

learning (ML) algorithms may turn into 

useful tools for the problem of 

transportation mode detection [39]. On 

the other hand, the European cable 

yarding systems were described to fulfill 

several technical functions, namely 

transportation, hoisting, skidding, 

handling, and energy transfer [18]. Among 

these, transportation functions such as 

moving the empty carriage from the 

landing to the stand, stopping and moving 

the loaded carriage from the stand to the 

landing, are essential, both for wood 

extraction and recognition of operations 

in the gross time domain. Compared to 

the GPS trajectories specific to other 

transportation modes, in a given setup 

cable yarding may restrict the variability of 

some motorial and geometric descriptors 

by providing a close to straight line 

between the tail spars, therefore a limited 

range in headings that could be collected 

by GPS, which ultimately may be seen as 

an important simplification in operational 

recognition. In turn, this simplification 

could enable the calculation of differential 

descriptors to make the input data 

invariant to a given geometric setup of the 

cable yarders, therefore would enable ML 

models built on a given cable yarding 

setup to work in recognizing operations as 

specific to other setups. The goal of this 

study was to evaluate if the GNSS-

collected data could be useful in 

recognizing operational tasks in cable 

yarding by a machine learning approach, 

namely a Multi-Layer Perceptron Neural 

Network with Back propagation 

(MLPNNB). The study was based on the 

original and differentially-computed 

descriptors, and it was organized by 

considering the following objectives:                     

i) checking which would be the best 

architecture of the MLPNNB for activity 

recognition and event classification in the 

time domain and ii) checking the 

capability of the selected MLPNNB to 

learn and generalize over the data in the 

time domain. 

 

2. Materials and Methods 
2.1. Data 

 

The data used in this study was collected in 

2017 by a Garmin® 60 stc GNSS unit which 

was placed on the carriage of a Wyssen 

sledge yarder that operated near the city of 

Zărneşti, Braşov County (Figure 1). The 

yarder was rigged to extract the wood 

downhill, a function that was assisted by 

gravity, while the sledge carrying the 

engine was rigged near the tail tree 

located in the uphill end of the corridor. 

Although the share of using cable yarding 

in Romania is low [27], due to its capability 

of saving fuel, this configuration of the 

yarding system seems to be dominant in 

low-access steep-terrain forests, as 
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documented also in recent studies [28, 

29]. The GNSS unit was set to sample 

locations at a rate of 0.2 Hz. Figure 1 

shows the location of the yarder at the 

date of the field data collection, along 

with the relevant features of the cable 

yarder configuration. 

The collected data covered one 

operational day, namely 8200 samples 

collected at a rate of five seconds (11.4 

hours). This included the time needed to 

setup, place, and take down the GNSS unit 

from the carriage. Based on the GNSS 

data, the elevation of the carriage ranged 

between 867 (over the forest road at the 

unloading area, Figure 1b, group of 

locations 2) and 1,054 m (close to the 

uphill tail tree, Figure 1b, group of 

locations 4). The corridor was oriented at 

ca. 45° NE, and its length and average 

slope were of approximately 400 m and 

47%, respectively. Most of the cable work 

during the observed day occurred in the 

first half of the corridor, although some 

turns were done by extracting wood from 

close to the uphill tail tree. 

 

 

Fig. 1. Location of the field study.  

Source: maps built in QGis based on field collected GNSS locations and Bing® aerial data 

 

2.2. Data Processing  
 

The collected data was imported in the 

form of a .gpx file into Garmin® 

BaseCamp® software from where the 

relevant features such as the 

observations’ ID, elevation (hereinafter e, 

m), leg distance (hereinafter d, m), leg 

time (s), leg speed (hereinafter s, km/h), 

leg course (i.e., heading, hereinafter c, °), 

date and time, and position in 

coordinates, respectively, were copied 

into a Microsoft Excel® spreadsheet. As 

most of these parameters are output by 

BaseCamp® in the form of text data (i.e., 

along with their measurement units, in 

concatenated strings), Microsoft Excel® 

functions were used to parse the input 

data and to extract the relevant numeric 

information. The procedure was used for 



S.A. BORZ et al.: Classifying Operational Events in Cable Yarding by a Machine Learning … 17 

the e, d, s, and c variables. Once the 

database was available in this form, the 

non-relevant data covering the GNSS 

unit’s placement and taking down was 

removed from the database. The removed 

data corresponded mainly to those data 

points located in the downhill direction 

from group 2 (Figure 1b) because the 

datapoints from group 1 (Figure 1b) were 

those located near the downhill tail tree, 

where the unit was placed and taken 

down from the carriage. Following the 

removal of this data, the resulted dataset 

contained 7821 observations, covering 

39,105 seconds (ca. 10.9 hours). Once 

prepared, the data was subjected to some 

transformations, with the aim of making it 

invariant to the elevation and course 

characteristics as specific to the study 

location. Nevertheless, the following 

procedures were aimed also at preserving 

the variation brought about by changes in 

elevation due to the uphill and downhill 

movement of the carriage, and by the 

turning points at which the carriage 

engaged itself in the uphill or downhill 

movement. For this purpose, the 

difference in elevation was computed 

according to Equation 1, while the 

difference in course was computed 

according to Equation 2 for each 

observation in the dataset. 

 

1i
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Δ

−
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Δ

−

−=                                      (2) 

 

where: e and c stand for the elevation (m) 

and course (°), respectively, and i stands 

for a given (current) observation. 

