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Abstract: Accurate and efficient measurement of tree diameter at breast 
height (DBH) is essential for forest inventory and management. While 
traditional methods are time-consuming, new smartphone-based LiDAR 
applications like ForestScanner promise rapid, cost-effective solutions. 
However, their performance across diverse forest ecosystems requires 
thorough evaluation. This study aimed to assess the accuracy and time 
efficiency of the ForestScanner app for plot-level DBH measurements 
compared to manual caliper methods under varied growing conditions in 
Romania. One hundred circular plots (approx. 300 m² each) were established 
in forests near Brașov City, encompassing diverse forest tree species, ages, 
topographies, and understory conditions. DBH of 987 trees was measured 
manually with calipers and digitally using the ForestScanner app on a LiDAR-
equipped iPhone. Time consumption for plot establishment, manual DBH, and 
app-based DBH measurements were recorded. Accuracy was assessed using 
bias, mean absolute error (MAE), and root mean squared error (RMSE), with 
heteroskedasticity checked via Breusch-Pagan and White tests. ForestScanner 
showed a negligible overall bias (-0.003 cm), but MAE reached 3.66 cm when 
all measurements were included. Occlusion by vegetation or nearby trees 
significantly impacted app’s accuracy; for non-obstructed trees (n = 824), bias 
was +0.26 cm with an MAE of 2.07 cm. Manual DBH measurement averaged 
14 seconds/tree, while ForestScanner averaged 16 seconds/tree. Plot 
establishment time and measurement time were influenced by tree density. 
ForestScanner offers a user-friendly, free tool for DBH measurement and tree 
mapping, but its accuracy may be affected by occlusion. On the other hand, 
the app comes equipped with several useful features, such as documenting 
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the plots by LiDAR point clouds, real time DBH measurement and data 
storage, while returning comparable time efficiencies. Future work should 
focus on more diverse forest types to refine its practical application in forestry. 
 
Key words: augmented reality, caliper, field conditions, LiDAR application, 
manual measurement, occlusion impact, smartphone-based LiDAR. 
 
 

1. Introduction 
 
Forests provide a wide range of 

provisioning, supporting, regulatory, and 
cultural ecosystem services [14, 28]. For 
inventory, planning, utilization, and 
monitoring, tree biometrics such as 
diameter at breast height (DBH) are 
essential features [26]. Traditionally, DBH 
is measured and recorded in the field using 
a forest caliper and a pen-and-paper 
approach. However, collecting such data 
manually can be time-consuming, costly, 
and physically demanding [1, 9]. 

The latest trends in digitalization within 
forestry have introduced new techniques 
for measuring diameter at breast height 
(DBH). These range from simple apps 
designed for highly mobile, affordable, and 
multipurpose platforms like smartphones 
to more advanced and costly equipment, 
such as terrestrial mobile LiDAR scanners 
[7, 31, 35]. While these platforms are 
highly accurate, some of them, such as 
professional LiDAR scanners, have 
important limitations, including the level of 
expertise required for operation [15], 
issues of high cost and affordability [17], 
reliance on computationally intensive 
software and algorithms for feature 
extraction [16], and the lack of ability to 
provide instant readings in the field [24]. 
Moreover, with smartphones, many 
software apps developed for data 
collection are intended for general 
environmental purposes. Although they 
can accurately map three-dimensional 

environments, the resulting data still 
require further processing to localize trees 
and produce DBH estimates [20, 34]. 

Time effectiveness is an important 
concept in forestry, as it reflects the 
resources utilized and provides data 
necessary for assessing business 
competitiveness. Metrics such as efficiency 
and productivity are typically employed to 
describe, compare, model, and plan forest 
operations across various levels of 
decision-making [1, 9]. Collecting data for 
inventory purposes is a standard planning 
operation that requires individuals with the 
appropriate expertise, time, and financial 
resources. While this is crucial for data 
production, there are, in fact, few studies 
that quantify the time needed to establish 
plots and collect the requisite data [21]. 

