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Abstract: On every process there are many factors that intervene. Every 

factor has a greater or lesser influence on the process. In order to optimize a 

process it is necessary to know the influences and the interactions of these factors 

on the process, respectively to know the mathematical model of the process. 

One of the most used models is a non-linear second order model. If this model 

is unknown, it is possible to obtain it through modelling with rotatable 

experiments. The aim of this paper is to present the theoretical bases and a 

program for experimenting and modelling processes with rotatable experiments. 
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1. Introduction 
 

The optimization of a process is possible 

when its mathematical model is known. 

These models could be linear or nonlinear. 

When the mathematical model is 

unknown it’s possible to determine it by 

using different experimental and modelling 

methods.  

  

2. Objectives 
 

The objectives of this paper are to 

present an experimental and modelling 

method for second order mathematical 

models and to conceive a program for 

experimenting and modelling.  

 

3. Complete Factorial Experiments 
 

The optimization of a process can be 

done in two stages [3].  

In the first stage linear models are used 

in order to find the optimal domain, like 

the following linear model: 

jiijii xxbxbby ++= 0 . (1) 

 

In the second stage, a detailed analysis of 

the response surface of the dependent 

factor must be done. This analysis is not 

possible with a linear model. Only a higher 

order model can be used to find the 

optimal point. The most used non-linear 

model is a second order polynomial 
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where: β0, βi, βij, βii - real coefficients of 
the equation; xi, xj, …, xk - codified values 
of the factors. 

When replacing the codified values of 
the factors with the calculated values it 

results: 
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The mathematical model (2) can be 

obtained with special programs, the most 

important programs are named Central 

Composed Programs (C.C.E.). These 

programs are based on C.F.E. 3
n
 (Complete 

Factorial Experiments for n factors on 

three levels) programs where a factor is 

modified at three levels as in Table 1. 
Between the codified and the real values of 

the factors the following dependence exists: 
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where: ix  - codified values; iz  - real (natural) 

values; 
0i

z - real (natural) values in the center 

of the experiment; iz∆  - variation interval. 

The C.F.E. 3n (Table 2) programs became 

uneconomical for three or more factors. 

Box and Wilson studied this problem in 

1951 and found that the number of 

experiments could be reduced if a C.F.E. 

2
n
 experiment (n factors on 2 levels) would 

be completed with some points of the 

factorial space ((−2, 0), (+2, 0), (0, −2) and 

(0, +2)). These new points are equally 

spaced from the center point (0, 0) with the 

distance α.  

In Figure 1 and Table 1 an example of 

the codified and the real values of a C.F.E. 

22 and a C.F.E. 32 experiment (the cutting 

power of beech milling in function of the 

feed speed and the cutting height) is 

presented. 
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Fig. 1. Points in the factorial space 

 

Thus the number of experiments N is: 

  

α++= nnnN c0 , (5) 

 

where: N - number of experiments; n0 - 

number of experiments in the center of the 

experiment; nc - number of experiments of a 

C.F.E. 2
n
 program; nα - number of 

experiments in the extreme points; α - 

distance from the center point. 

 
C.F.E. 2

2
 and C.F.E. 3

2
 experiment           Table 1 

Codified values Real (natural) values 
Nr. 

Type of 

experiment x1 x2 Y u, [m/min] h, [mm] P, [kW] 

1 −1 −1  5 10  
2 +1 −1  25 10  
3 −1 +1  5 50  
4 +1 +1  25 50  
5 −1 −1  5 10  
6 +1 −1  25 10  
7 −1 +1  5 50  
8 

C
.F

.E
. 

2
2
 

+1 +1  25 50  
9 

C
.F

.E
. 

3
2
 

 0 0  15 30  
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The values of the number n, n0, nc, n∝ 

and α are presented in Table 3.  

 

Table 2 

Comparison between a C.F.E. 3
n
 and 

a BW program [3]  

Number of factors 2 3 4 5 

C.F.E. 3
2
 program 9 27 81 243 

BW program 9 15 25 43 

 

In practice two types of C.C.E. programs, 

orthogonal and rotatable programs are 

used, but the most used programs are 

rotatable programs [3].  

 

4. Rotatable Programs of Second Order 
 

In order to obtain the second order 

mathematical model with rotatable programs 

of second order (RP2) the following steps 

must be performed [3]: 

  

Step 1. The levels of the natural factors zi 

are established. Firstly the minimum 
min
iz and maximum value 

max
iz of the factor 

is established. Apart from these two values, 

the value in the center of the experiment 
0
iz  (6) and the variation interval iz∆  (7) 

are calculated: 
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The correspondence between the codified 

and real values is presented in Table 4. 

 

Step 2. With the help of the information 

presented at step 1, the programming 

matrix from Table 5 is created (the cutting 

power for beech milling according to the 

cutting speed v and the feed speed u). 

 

Step 3. Using the real values from Table 

5 experiments are conducted and the 

measured values are written in the 

adequate column of Table 5.  