 

Three classes were differentiated in this 

study in relation to the carriage state, 

namely moving uphill (hereinafter MU), 

moving downhill (hereinafter MD), and 

carriage stopped (hereinafter S), as these 

three types of states commonly provide 

the information needed to characterize 

the gross work cycle time. All the 

observations were labeled to include them 

in ground truth classes, based on GNNS 

data imported in BaseCamp®. The 

software enables seeing a given selected 

location on the map as well as scrolling in 

the data point-by-point either manually or 

by playing the movement at a given 

speed. These actions update the location 

of a given data point and they allowed for 

a differentiation in the movement states 

of the carriage (MU, MD) as well as in 

detecting when the carriage was stopped 

either along the corridor or over the 

landing area. Although movement 

labelling was based on seeing evident 

changes in the distance followed by the 

carriage along a direction (course), there 

were few cases in which movement 

occurred successively in the uphill and 

downhill direction on relatively short 

distances, which could have been 

confused with potential errors caused by 

GNSS signal loss. Since these movements 

were oriented along the general heading 

of the corridor and they may occur in 

practice, the corresponding data was 

labelled as movement. 

 

2.3. Data Analysis 
2.3.1. Description of Data 

 

A first step in the statistical analysis was 

the description of data, which was done 

by means of boxplot charts to characterize 

the input parameter data at the true class 

level. Accordingly, boxplots were 

developed for the d, Δe, s, and Δc 

variables. To characterize the class 
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balance, observations from the true 

classes were described in terms of relative 

frequencies while the quality of the data 

was also characterized in the form of 

Signal to Noise Ratio (SNR) and the 

coefficient of variation (CV), by using the 

formulae described by Smith [35]. 

 
2.3.2. Data Pre-evaluation 

 

Finding the best configuration of an ML 

model in terms of architecture and 

hyperparameters is a challenging task, 

which depends on the data structure. For 

MLPNNB models, the parameters that can 

be tuned are those related to the 

architecture, such as the number of 

hidden layers and hidden neurons per 

layer, and to the way of controlling the 

learning and generalization process, 

namely the activation function and solver, 

the regularization term (L2 penalty norm), 

and the number of iterations. When 

dealing with multi-modal signals or with 

the possibility of fusing data [5], 

supplementary questions may arise in 

what regards the potential contribution of 

the information carried by respective 

signals to the performance of the ML 

algorithm.  

To infer the best configuration of the 

MLPNNB, all the available data (7821 

observations) was used to train the 

algorithm by keeping the size of the 

network at its maximal values for the 

depth (number of hidden layers set at 3) 

and width (number of neurons per hidden 

layer set at 100), as enabled by the 

software used (see section 2.3.5). This was 

based on the findings and 

recommendations in previous studies [7], 

[16]. Irrespective of the input data used, 

the number of iterations was set at 

1,000,000, and the model training was 

done by cross-validation based on a 

number of five folds. Other fixed 

parameters were the activation function 

used – ReLu (rectified linear unit) – which 

was chosen based on the 

recommendations of Goodfellow et al. 

[16] and the results reported in the 

relevant literature [25], [31], and the 

solver – ADAM (the stochastic gradient 

descent-based optimizer) which is one of 

the most recently-developed optimization 

algorithms standing out for its low training 

costs [22]. 

The parameter of the regularization 

term (α) is commonly used to avoid 

overfitting; increased values of α may help 

fixing high variance while decreased 

values may help fixing high bias [16], [37]. 

To tune the MLPNNB algorithm, values of 

0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 

were used for α, which aimed, on the one 

hand, at fixing high bias and, on the other 

hand, at producing local minima and 

maxima in the performance metrics (see 

section 2.3.3) to help choose the best 

configuration of the MLPNNB for a given 

input dataset.  

Several data input scenarios were 

considered to infer the best architecture 

of the MLPNNBB in which the datasets 

were chosen based on logical reasons. In a 

first scenario (hereinafter S1), variables d, 

Δe, s, and Δc were used as inputs in the 

MLPNNB and training of the algorithm was 

done by considering the varying values of 

α, as mentioned above. Then, the second 

(hereinafter S2, dataset: Δe, s, and Δc), 

third (hereinafter S3, dataset: Δe and s), 

fourth (hereinafter S4, dataset: s), and 

fifth (hereinafter S5, dataset: Δc) scenarios 

were designed to alter the number of 

input variables and to train the algorithm 

based on the same variation in the values 

of α. However, the choice of variables in 
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these scenarios was based on their 

supposed capability of differentiating 

between the data contained in true 

classes. 

As a final step in the pre-evaluation, the 

best input data scenario was selected by 

comparing the values of performance 

metrics (see section 2.3.3) returned at the 

overall level by the five tested scenarios. 

This was based on developing and 

analyzing graphs of the performance 

metrics returned by the tested data input 

scenarios against the regularization term. 

 
2.3.3. Performance Metrics 

 

The performance metrics used in this 

study were Area Under the Receiver 

Operating Characteristic Curve 

(hereinafter AUC), Classification Accuracy 

(hereinafter CA), F1 score (hereinafter F1), 

Precision (hereinafter PREC), Recall 

(hereinafter REC), Cross-Entropy (LogLoss, 

hereinafter LOGLOSS), and specificity 

(hereinafter SPEC). The definitions, 

properties, and interpretation of AUC, CA, 

F1, PREC, REC, and SPEC were discussed, 

for instance, in the papers of Fawcett [11] 

and Kamilaris and Prenafeta-Boldú [19]. 