Development and inclusion of LiDAR 
sensors in the latest generations of iPhone 
smartphones has revolutionized the 
measurement capabilities of these 
platforms [20]. With a typical scanning 
range of up to 5 m, for models up to the 
14th generation, and 10 m after that [4, 6], 
these smartphones have provided the core 
functionalities for short-range scanning, 
which is useful in many industrial 
applications [40]. In forestry, for instance, 
they have triggered the development of 
new apps that are suitable for tree 
measurement such as Arboreal Forest [25], 
and ForestScanner [39]. In addition, 
Apple's Measure app comes for free as 
standard on iPhone devices [5, 12], and it is 
designed for general 3D measurements by 
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integrating augmented reality (AR) 
technology. While very accurate and 
useful, it lacks important features for data 
storing and transfer. Arboreal Forest is a 
subscription-based AR-based app designed 
to set up field measurement projects, 
establish plots, collect the relevant data, 
store and transfer it to a dedicated web-
based service. Previous studies have 
concluded that both Apple’s Measure and 
Arboreal Forest apps are highly accurate 
considering the reference data collected 
manually [20, 25]. 

The ForestScanner app [39] is a free 
application that features key 
functionalities such as tree detection, in-
situ visualization of the results, data 
storage and sharing, and accurate tree 
location. The app has been developed for 
forest inventories and estimates the stem 
diameters and spatial coordinates of trees 
based on real-time instance segmentation 
and circle fitting. Tatsumi et al. [39] claim 
that ForestScanner enables cost-effective, 
labor-efficient, and time-efficient forest 
inventory applications, and that it is highly 
accessible for unskilled users. Additionally, 
the detection rate for trees with diameters 
greater than 5 cm was found to be 100%, 
with an approximate measurement time of 
9 seconds per tree during a survey of 672 
trees in a one-hectare plot. 

Despite the proliferation of smartphone-
based LiDAR applications for forest 
inventory, a critical gap exists in 
understanding their practical performance 
across diverse real-world conditions, 
particularly concerning measurement 
accuracy and time efficiency when 
challenged by factors like dense 
understory, stem occlusion, and varied 
forest structures. While initial studies on 
apps like ForestScanner show promise 
under controlled or specific settings, 

comprehensive evaluations are lacking 
that benchmark its capabilities against 
traditional methods and other digital tools 
across a spectrum of forest ecosystems. 
This limits the ability of forest managers 
and researchers to confidently adopt these 
new technologies, as the true operational 
trade-offs between accuracy, speed, cost, 
and ease-of-use in complex field 
environments remain largely unquantified, 
hindering the optimization of field data 
collection protocols and the broader 
digitalization of forestry practices. 

The goal of this study was to evaluate the 
accuracy and time efficiency of the 
ForestScanner app in measuring the 
diameter at breast height (DBH) under 
diverse forest types and site conditions. 
The following objectives were set for the 
study: i) to estimate the accuracy of the 
DBH measurements obtained by 
ForestScanner, using manually measured 
DBH as reference data, ii) to compare the 
time consumption of ForestScanner 
measurements against those obtained 
manually, and iii) to determine whether 
there is a dependency of time consumption 
on the local characteristics of the plots, 
such as the number of measured trees. 

 
2. Materials and Methods 
2.1. Plot Description 

 
For this study, 100 plots were established 

in the forests near Brasov City, Romania 
(Figure 1). The plots were circular and had 
an area of approximately 300 m² (radius of 
9.8 m). Important criteria for location 
selection and plot establishment included 
diversity in: i) forest tree species, ii) age, 
and size, iii) topography, iv) stand density, 
and v) the presence of an understory layer. 
The selection of field locations was guided 
by specifications of the local forest 
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management plan [18]. For instance, the 
plots included most of the forest tree 
species that occur in the area at elevations 
ranging from approximately 600 to 1050 m 
above sea level, such as European beech 
(Fagus sylvatica L.), sessile oak (Quercus 
petraea (Matt.) Liebl.), Scots pine (Pinus 
sylvestris L.), Norway spruce (Picea abies 

(L.) H. Karst.), hornbeam (Carpinus betulus 
L.), silver fir (Abies alba Mill.), sycamore 
(Acer pseudoplatanus L.), wild cherry 
(Prunus avium (L.) L.), rowan (Sorbus 
aucuparia L.), grey alder (Alnus incana (L.) 
Moench), and small-leaved linden (Tilia 
cordata Mill.). 