 

Step 4. After conducting the experiment 

the coefficients b0, bi, bij and bii of the 

mathematical model (3) are calculated with 

[3]: 
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Table 3 

Number of experiments for the C.C.E. program [3] 

Number of factors n nc nαααα n0 αααα 

2 13 4 4 5 1.414 

3 20 8 6 6 1.682 

4 31 16 8 7 2 

5 52 32 10 10 2.378 

 
Correspondence between the codified and real values of a RP2 program    Table 4 

Codified values xi −α or −2 −1 0 +1 +α or +2 

Real values zi 
min

iz  
ii zz ∆−0
 

0

iz  
ii zz ∆+0
 

max

iz  
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 Codified and real programming matrix for a PR2 program     Table 5 

Codified values Real values Nr.  

exp. x1 x2 

Dependent factor  

y v, [m/s] u,[m/min] 

Dependent factor 

P, [kW] 

1 +1 +1  60 20  

2 −1 +1  40 20  

3 +1 −1  60 10  

4 −1 −1  40 10  

5 0 +α (+1.41)  50 ≈22  

6 0 −α (−1.41)  50 ≈8  

7 +α (+1.41) 0  ≈64 15  

8 −α (−1.41) 0  ≈36 15  

9 0 0  50 15  

10 0 0  50 15  

11 0 0  50 15  

12 0 0  50 15  

13 0 0  50 15  

 

∑
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where: N - number of all experiments; n - 

number of factors; nc - number of 

experiments of a C.F.E. 2
n
 program; n0 - 

number of experiments in the center. The 

values of n, n0, α, D, E, F and G are 

presented in Table 6. 
 

Step 5. The reproductibility dispersion (ex-

perimental error) 2
0s  is calculated with: 
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where: v0 - number of degrees of freedom 
for the experiments in the center; N0 - 

number of experiments in the center; oky - 

measured values of the dependent factor in 

the center of the experiment; 0y  - main 

value of the oky  values. 

Values of n, n0, α, D, E, F and G [3]        Table 6 

n N n0 α D E F G 

2 13 5 1.414 0.200 −0.1000 0.1437 0.0187 

3 20 6 1.682 0.1663 −0.0568 0.0694 0.0069 

4 31 7 2.000 0.1428 −0.0357 0.0350 0.0037 

5 52 10 2.378 0.0988 −0.0191 0.0180 0.0015 
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Step 6. The dispersions 
2

0bs , 
2

ibs , 
2

iibs , 
2

ijbs  

of the regression coefficients are calculated 

with: 
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Step 7. The significance of the coefficients 

is tested with the Student test: 
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i:=1,l; ( )005.0 ν= tttab ; 100 −=ν n , (25) 

 

where: 
ibt , 

ijbt , iit  - calculated values of the 

Student test; ttab - tabular value of the 

Student test; v0 - number of degrees of 

freedom; n0 - number of experiments in the 

center. 

If 
ibt , 

ijbt , iit > ttab then the coefficient, 

respectively the factor is significant and 

can be kept in the mathematical model. 

The residual dispersion 
2
rs  is calculated 

with: 
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where: l - the number of terms of the 

regression equation; N - the number of 

experiments; yu - the measured values of 

the dependent factor; uy~ - the values 

estimated with the mathematical model. 

 
Step 8. The concordance of the model 

with the experimental data is tested with 

the Fisher test. In this order the concordance 

dispersion 2
cons  and the Fischer criteria Fc is 

calculated with: 
 

con

N

u

n

k

kuu

con

yyyy

s
ν

−−−

=
∑ ∑

= =1 1

2
00

2

2

0

)()~(

, (27) 

 

0ν−ν=ν rcon ,  (28) 
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where: vcon - number of freedom for the 

concordance dispersion; 
2
0s  - reproductibility 

dispersion (22); cF  - calculated value of 

the Fischer criteria. 

The calculated value Fc is compared with 

the tabular value )(05.0 0;νν=
con

FFtab  of the 

Fischer criteria [3].  

If tabc FF ≤  then the mathematical model 

is adequate and can be used in the 

optimization process [3]. If the Fischer test 

is not performed then the variation interval 

must be decreased and all steps repeated.  

 
5. Presentation of the Program 

 
Based on the information presented above 

and in [1] and [2] a program which allows 

the following operations was conceived: 

- generating the programming matrix 

with the codified values for PR2 programs 

for 2 ÷ 5 factors; 

- generating the programming matrix 

with the real values for PR2 programs for 2 

÷ 5 factors; 

- allowing creation of the data base with 

the measured values; 

- calculating the coefficients of the non-

linear model; 

- realizing a statistical analysis of the 

mathematical model;  

- displaying the non-linear mathematical 

model and the results of the statistical 

analysis. 
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In Figure 2 the main menu of the program 

is presented. In the left panel the codified 

and the real programming matrixes are 

displayed. In the left bottom window the 

mathematical models and the results of the 

statistical analysis appear. In the right side 

information for maximum five factors 

could be entered or displayed: information 

about the experiment, the name and the 

measuring units of the factor, the real value 

in the centre of the experiment the 

variation interval, the number of factors, 

the number of experiments and the number 

of parallel experiments in the centre. 

The main menu also allows choosing the 

type of experiment (orthogonal OP or rotatable 

RP programs) and the type of mathematical 

model (linear or non-linear models). 

With the buttons placed on the bottom of 

the right panel the following operations are 

performed: 

- displaying the codified (Figure 3) and the 

real programming matrixes without (Figure 

4) and with measured values (Figure 5); 

- loading or saving the real programming 

matrixes without or with the measured values; 

- calculating and displaying (Figures 6 and 

7) the mathematical model with or without 

the significant factors and the result of the 

concordance test of the mathematical model.  

 

 
 

Fig. 2. Main menu of the PR2 program 

 

 
 

Fig. 3. Codified programming matrix 
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Fig. 4. Real programming matrix 

 

 
 

Fig. 5. Real programming matrix with measured values 

 

 
 

Fig. 6. Mathematical model for two factors with all significant coefficients 
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Fig. 7. Mathematical model for two factors with all coefficients 

 
6. Conclusions 

 

The experimenting and modelling method 

presented in this paper is very useful in 

process optimizing. Using rotatable 

experimental programs the number of 

experiments could be reduced without 

significant precision losses. Also the 

method allows obtaining mathematical 

models of second order which can be used 

in the optimizing process. The program 
which is based on this method is very easy 

to use and constitutes a real help in different 

experimental and modelling research.  
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