The LOGLOSS metric is defined according 

to the equation from https://scikit-

learn.org/stable/modules/generated/skle

arn.metrics.log_loss.html [24]. These 

performance metrics were used both in 

the data pre-evaluation phase, where the 

aim was to identify the best configuration 

of the MLPNNB, and in the training and 

testing phases, where the aim was 

twofold, namely to see if the trained 

dataset has preserved the performance of 

that from the data pre-evaluation phase, 

as well as to check the generalization 

capability of the trained model. For these 

purposes, the maximum values of AUC, 

CA, F1, PREC, REC, and SPEC and the 

minimum value of the LOGLOSS 

performance metrics were criteria used to 

select the best scenario form sets S1-S5, 

as well as to examine the performance of 

the MLPNNB in the training and testing 

phase. 

 
2.3.4. Training and Testing 

 

For training and testing purposes, the 

dataset was split in two subsets of which 

one containing 70% of the data was used 

for training (hereinafter TRAIN) and the 

second, containing 30% of the data was 

used for testing (hereinafter TEST). Figure 

2 shows the two partitions of the original 

dataset along with the three true classes 

plotted in the time domain. As shown, the 

events were relatively balanced in terms 

of frequency in the two datasets. Their 

occurrence in the time domain was also 

specific to the typical structure of a cable 

yarding work cycle, namely an empty turn 

(MU), stopping for lateral yarding (S), 

loaded turn of the carriage to the landing 

(MD), and stopping for lowering the load 

(S).  

The best model architecture was then 

used to learn from the TRAIN dataset. 

Following model training and saving, it 

was tested on the TEST dataset. The 

performance metrics described in section 

2.3.3 were used to evaluate the 

performance of the model following the 

training and testing phases. 
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Fig. 2. Partition of the original data into subsets for training and testing. 
Legend: S – carriage stopped, MD – carriage moving downhill, MU – carriage moving uphill 

 

2.3.5. Computer Architecture and 
Software Used  

 

The tasks of pre-evaluating the data as 

well as the tasks of training and testing 

the MLPNNB were run on a computer 

architecture that included the following 

features: system type - Alienware 17 R3, 

processor - Intel
®
 Core™ i7-6700HQ CPU, 

2.60GHz, 2592 MHz, 4 cores, 8 Logical 

Processors, installed physical memory 

(RAM) - 16 GB, operating system - 

Microsoft Windows 10 Home. BaseCamp® 

was the first software product used to 

import the GNSS data in the form of a .gpx 

file. The same application was used to 

move the data to Microsoft Excel® and to 

label the observations collected in the 

field. In addition to storing the data, 

Microsoft Excel® on which the Real 

Statistics package was installed was used 

to produce most of the artwork needed, 

as well as to sort the data and to apply 

functions for data parsing and 

transformation. The software used for 

data pre-evaluation, training, and testing 

in the form of MLPNNB was the Orange 

Visual Programming Software, 3.31.1 

version [10], which holds the necessary 

functionalities for implementing Multi-

Layer Perceptron models with Back 

Propagation, including data normalization 

if not specified otherwise by a given data 

processor. The software enables the 

creation of workflows designed for 

specific statistical tasks by means of 

interconnected widgets. In this study, 

Data, Neural Network, Test and Score, 

Save Model, Load Model, and Predictions 

widgets were used to pre-evaluate data, 

train and test the MLPNNB. 

 
3. Results and Discussion 
3.1. Description of Data 

 

The total number of observations taken 

into the study accounted for 7821. Of 

these, 182 (2.3%), 281 (3.6%), and 7358 

(94.1%) were labelled as MD (moving 

downhill), MU (moving uphill), and S 

(stopped), respectively. Looking at the 

data, it was found that the distribution of 

observations on true classes was highly 

unbalanced, with relatively close shares of 

carriage-moving classes (MD, MU) and a 

very high share of the stopped state (S). 

These results may be explained by two 

factors, namely the distances at which the 
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carriage was moved, which were relatively 

short, as well as the speed at which the 

carriage moved during the empty and 

loaded turns. These factors commonly 

lead to shorter durations of carriage-

moving work elements as compared to 

other tasks such as lateral skidding and 

attaching the load, therefore highly 

unbalanced classes are expected to also 

occur for increased extraction distances. 

For instance, Munteanu et al. [28] found 

shares of 7 and 9% of the cable yarding 

cycle time for uphill (empty) and downhill 

(loaded) movement of the carriage, for a 

similar configuration of the cable yarder 

which operated in thinning operations on an 

average extraction distance of ca. 300 m. 

Figure 3 shows the main descriptive 

statistics of the parameters used as input 

data for classification. Leg distance (d, 

Figure 3a) averaged ca. 16, 11 and 1 m for 

moving downhill (MD), moving uphill 

(MU), and stopped (S) classes, results 

which are consistent with the practice of 

cable yarding operations as well as with 

the results shown for the moving speed 

(Figure 3c). 

 

  
a b 

  
c d 

Fig. 3. Class-level descriptive statistics of the parameters used as input data 
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Concerning the leg distance and speed 

parameters, one could conclude that the 

average speed of the downhill movement 

was cca. 3 m/s (ca. 11 km/h, Figure 3c), 

while that of the uphill movement wasca. 