 

 
Fig. 1. Study location at the national level (left bottom panel) and the spatial distribution 
of plot clusters in the study area. Note: the map was developed in QGis based on plots’ 

center location collected in the field and open-source OSM standard maps 
 
While considering all these criteria, 

accessibility to the selected forest plots 
was an important factor. The forest 
compartments in which the plots were 
established were chosen based on ease of 
access from roads. This selection aimed to 
optimize the number of plots relative to 
the invested resources. Upon reaching a 
forest compartment, a given plot was set 
up at a randomly selected location. Plot 
establishment and data collection were 
carried out over eight days, specifically 
from May 5th to May 8th and from May 12th 
to May 15th, 2025. Two individuals 
established the plots and collected the 

data following a brief session to familiarize 
themselves with the instruments and 
methods used in the field. 

 
2.2. Plot Establishment and Data 

Collection 
 
Plot establishment consisted of tasks 

required to set up a plot, localize it 
geographically, identify the trees within it, 
and perform other measurements and 
documentation activities (Table 1). Upon 
reaching a tree deemed suitable as the plot 
center, the plot number was painted on 
that tree, and a painted mark was placed to 
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indicate the level for DBH measurement at 
exactly 1.30 m above the ground (Figure 2). 
A rope was then used to determine the 
trees falling within a radius of 9.8 m, and 
those trees were numbered in four 
directions by painting (Table 1, Figure 2). 
Once these tasks were completed, four 

pictures were taken from the cardinal 
points, approximately 5 m from the center 
of the plot. The resulting images were 
labeled according to the plot number and 
the cardinal direction, serving to document 
the features of the plots under study. 

 
Description of plot establishment and DBH measurement tasks              Table 1 

Task Abbreviation Description 

Plot 
establishment 

E 

Setting up the plot. Includes the time spent from 
arriving at the location for a given plot, marking the 
plot center on a tree, taking the coordinates of the 
center, documenting the plot by images taken on the 
fourth cardinal points from nearby the plot’s center, 
establishing which trees belong to the plot using the 
rope, measuring and marking the point on each tree at 
which DBH will be measured, and numbering by 
painting each tree from the plot. Marking the DBH 
reference point and tree numbering was done tree-by-
tree for each tree in the plot. Numbers were placed on 
the fourth cardinal points for each tree. 

Manual 
measurement 

of DBH 
M 

Measuring the DBH at the reference level using a 
caliper. Measurements were taken to the nearest 
millimeter. Includes the time spent by a person to 
move by free choice at each tree, taking the 
measurement and communicating/noting down the 
result. 

App-based 
measurement 

of DBH 
A 

Measuring the DBH at the reference level using the 
ForestScanner app. Measurements were taken to the 
nearest millimeter. Includes the time spent by a person 
to set up the app and save the measurements, and to 
move by its choice at each tree to take the 
measurement. 

 
Manual DBH measurement (Table 1, 

Figure 2) was conducted according to 
national guidelines [2, 3], which describe 
the height at which DBH should be 
measured, the procedures for measuring 
trees located on sloped ground, and the 
effective techniques for using the caliper. 
Following this, measurements using the 
ForestScanner app were taken for each 

tree (Table 1, Figure 2). Both manual and 
digital measurements were taken by 
referring to the same mark painted on each 
tree; therefore, they included 
measurements taken from the same side 
and at the same height. 