2 m/s (8 km/h, Figure 3c), results which 

are similar to those reported in other 

studies characterizing the movement 

speed in loaded and empty turns [12]. In 

other studies which approached a cable 

yarding configuration similar to the one in 

this study, movement speeds were 

reported to be slightly higher [28, 29]. In 

what regards the Δc parameter, it seems 

that the approach of calculating the 

differences in course (heading) was useful 

in delimitating carriage movement from 

stopped states more clearly. In this regard, 

some high values were preserved in the 

datasets of the MD and MU classes; 

however, the median and mean values 

were low as opposed to S. To summarize, 

based on the results shown in Figure 3, 

there were differences in the variability 

and central tendency of the data 

characterizing the true classes, facts which 

could concur with a potentially high 

classification performance. Nevertheless, 

there was also an evident interclass 

similarity, which is seen as a limitation for 

highly-accurate classification [3]. 

Table 1 summarizes the main statistics 

characterizing the quality of the signals 

used as data inputs for classification. 

Based on the results, the signals used as 

data input were rather noisy, with SNR 

values ranging from 0.42 to 2.06. 

Accordingly, the coefficients of variation 

(CV) had high values indicating a high 

intraclass variability. 

 

Table 1 

Signal to Noise Ratio (SNR) and the Coefficient of Variation (CV) of the parameters 

Parameter (d, m) (Δe, m)* s (km/h) (Δc, °) 
True class MD MU S MD MU S MD MU S MD MU S 

SNR 2.06 1.72 1.18 1.55 1.42 0.57 2.05 1.73 1.26 0.42 0.50 1.12 

CV (%) 48.66 58.06 84.86 64.51 70.64 176.71 48.87 57.86 79.31 235.51 201.89 89.27 

  Note: *negative values were changed to their positive equivalents. 

 

Excepting the Δc parameter for which 

the SNR values were the highest in the 

case of the S class, the MD and MU classes 

returned higher values in this regard as 

compared to S, potentially showing a 

better suitability for a more accurate 

classification. However, the values of the 

SNR statistic were low irrespective of the 

class and parameter. 

 
3.2. Pre-evaluation 

 

Based on the data input scenarios and 

the hyperparameter tuning strategy 

described in section 2.3.2, a number of 35 

data pre-evaluation tests were carried 

out, which accounted for an effective 

computing time of 21,204.288 seconds 

(ca. 5.9 hours). Although all the 

performance metrics (see section 2.3.3) 

were computed at both overall and class 

level and graphically represented against 

the variation of the regularization term, 

due to the limited space, Figure 4 shows 

only the variation of the most important 

ones at the overall level, namely the 

classification accuracy (CA), recall (REC), 

and log loss (LOG LOSS). Nevertheless, the 

following discussion is based also on the 

value of the rest of the performance 

metrics. 



S.A. BORZ et al.: Classifying Operational Events in Cable Yarding by a Machine Learning … 23 

 

 
a 

 
b 

 
c 

Fig. 4. Classification accuracy, recall, and cross-entropy parameters as a function of the 

regularization term (α) and data input scenario (S1-S5) 

 

Looking at the data, the most accurate 

strategy of building the MLPNNB was that 

specific to scenario S1 which used as input 

data all the parameters (d, Δe, s and Δc) 

and a regularization term set at α=0.1. To 

describe the results, the highest values of 

the Area Under the Receiver Operating 

Characteristic Curve (AUC) were those 
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returned by S1 and α set at 1 (AUC = 

0.983) and 0.1 (AUC = 0.982), respectively 

(data not shown herein). Having in mind a 

minimal input of datasets as a criterion of 

selection when ties in values occurred, 

classification accuracy (CA) returned the 

highest overall values for S1 and α set at 

0.1 (CA = 0.987) and 1 (CA = 0.986), 

respectively (Figure 4a). F1 metric had the 

highest values for S1 (α=0.1, 0.986) and S2 

(α=0.1, 0.986), precision (PREC) for S1 

(α=0.1, 0.986) and S2 (α=0.1, 0.986), and 

specificity for S1 (α=0.1, 0.872) and S2 

(α=0.1, 0.860). Recall (REC, Figure 4b) 

returned the highest values for S1 (α=0.1, 

0.987) and S2 (α=0.1, 0.986), while                        

cross-entropy (LOG LOSS) returned the 

lowest values for S2 (α=0.1, 0.050) and S1                   

(α=0.1, 0.051).  

Any of these performance metrics can 

be expressed as percents if multiplied by 

100, therefore, in the pre-evaluation 

phase, the highest classification accuracy 

was of 98.7% (S1, α=0.1), the highest 

recall was of 98.7% (S1, α=0.1), and the 

lowest log loss was of 5% (S2, α=0.1). 

Accordingly, S1 with α set at 0.1 was 

selected as a strategy for training and 

testing the MLPNNB. For this scenario, 

Table 2 shows the values of performance 

metrics at overall and true class levels. 

 

Table 2 
Performance metrics of S1 (α = 0.1) in the pre-evaluation phase           

Performance metrics Dataset and 
true classes AUC CA F1 PREC REC LOGLOSS SPEC 

Overall 0.982 0.987 0.986 0.986 0.987 0.051 0.872 

MD 0.993 0.995 0.876 0.921 0.835 0.018 0.998 

MU 0.977 0.989 0.845 0.887 0.808 0.038 0.996 

S 0.985 0.989 0.994 0.991 0.997 0.041 0.864 

 

As shown, the classification accuracy, 

which is the ratio of correctly classified 

instances as true positives and negatives 

to all the instances of a dataset (true 

positives, true negatives, false positives, 

and false negatives), was close to 100% in 

the case of the MD class and it was close 

to 99% in the case of the MU and S 

classes. However, the recall parameter, 

which is the ratio of positives correctly 

classified to all the positives, was of ca 88, 

85, and 99% in the case of MD, MU, and S, 

respectively. The lowest log-loss error was 

that of the MD (0.018) class while it was 

relatively the same for the MU (0.038) and 

S (0.041) classes. 

 

3.3. Training and Testing of the MLPNNB 
 

Excepting the log loss, following the 

training phase (Figure 5), the values of all 

the performance metrics decreased as 

compared to those returned by the pre-

evaluation tests. As such, a performance 

dilution occurred due to changing the 

quantity of underlying data. However, the 

changes were minor, accounting for 0.3% 

in the case of CA and REC. Log loss error 

increased in the training dataset by 0.8%. 

Altogether, these small differences 

supported the attempt to pre-evaluate the 

data with the aim of building performant 

MLPNNB models for training and testing 

purposes. This was also emphasized by the 
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results on performance metrics obtained 

in the testing phase (Figure 5), which 

showed values higher by 0.1 to 0.2% (CA, 

REC) and lower by 1% (LOGLOSS). 

Therefore, the classification performance 

increased as the generalization error 

decreased in the testing dataset. 

 

 

Fig. 5.Comparison of the pre-evaluation, training, and  

testing performance metrics (S1, α=0.1) 

 

To prove that the performance of 

classification actually depended on the 

inclusion of all parameters, Figure 6 was 

prepared to show the probabilities 

associated with correctly classifying given 

instances into the three classes. For 

example, high values of d (up to 30 m, 

Figure 6a) indicate lower probabilities of 

classifying a given instance as S and higher 

probabilities of classifying it as MD or MU. 

Higher differences in elevation (Figure 6b) 

were more likely to classify an instance as 

moving. 

Same held true for speed, as there were 

lower probabilities to classify an instance 

as S for high speeds and vice versa, to 

classify instances as MD and MU when the 

speed was low (Figure 5c). In what regards 

the difference in heading (Figure 6c), the 

probability of classifying an instance as S 

increased as the value of Δc increased and 

vice versa, as the value of Δc decreased, 

the probability of classifying a given 

instance as movement generally 

decreased. Altogether, the data shown in 

Figure 6 proves the utility of the selected 

parameters in training and testing 

accurate MLPNNB models to differentiate 

between given work elements. However, 

Figure 6 also proves the fact that a high 

classification performance may be 

achieved only by using these parameters 

in conjunction. 
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Fig. 6.Probability (P) of correctly classifying given instances in the MD (moving downhill), 

MU (moving uphill), and S (stopped) classes plotted against the variation of leg distance 

(d, m), difference in elevation (Δe, m), speed (s, km/h), and difference in course (Δc, °), as 

returned by the testing phase 

 

3.4. Discussion 
 

While there is a high body of literature 

on cable yarding performance assessment 

by various techniques, the discussion 

given in the following aims at synthetizing 

the results of this study in the view of 

similar approaches to the problem. In 

what regards the features used to feed 

the MLPNNB, the study has found that all 

of them were important contributors to 

the classification performance. Based on 

GNSS data, several studies reported a 

range of carriage moving speeds, starting 

from ca. 2 and ending with ca. 5m/s, and 

all of them agreed that two classes of 

speed could be differentiated as empty 

and loaded moving of the carriage [12, 

13], [28, 29]. Accordingly, the speed of the 

carriage would remain an important 

parameter in developing automated event 

recognition systems in cable yarding, 
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mainly because it carries the information 

needed to distinguish between the 

stopped and moving states and between 

the two main types of carriage 

movements. In this study, the speed 

parameter played an important role in 

classification accuracy and it was 

interrelated to the leg distance parameter 

with which it was highly correlated (data 

not shown herein). On the other hand, the 

contribution of each parameter taken 

individually, or in association as smaller 

subsets built on logical reasons has been 

proved to be a less efficient strategy to 

increase the classification accuracy and 

generalization ability of the MLPNNB in 

the pre-evaluation phase. Hence, the 

combined use of all the parameters could 

provide increased classification accuracies 

as compared to what could be expected 

by using them alone or in combinations 

that exclude some of them. 

This study is based on a specific 

configuration of the cable yarder which 

was rigged to extract the wood downhill, a 

function which was assisted by gravity. 

There are many other rigging 

configurations in which a cable yarder may 

work, including those used to extract the 

wood uphill or to work on flat terrain [14, 

15], [32], [38]. These commonly used 

configurations need to be accounted for in 

the features used to develop an 

operational recognition system with the 

aim of making the statistical learning 

algorithm invariant to given setups. While 

the speed and leg distance were kept in 

the form provided by the GNSS data, 

elevation and course were transformed by 

differentiation in this study. Then, 

assuming the existence of a good GNSS 

signal, the two moving states could be 

learned by differentiating the elevation of 

a given location in relation to the previous 

one, while using the absolute value of 

elevation would have probably led to 

learning based on a given cable yarder 

configuration, therefore to a limited 

capability in generalizing on new datasets. 

As a consequence, for uphill yarding there 

will be changes in the sign of 

differentiated values while in flat terrains 

the differences would probably be close to 

zero. Since this study has used the signed 

differences in elevation, future studies 

could improve the approach by removing 

this issue. Most probably this could be 

solved by using an equation in the form of 

Equation 2 (see section 2.2), which was 

used to detect in the course data those 

segments which were characterized by 

relatively straight trajectories and which 

are typical for movement. In addition, 

Equation 2 generalizes these types of 

trajectories by removing the geographical 

heading context. In essence, values close 

to zero according to Equation 2 may 

indicate movement. Since itis difficult to 

have perfectly flat terrains or error-free 

GNSS signals, the contribution of speed to 

the learning and generalizing capabilities 

of the MLPNNB models could prove to be 

a factor of first importance. Assuming, for 

instance, a perfectly straight line followed 

by the GNSS unit during movement and no 

GNSS location errors, in theory the 

difference in elevation would be null. This 

means that MLPNNB would have to rely 

heavily on speed to detect movement. 