The ForestScanner app uses the LiDAR 
sensor and capabilities of compatible 
iPhone or iPad devices to measure and map 
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trees, as detailed by Tatsumi et al. [39]. The 
measurement process with the app (Figure 
2) typically involves the operator aiming 
the device's camera towards the target 
tree stem at breast height. The app 
employs real-time instance segmentation, 
a deep learning technique, to 
automatically detect tree trunks within the 
LiDAR point cloud data captured by the 
device [39]. Once a tree is detected, 
ForestScanner performs a circle-fitting 
algorithm on the cross-sectional point 
cloud of the stem at the targeted height to 
estimate its diameter (DBH) [39]. The app 
provides an in-situ visualization of the 
detected trees and their measured DBH 

directly on the device's screen, allowing 
the operator to verify the detection and 
measurement. Furthermore, the 
application records the spatial coordinates 
(geolocation) of each measured tree, 
facilitating the creation of stem maps [39]. 
Data, including DBH, tree location, and 
associated plot information, can be saved 
within the app and subsequently exported 
for further analysis. The operator typically 
moves from tree to tree within the plot, 
repeating this process of aiming, allowing 
the app to detect and measure, and then 
saving the data for each tree identified 
within the plot boundaries. 

 
 

 
Fig. 2. The main steps used in plot establishment and DBH measurement (example of plot 

23). From left to right, placing a painted mark at 1.3 m above the ground, measuring 
manually the diameter of a tree, setting the app for measurement, documenting the plot 

in the app, and taking the measurement with the app 
 
For each plot, a time study was 

conducted based on the tasks described in 
Table 1. One person took the 
measurements while another recorded the 
results. A digital watch was used for 
continuous timing [1, 9]. The field 
researchers were instructed to work as 
usual, but without breaks during each of 
the carried-out task. For all activities, the 
collected data was recorded in a field book, 
including the plot number, tree ID, species, 
DBH measured by the caliper (hereafter 
referred to as DM, in mm), DBH measured 
by ForestScanner (hereafter referred to as 

DA, in mm), degree of occlusion, as well as 
the starting and ending times reported in 
the hh:mm:ss format for the activities 
described in Table 1. 

 
2.3. Data Processing 

 
All the plot-level data (measurements, 

comments, starting and ending times, 
images, and data collected using the 
ForestScanner app) were moved to a data 
repository that included documentation 
for the measurements taken at the plot 
level. A central data repository was created 
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for this purpose via Google Drive, and the 
plot-level data was then stored based on 
intended use. Time measurements were 
computed in seconds as the difference 
between the ending and starting times of 
the measurements, and DBH data was 
converted to centimeters. Conventionally, 
the plot level time consumption for 
establishment, manual and digital 
measurement of DBH were named TE, TM 
and TA, respectively. 

Each plot was then documented in terms 
of the number of trees, average DBH (taken 
manually), species composition, and tree 
density. The final data repository was that 
resulting from after two sessions of data 
curation, which included checking for 
correctness in data and comparison with 
the data included in the field book. 

 
2.4. Data Analysis 

 
Data analysis involved several workflows. 

The plots were described in terms of the 
number of trees (hereafter called NT), tree 
density (hereafter called TD, 
trees/hectare), and average DBH (cm), 
using indicators such as minimum, 
maximum, mean, median, and standard 
deviation values. The accuracy of the 
measurements was documented by 
calculating the bias [19], mean absolute 
error [43], and root mean squared error 
[43]. Evidence of proportional bias was 
assessed using the Breusch-Pagan and 
White [42] tests. These tests were 
particularly useful for identifying 
heteroskedasticity in the data and its type, 
which can occur due to proportional 
change in differences between methods’ 
estimates as the magnitude of the 
observed variables changes. The same 
metrics were also used as proxies for 
agreement [10, 11, 19], along with 

scatterplots to illustrate the dependence in 
the data. 

However, field observations revealed 
several instances where measurements 
taken with the ForestScanner app differed 
significantly from manual measurements. 
These discrepancies were attributed to the 
degree of occlusion caused by nearby trees 
and the presence of understory vegetation. 
Therefore, these instances were 
documented in the field to indicate the 
presence of occlusion, and the 
corresponding codes were used to sort the 
data and to conduct accuracy assessments, 
comparing data with and without those 
instances of occlusion. 