Using only the speed in this study (pre-

evaluation) returned a high classification 

performance in general, but the value of 

recall metric was lower for movement 

events (data not shown herein). 

Data labelling effort and GNSS sampling 

rates could also be improved by running 

comparative studies. Video surveillance, 

for instance, could be useful to document 
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the events in more detail, assuming that a 

video camera could be placed at a safe 

location on the carriage. Although 

processing effort to label the GNSS data 

based on video files could be high [9], 

[30], it will provide more detailed 

knowledge which could be helpful for 

machine learning models in understanding 

the patterns in data. Further studies could 

pursue this idea so as to provide better 

operational recognition models. In a 

previous study, other modalities were 

used to better understand and label the 

data [6] but their capability may be 

influenced by other underlying processes. 

In addition, the quantity of data used to 

train and test machine learning algorithms 

is of first importance. It needs to cover the 

variability brought by operational setups 

and conditions, therefore further studies 

could attempt to include these factors in 

more accurate models by extending data 

collection, processing, and analysis. In this 

regard, one important advantage of the 

machine learning algorithms is that once 

robustly trained, they can be used with 

minimal effort to classify the events on 

countless datasets. 

The values of the performance metrics 

returned in the pre-evaluation, training, 

and testing phases of the MLPNNB could 

be seen as excellent compared to the 

general body of knowledge gained in 

applications of deep learning [19]. 

Although several problems of forest 

operations were approached successfully 

by machine learning [2], [8], [21], [34], no 

similar studies were found to compare the 

classification performance metrics 

returned by this study. Nevertheless, the 

AUC was found to be higher than 0.97 in 

all three phases. According to Fawcett [11] 

this parameter is important in evaluating 

the performance of classifiers based on 

receiver operating characteristics (ROC) 

graphs, and it maps the performance of a 

classifier in a bidimensional space as a 

function of true positive rate (sensitivity) 

and false positive rate (1 – specificity). 

Classifiers which approach a high 

sensitivity (close to 1) and a low false 

positive rate (close to 0) are seen to have 

the best performance. Values of AUC close 

to 1 indicate high performances of their 

corresponding classifiers. Classification 

accuracy (CA) returned values higher than 

98%, irrespective of the evaluation phase. 

This metric maps the ratio of instances 

predicted as true positives and false 

negatives over all the predictions [19] 

which, in simple words, is the ratio of 

correct predictions to the total of 

predictions. In the testing phase, for 

instance, this ratio approached a value of 

0.99. This means that only 1% of the data 

was misclassified in the testing phase (ca. 

23 instances out of 2346 observations). 

Similar values were found for the recall 

metric, meaning that close to 99% of the 

positives were classified correctly. In 

addition, the log-loss errors were low and 

similar in value among the three 

evaluation phases, meaning that the 

MLPNNB algorithm trained and 

generalized well. 

The width and the depth of the MLPNNB 

model were based in this study on 

recommendations formulated in the 

relevant literature and on findings of 

other studies. Although the maximal size 

as permitted by the software used has led 

to excellent results, it does not mean that 

it would be the optimal one, particularly in 

terms of training time. The same applies 

to the number of iterations, which was 

kept at maximum although it might not be 

the optimal one. 
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GNSS data has been proven to be 

particularly useful in forestry-related 

applications [20]. This includes 

applications to operational monitoring 

and task recognition as proved by this 

study and the previous ones. Although the 

model of this study was built just for 

proving a concept, the underlying 

methodology can be extended by 

including more data containing similar 

parameters as it becomes available, or to 

other models starting from newly 

documented data. In addition, such 

models could be integrated as an 

intelligent operational monitoring 

component in Geographic Information 

Systems (GIS) which are able to exploit 

and bring to the model other parameters 

such as those characterizing the 

topography. 

 
4. Conclusion 

 

The goal of this study was to evaluate 

whether the GNSS-collected data could 

provide useful information for recognizing 

operational tasks in cable yarding by a 

Multi-Layer Perceptron Neural Network 

with Backpropagation (MLPNNB). The 

results of the pre-evaluation, training, and 

testing phases of this study indicate that 

the approach is both possible and feasible 

under such circumstances in which a 

proper set of descriptors is used, of which 

some were computed by differentiation. 

Accordingly, the classification 

performance was found to be excellent in 

terms of accuracy, true positive rate 

(recall), and log-loss error, facts which 

indicate that the model was able to learn 

and generalize on GNSS-based data very 

well. The results also indicate that less-

resource intensive approaches to the 

problem of developing efficiency models 

in cable yarding are becoming readily 

available. In turn, this will enhance our 

ability of extending the utility of existing 

models or building new ones adapted to 

new operational conditions. Future 

research should focus on documenting the 

GNSS data in more detail, probably by 

labelling it based on information collected 

as video files, and on getting it at finer 

sampling rates which will enable the 

models in gaining more knowledge from 

the data structure. To this end, the 

methodology used in this study to prove a 

concept could be extended and used to 

build more accurate models. 

 
References 

 

1. Bont L., Heinimann H.R., 2012. Optimum 

geometric layout of a single cable road. 