The time consumption analysis aimed to 
statistically describe the data, assess 
whether there were significant differences 
between the two methods in terms of time 
consumption, and detect any dependency 
relationships between local parameters – 
such as the number of trees per plot or tree 
density per plot – and the magnitude of 
time consumption. The commonly used 
statistical procedures were employed for 
the time efficiency analysis, as detailed in 
[1]. These included checking for normality 
in the time data distribution by robust tests 
accompanied by histograms with a normal 
curve overlaid, developing the main 
descriptive statistics as numbers 
accompanied by boxplots, comparing time 
consumption at the plot level using tests 
deemed appropriate for the data, and 
modeling the time consumption 
dependency on local operational factors 
using simple linear regression analysis. 

Where relevant, a confidence level of 
95% was considered. Part of data analysis 
was carried out using the standard 
functionalities of Microsoft Excel, whereas 
for simplicity, Real Statistics add in [44] was 
used for Breusch-Pagan, White and 
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statistical comparison tests, as well as for 
developing some of the graphics included 
in the study. 

 
3. Results and Discussion 
3.1. Description of Plots 

 
Plot level species composition varied 

widely, starting with pure and ending with 
mixed stands, in various proportions 
between the broadleaved and coniferous 
trees within each plot. Plots were 

statistically characterized by the number of 
trees, tree density and average DBH, as 
shown in Table 2. There were between 4 
and 22 trees per plot, averaging about 10 
trees per plot, accounting for minimum, 
maximum and average tree densities of 
about 133, 733 and 329 trees per hectare. 
Based on averaged plot-level manual 
measurements, the DBH was characterized 
by a minimum, maximum and average of 
15.5, 67.8, and 35.1 cm. 

 
Descriptive statistics of experimental plots taken into study              Table 2 

Attribute 
Number of 

plots 
Minimum 

value 
Maximum 

value 
Mean 
value 

Median 
value 

Standard 
deviation 

Number of trees 
(NT) 

100 4 22 9.87 9.00 4.15 

Tree density  
(TD, [trees/ha]) 

100 133 733 329 300 138.18 

DBH [cm] 100 15.5 67.8 35.1 34.2 9.94 
 
By considering all the trees measured in 

the plots (N = 987), there was a dominance 
of beech trees (57.85%), followed by 
hornbeam (13.88%), Norway spruce 
(10.33%), sessile oak (6.38%), and other 
species (11.56%). Moreover, by 
considering plot composition, half of the 
plots included only broadleaved species, 
one plot included only coniferous species, 
and the rest (49%) included both, 
broadleaved, and coniferous species. 

 
3.2. Accuracy and Agreement 

 
The main results concerning accuracy 

and data agreement are reported in Table 
3, along with the results of the Breusch-
Pagan and White tests. The dataset, which 
included both regular and obstructed 
measurements, comprised 987 trees, 
resulting in a very small bias (-0.003 cm), 
indicating a negligible overestimation by 

the ForestScanner app. However, the 
magnitude of the differences was as high as 
3.66 cm (MAE = 3.656). For this dataset, the 
results of the heteroskedasticity tests 
indicated that the data were 
homoscedastic. 

The inclusion of obstructed 
measurements in the analyzed dataset 
clearly influenced the accuracy metrics. 
Figure 3 illustrates the trends and 
distributions in the difference data before 
and after the removal of measurements 
affected by obstruction. The dataset 
consisting of unobstructed measurements 
comprised 824 trees (Table 3). In this case, 
the digital measurements underestimated 
the actual values by an average of 0.26 cm 
(bias = 0.261), while the magnitude of the 
mean absolute error (MAE) was lower, 
approximately 2 cm. However, 
heteroskedasticity was detected in this 
dataset (Table 3). 
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Agreement in data and accuracy of digital measurements                Table 3 

Dataset 
Number of 

observations 
BIAS MAE RMSE 

Breusch-
Pagan 

White 

All data 987 -0.003 3.656 6.344 0.771 0.327 
Non-obstructed trees 824 0.261 2.066 2.688 <0.001 <0.001 
 
The inclusion of obstructed 

measurements in the analyzed dataset 
clearly influenced the accuracy metrics. 
Figure 3 illustrates the trends and 
distributions in the difference data before 
and after the removal of measurements 
affected by obstruction. The dataset 
consisting of unobstructed measurements 

comprised 824 trees (Table 3). In this case, 
the digital measurements underestimated 
the actual values by an average of 0.26 cm 
(bias = 0.261), while the magnitude of the 
mean absolute error (MAE) was lower, 
approximately 2 cm. However, 
heteroskedasticity was detected in this 
dataset (Table 3). 

 

 
Fig. 3. Agreement in data and distribution of differences. From left to right are the trends 

in data measured without obstruction (green), and with tree (red) and understory 
(orange) obstruction, and the distribution in differences before (red) and after (green) 

removing from analysis the measurements coded as obstructed 
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3.3. Time Efficiency 

 
On average, plot establishment took 175 

seconds (about 3 minutes), with a range 
from 1 minute to approximately 10 
minutes. Manual DBH measurements 
averaged 136 seconds (about 2.3 minutes), 
while digital measurements averaged 163 
seconds (about 2.7 minutes). The data 
characterizing TM and TA failed the 
normality assumption according to the 

Shapiro-Wilk tests. Figure 4 shows the data 
distribution of the two variables in the 
form of histograms plotted against a 
normal distribution curve, pointing out the 
deviance from normality in data, as well as 
similar distributions of the variables under 
analysis. Accordingly, there were 
statistically significant differences between 
the two according to Mann-Whitney non-
parametric test (α = 0.05, ptwo-tailed = 0.03). 

 

 

  
Fig. 4. Descriptive statistics of local operational conditions and time consumption. At the 
top the main descriptive statistics are shown in the form of boxplots. At the bottom, the 
distribution of data against a normal overlaid curve is shown. Legend: NT – number of 

trees per plot, TD – tree density [trees/hectare], TE – time consumption for plot 
establishment, TM – time consumption for manual DBH measurement, TA – time 

consumption for app measurement 
 
Plot establishment time (TE, Figure 5) 

depended (α = 0.05, p < 0.001) on plot-level 
tree density, and generally the model 

describing this dependence was 
statistically significant (α = 0.05, p < 0.001). 
However, the tree density alone explained 
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the variation in plot establishment time 
only to a limited extent (R2 = 0.29). 

 Models developed using simple linear 
regression to characterize the time 
consumption of manual (TM, s) and digital 
(TA, s) measurements as a function of the 
number of measured trees per plot were 
statistically significant (α = 0.05, p < 0.001). 
Figure 6 illustrates the trends in time 

consumption for the two methods based 
on the number of measured trees. 
According to the coefficients of 
determination, the manual measurement 
time was explained by the number of 
measured trees to an extent of 56.2%, 
while the digital measurement time was 
explained to an extent of 40.4%. 

 

 
Fig. 5. Dependence between plot establishment time (TE, s) and tree density. Legend: TE 

– plot level establishment time, TD – tree density [trees/ha] 
 

 
Fig. 6. Dependence between manual measurement (TM, s) and digital measurement    

(TA, s) time on number of measured trees (NT). Note: line in green indicates the trend in 
manual measurement time as a function of number of measured trees, whereas the line 

in brown indicates the trend in digital measurement time as a function of number of 
measured trees 
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To summarize, plot establishment took 

an average of about 18 seconds per tree, 
while manual measurement took 
approximately 14 seconds per tree. Digital 
measurement, on the other hand, took 
about 16 seconds per tree. All these times 
were influenced by variations in local 
operational conditions, such as the number 
of trees and tree density per plot. 
Additionally, the time consumption results 
were found to be statistically different, 
although the magnitude of the per-tree 
differences was low. 