In: European Journal of Forest Research, 

vol. 131(5), pp. 1439-1448. DOI: 

10.1007/s10342-012-0612-y. 

2. Borz S.A., Păun M., 2020. Integrating 

offline object tracking, signal 

processing and artificial intelligence to 

classify relevant events in sawmilling 

operations. In: Forests, vol. 11(12), ID 

1333. DOI: 10.3390/f11121333. 

3. Bulling A., Blanke U., Schiele B., 2014. 

A tutorial of human activity 

recognition using body-worn inertial 

sensors. In: ACM Computing Surveys, 

vol. 46(3), ID 33. DOI: 

10.1145/2499621. 

4. Cavalli R., 2012. Prospects of research 

on cable logging in forest engineering 

community. In: Croatian Journal of 

Forest Engineering, vol. 33(2),                       

pp. 339-356. 

5. Chen K., Zhang D., Yao L. et al., 2018. 

Deep learning for sensor-based 

human activity recognition: Overview, 

challenges and opportunities. In: J. 



Bulletin of the Transilvania University of Brasov • Series II • Vol. 15(64) No. 1 – 2022 

 

30 

ACM, vol. 37(4), ID 111. DOI: 

10.1145/1122445.1122456. 

6. Cheţa M., Borz S.A., 2017. Automating 

data extraction from GPS files and 

sound pressure level sensors with 

application in cable yarding time and 

motion studies. In: Bulletin of the 

Transilvania University of Brasov, 

Series II: Forestry, Wood Industry, 

Agricultural Food Engineering,                      

vol. 10(59), no. 1, pp. 1-10. 

7. Cheţa M., Marcu M.V., Borz S.A., 

2020a. Effect of training parameters 

on the ability of artificial neural 

networks to learn: a simulation on 

accelerometer data for task 

recognition in motor-manual felling 

and processing. In: Bulletin of the 

Transilvania University of Brasov, 

Series II: Forestry, Wood Industry, 

Agricultural Food Engineering, vol. 

13(62), no. 1, pp. 19-36. DOI: 

10.31926/but.fwiafe.2020.13.62.1.2. 

8. Cheţa M., Marcu M.V., Iordache E. et 

al., 2020b. Testing the capability of 

low-cost tools and artificial 

intelligence techniques to 

automatically detect operations done 

by a small-sized manually driven 

bandsaw. In: Forests, vol. 11(7), ID 

739. DOI: 10.3390/f11070739. 

9. Contreras M., Freitas R., Ribeiro L. et 

al., 2015. Multi-camera surveillance 

systems for time and motion studies 

of timber harvesting equipment. In: 

Computer and Electronics in 

Agriculture, vol. 135, pp. 208-215. 

DOI: 10.1016/j.compag.2017.02.005. 

10. Demsar J., Curk T., Erjavec A. et al., 

2013. Orange: Data Mining Toolbox in 

Python. In:Journal of Machine 

Learning Research, vol. 14, pp. 2349-

2353. 

11. Fawcett T., 2006. An introduction to 

ROC analysis. In: Pattern Recognition 

Letters, vol. 27, pp.861-874, DOI: 

10.1016/j.patrec.2005.10.010. 

12. Gallo R., Grigolato S., Cavalli R. et al., 

2013. GNSS-based operational 

monitoring devices for forest logging 

operation chains. In: Journal of 

Agricultural Engineering, vol. XLIV(s2), 

pp. 140-144. DOI: 10.4081/ 

jae.2013.269. 

13. Gallo R., Visser R., Mazzetto F., 2021. 

Developing an automated monitoring 

system for cable yarding systems. In: 

Croatian Journal of Forest Engineering, 

vol. 42(2), pp. 213-225. DOI: 

10.5552/crojfe.2021.768. 

14. Ghaffariyan M.R., Stampfer K., 

Sessions J., 2009. Production 

equations for tower yarders in Austria. 

In: International Journal of Forest 

Engineering, vol. 20(1), pp. 17-21. DOI: 

10.1080/14942119.2009.10702571. 

15. Ghaffaryian M.R., Stampfer K., 

Sessions J., 2010. Optimal road 

spacing of cable yarding using a tower 

yarder in Southern Austria. In: 

European Journal of Forest Research, 

vol. 129(3), pp. 409-416. DOI: 

10.1007/s10342-009-0346-7. 

16. Goodfellow J., Bengio Y., Courville A., 

2016. Deep learning. MIT Press, 2016. 

Available at: https://www. 

deeplearningbook.org/. Accessed: 10
th

 

of March, 2022. 

17. Guerra F., Marchi L., Grigolato S. et al., 

2020. Indirect payload estimation in 

cable-logging operations. In: 

Engineering for Rural Development, 

Jelgava, 20-22.05.2020, pp. 1914-

1919. DOI: 10.22616/ERDev.2020.19. 

TF537. 

18. Heinimann H., Stampfer K., Loschek J. 

et al., 2001. Perspectives on Central 



S.A. BORZ et al.: Classifying Operational Events in Cable Yarding by a Machine Learning … 31 

European cable yarding systems. In: 

International Mountain Logging and 

11
th

 Pacific Northwest Skyline 

Symposium, Seattle (WA), College of 

Forest Resources, University of 

Washington and IUFRO. 

19. Kamilaris A., Prenafeta-Boldú F.X., 

2018. Deep learning in agriculture: A 

survey. In: Computers and Electronics 

in Agriculture, vol. 147, pp. 70-90. 

DOI: https://doi.org/10.1016/j. 

compag.2018.02.016. 