 
4. Discussion 

 
This study aimed to evaluate the 

accuracy and time efficiency of the 
ForestScanner app for DBH measurements 
under diverse site conditions, comparing 
its performance against manual methods 
and considering local plot characteristics. 
The objectives were largely fulfilled by 
quantifying DBH accuracy using bias, MAE, 
and RMSE [19, 43], comparing time 
consumption for both ForestScanner and 
manual measurements, and examining the 
influence of tree number on measurement 
time. The results indicated that while 
ForestScanner can provide accurate DBH 
estimates, its accuracy is influenced by 
obstructions, and its time efficiency in this 
study did not surpass manual caliper 
measurements under the varied field 
conditions encountered. 

The accuracy of ForestScanner, 
particularly the influence of occlusion, 
aligns with challenges noted for other 
mobile LiDAR and photogrammetry-based 
applications in forestry [20, 34]. While 
Tatsumi et al. [39] reported high accuracy 
for ForestScanner, their study involved a 
specific context, and our findings highlight 

that dense understory or closely packed 
trees can lead to discrepancies, a common 
issue in remote sensing and close-range 
sensing in complex forest environments 
[31, 33]. Other studies on smartphone-
based measurement apps, such as those 
evaluating Apple's Measure app or 
Arboreal Forest, have also reported high 
accuracy [12, 25], but often under less 
occluded conditions or with different 
underlying technologies which may handle 
point cloud processing differently. 

Occlusion significantly impacted 
ForestScanner's accuracy in this study. The 
app's reliance on circle-fitting algorithms 
for DBH estimation [39] can be influenced 
when parts of the stem are obscured, 
leading to incomplete point clouds and 
consequently, less accurate diameter 
estimations [13, 36]. Manual 
measurements, while also subject to 
operator-induced variability [8, 23], can 
often better adapt to irregular stem shapes 
or minor obstructions by allowing the 
operator to physically position the caliper 
optimally. This operator subjectivity in 
manual measurement is a known factor 
[26], but in cases of partial visibility, human 
judgment might still outperform 
automated algorithms that require a 
sufficiently complete representation of the 
stem's cross-section. 

Regarding general functionality, 
ForestScanner's instant visualization of 
results, data storage and tree locations [39] 
are significant advantages over methods 
requiring offline point cloud processing, a 
common feature in more traditional 
terrestrial laser scanning (TLS) or some 
mobile mapping systems [30, 31]. This 
immediacy is highly valuable for in-field 
verification. The free availability of 
ForestScanner [39] makes it an attractive 
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option for large-scale or low-budget 
inventories, contrasting with the often-
high costs associated with professional 
LiDAR scanners and their software [17, 22]. 
The data stored by the app, including tree 
locations and DBH, is crucial for inventory 
purposes [39], and its exportability 
supports integration into broader forest 
management information systems. 

In terms of tree feature coverage, 
ForestScanner primarily focuses on DBH 
and tree location [39]. It does not 
inherently measure tree height, a 
capability found in some other LiDAR 
platforms or specialized dendrometers [27, 
29, 38]. While advanced LiDAR systems can 
provide detailed 3D point clouds for 
comprehensive structural analysis [31, 37], 
smartphone LiDAR, including 
ForestScanner, offers a more streamlined 
approach for specific parameters like DBH, 
trading some comprehensiveness for ease 
of use and speed in specific tasks. 

The expectation that ForestScanner 
would offer higher time efficiency than 
manual methods was not strongly 
supported by our findings under these 
diverse conditions. Still, it provided 
comparable results in terms of time 
consumption, in addition to other key 
features for forest inventories. Our average 
of approximately 16 seconds per tree with 
ForestScanner was higher than the 9 
seconds per tree reported by Tatsumi et al. 
[39] in their 1-hectare plot study. Several 
factors are likely to contribute to this 
difference. Firstly, Tatsumi et al. [39] used 
a diameter tape for their manual reference 
measurements, which is generally more 
time-consuming, especially for larger trees, 
than the caliper measurements used in our 
study [26]. This methodological difference 
alone could explain why our manual 
measurements (approx. 14 seconds/tree) 

were slightly faster than our ForestScanner 
measurements, and appeared more 
competitive than if compared against 
diameter tape. Our platform running 
ForestScanner had similar scanning range 
characteristics as that used by Tatsumi et 
al. [39], which was of 5 m, whereas newer 
versions allow for a practical scanning 
range potentially closer to 10 m capabilities 
[4, 6]. While a larger radius might seem 
advantageous, the 5 m radius in both 
studies might have necessitated operators 
to position themselves closer to each tree, 
potentially increasing walking time per tree 
but perhaps also allowing for more 
optimized scan angles to avoid minor 
occlusions within a smaller, more 
controlled scanning zone. However, 
approaching the trees in our study was not 
set to follow the exact same path as that of 
taking manually the diameters, whereas 
there was a diversity in slope and 
understory conditions. The experimental 
plot arrangement and scanning path might 
also have differed in the study of Tatsumi 
et al. [39], potentially allowing for more 
optimized, direct lines of sight. In contrast, 
our protocol required measurements from 
the same side for both manual and digital 
methods to ensure comparability, which 
may not have always represented the 
absolute shortest or most efficient 
scanning path for the app if obstruction 
was present. These combined factors could 
explain some of the longer per-tree times 
observed in this study. Models predicting 
time consumption in tree measurement 
are relatively few, but our regression 
models demonstrated a clear dependency 
of measurement time on the number of 
trees, a common factor in inventory work 
[32].  

Several strong points of this study 
enhance the robustness of its findings. The 
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investigation across diverse forest 
ecosystems (species, age, size, density, 
slope, topography) with a large sample size 
(close to 1000 trees across 100 plots) 
provides a comprehensive evaluation. The 
robust experimental design, with 
controlled conditions for comparing 
diameters (same mark, same side), and the 
use of multiple robust metrics (bias, MAE, 
RMSE, Breusch-Pagan, White tests) for 
accuracy assessment [10, 11, 19, 42, 43] 
offered the conditions for a detailed 
comparison. 

However, certain limitations should be 
acknowledged. The comparison of time 
consumption using non-parametric tests, 
while appropriate given the data 
distribution, might be less robust than 
parametric tests if normality assumptions 
were met, as they compare medians which 
can sometimes obscure the full picture of 
variability. Not all assumptions for the 
regression analyses were exhaustively 
tested, which could influence the 
interpretation of the derived models. 
Furthermore, the field data collectors were 
at their first extensive experience with the 
ForestScanner app. It is plausible that their 
operational efficiency with the app could 
improve over time with increased 
familiarity, potentially reducing the time 
taken for digital measurements and 
altering the time-efficiency comparison. 
Finally, there was no explicit control for the 
inter-operator variability or learning curve 
between the two students who collected 
the data, which is a common challenge in 
field studies [1, 8, 41]. 

 
5. Conclusions 

 
This study provides a comprehensive 

evaluation of the ForestScanner app's 
accuracy and time efficiency for measuring 

plot-level DBH across diverse forest 
ecosystems in Romania. While 
ForestScanner offers a user-friendly, free, 
and modern approach to forest inventory 
with useful features like instant data 
visualization and geolocation, its DBH 
measurement accuracy was found to be 
sensitive to stem occlusion by nearby 
vegetation or trees, leading to larger errors 
compared to unobstructed measurements. 
Under the varied and sometimes 
challenging field conditions encountered, 
which included diverse topography and 
understory presence, the time taken to 
measure DBH using ForestScanner did not 
demonstrate a significant advantage over 
traditional manual caliper measurements; 
in fact, manual measurements were 
slightly faster on average per tree. The 
number of trees per plot and tree density 
significantly influenced the time for plot 
establishment and measurement. 
Although ForestScanner provides a 
valuable digital tool, particularly for rapid 
tree mapping and data recording, 
practitioners should be aware of potential 
accuracy limitations in occluded 
environments. Further research should 
explore accuracy and time effectiveness 
across an even broader range of forest 
types and conditions to fully delineate its 
optimal use cases in modern forestry. 
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