20. Keefe R.F., Wempe A.M., Becker R.M. 

et al., 2019a. Positioning methods and 

the use of location and activity data in 

forests. In: Forests, vol. 10(5), ID 458. 

DOI: 10.3390/f10050458. 

21. Keefe R.F., Zimbelman E.G., Wempe 

A.M., 2019b. Use of smartphone 

sensors to quantify the productive 

cycle elements of hand fallers on 

industrial cable logging operations. In: 

International Journal of Forest 

Engineering, vol. 30(2), pp. 132-143. 

DOI: 10.1080/14942119.2019. 

1572489. 

22. Kingma D.P., Ba J.L., 2015. ADAM: A 

method for stochastic optimization. 

In: 3
rd

 International Conference on 

Learning Representations, ICLR 2015, 

San Diego, CA, USA, May 7-9, 2015. 

23. Lindroos O., Cavalli R., 2016. Cable 

yarding productivity models: a 

systematic review over the period 

2000-2011. In: nternational Journal of 

Forest Engineering, vol. 27(2), pp. 79-

94. DOI: 10.1080/14942119.2016. 

1198633. 

24. Log loss, aka logistic loss or cross-

entropy loss. Available at: 

https://scikit-learn.org/stable/ 

modules/generated/sklearn.metric

s.log_loss.html. Accessed: 09
th

 of 

March, 2022. 

25. Maas A.L., Hannun A.Y., Ng A.Y., 2013. 

Rectifier nonlinearities improve neural 

network acoustic models. In: 

Proceedings of the 30
th

 International 

Conference on Machine Learning, 

ICML 2013, Atlanta, GA, USA, June 16-

21, 2013. 

26. Magagnotti N., Spinelli R. (eds.), 2012. 

Good practice guidelines for biomass 

production studies. Sesto Fiorentino: 

COST Action FP-0902 and CNR IVALSA, 

53 p. 

27. Moskalik T., Borz S.A., Dvorak J. et al., 

2017. Timber harvesting methods in 

Eastern European countries: a review. 

In: Croatian Journal of Forest 

Engineering, vol. 38(2), pp. 231-241. 

28. Munteanu C., Ignea G., Akay A.E. et 

al., 2017. Yarding pre-bunched stems 

in thinning operations: estimates on 

time consumption. In: Bulletin of the 

Transilvania University of Brasov, 

Series II: Forestry, Wood Industry, 

Agricultural Food Engineering,                     

vol. 10(59), no. 1, pp. 43-54. 

29. Munteanu C., Yoshida M., Iordache E. 

et al., 2019. Performance and cost of 

downhill cable yarding operations in a 

group shelterwood system. In: Journal 

of Forest Research, vol. 24(3), pp. 125-

130. DOI: 10.1080/13416979.2019. 

1603577. 

30. Muşat E.C., Apăfăian A.I., Ignea G. et 

al., 2016. Time expenditure in 

computer aided time studies 

implemented for highly mechanized 

forest equipment. In: Annals of Forest 

Research, vol. 59(1), pp. 129-144. DOI: 

10.15287/afr.2015.473. 

31. Nair V., Hinton G.E., 2010. Rectified 

linear units improve restricted 

Boltzmann machines. In: Proceedings 

of the 27
th

 International Conference 



Bulletin of the Transilvania University of Brasov • Series II • Vol. 15(64) No. 1 – 2022 

 

32 

on Machine Learning (ICML 2010), 

Haifa, Israel, June 21-24, 2010. 

32. Oprea I., 2008. Tehnologia exploatării 

lemnului (Timber technology [in 

Romanian]). Transilvania University 

Publishing Press, Brasov, 237 p. 

33. Proto A.R., Skoupy A., Macrì G. et al., 

2016. Time consumption and 

productivity of a medium size mobile 

tower yarder in downhill and uphill 

configurations: a case study in Czech 

Republic. In: Journal of Agricultural 

Engineering, vol. 47(4), pp. 216-221. 

DOI: 10.4081/jae.2016.551. 

34. Proto A.R., Sperandio G., Costa C. et 

al., 2020. A three-step neural network 

artificial intelligence modeling 

approach for time, productivity and 

costs prediction: A case study in Italian 

forestry. In: Croatian Journal of Forest 

Engineering, vol. 41(1), pp. 35-47. DOI: 

10.5552/crojfe.2020.611. 

35. Smith S.W., 2003. Digital signal 

processing. A practical guide for 

engineers and scientists. Newness, 

imprint of Elsevier Science, 650 p. 

36. Stoilov S., Proto A.R., Angelov G. et al., 

2021. Evaluation of salvage logging 

productivity and costs in sensitive 

forests of Bulgaria. In: Forests, vol. 

12(3), ID 309. DOI: 

10.3390/f12030309. 

 

 

 

 

 

 

 

 

 

 

 

37. Varying regularization in Multi-layer 

perceptrons. Available at: 

https://scikit-learn.org/stable/ 

autoexamples/neural_networks/pl

ot_mlp_alpha.html#sphx-glr-auto-

examples-neural-networks-plot-

mlp-alpha-py. Accessed: 09
th

 of 

March, 2022. 

38. Visser R., Harrill H., 2017. Cable 

yarding in North America and New 

Zealand: A review of developments 

and practices. In: Croatian Journal of 

Forest Engineering, vol. 38(2),         pp. 

209-217. 

39. Yang X., Stewart K., Tang L. et al., 

2018. A review of GPS trajectories 

classification based on transportation 

mode. In: Sensors, vol. 18, ID 3741. 

DOI: 10.3390/s18113741. 

 


