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Abstract: This paper focuses on the development and implementation of an 
analytical method for determining the centers of gravity of complex bodies. 
Through this process, the aim is to obtain an accurate and efficient solution 
for determining the center of gravity in a practical and easy-to-achieve way. 
The paper includes a detailed presentation of the analytical method used, 
including the algorithms and mathematical formulas involved in determining 
the center of gravity for various types of complex bodies. It also examines how 
this method can be implemented in the C# programming language to allow 
validation of the results obtained from the analytical calculation.  
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1. Introduction 

One of the most important aspects in assessing the condition of a body or systems of 
bodies is determining the center of gravity. However, before discussing about centers of 
gravity, it is necessary to mention the centers of mass. Centers of mass are intrinsic 
features of material point systems.  

The center of gravity of a body is a crucial parameter in many fields of science and 
engineering, especially in disciplines such as aerospace, automotive design, robotics, civil 
engineering, and biomechanics. It represents the point at which the entire weight of an 
object can be considered to act, and it is essential for ensuring balance, stability, and 
performance in both static and dynamic systems [12], [14]. 

The position of the center of mass depends on the way the mass is distributed in the 
system of material points and is located in the area with the greater mass [4]. In the 
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calculation of the centers of mass, several generally valid properties are used in the 
calculation of the centers of gravity [14]: 

• if the sizes of all masses are multiplied or reduced by the same scalar 𝜆𝜆 ≠ 0, the position 
of the center of mass does not change; 
• if a material system has a plane of symmetry, then the center of mass is in that plane 
[14, 15]; 
• if a material system has an axis of symmetry, then the center of mass is on that axis; 
• if a material system has a pole of symmetry, then the center of mass is at that pole. 
Despite all these similarities, there is an important difference between centers of mass 

and centers of gravity. The center of mass is always located somewhere inside the body, 
which is not generally true in the case of centers of gravity, for the latter there is the 
possibility of being placed somewhere outside the body [3]. The center of gravity of a 
body of measurable dimensions is the point at which its weight is considered to be 
applied. It is therefore one of the fundamental concepts of statics [15]. Therefore, the 
center of gravity is the geometric place where the entire mass of a body or systems of 
bodies is concentrated, its determination being crucial for the analysis and design of 
structures, vehicles and other physical systems, as it helps to calculate balance, stability 
and maneuverability. Therefore, it can be shown, both theoretically and experimentally, 
that the position of the center of gravity is well determined for each body and does not 
depend on its orientation in space [9]. 

In applications like drones or aircraft, the center of gravity influences flight stability and 
control. A well-positioned center ensures that an aircraft can maintain its desired 
orientation and perform efficiently in various flight conditions. In industrial robots or 
autonomous systems, it plays a role in improving the precision of movements and 
reducing mechanical stress. As such, the ability to determine the center of gravity is not 
just a theoretical factor, but also a practical necessity that directly affects the design, 
operation, and safety of modern technologies. 

The problem addressed in this paper is the determination of centers of gravity for 
complex bodies, a topic of fundamental importance in fields such as mechanical 
engineering, robotics, and industrial design [14]. In this problem, ways to determine the 
exact position of the center of gravity for various types of complex bodies, which can have 
varying shapes and sizes, are investigated. The proposed method must provide accurate 
results and allow their validation using the C# programming language. 

 
2. The purpose of the work 

 
The primary goal of this paper is to develop and implement an analytical method for 

determining the center of gravity of complex bodies and validate the results through a 
custom-built software application written in the C# programming language. This work 
seeks to address the challenge of accurately calculating the center in practical applications 
where mass distribution can be irregular or affected by changing components [2], [4]. 

By integrating theoretical and practical approaches, this paper aims to approve the 
analytical calculations with practical, technology-driven solutions for determining the 
center of gravity. The methodology is designed to be flexible and applicable to a wide 
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range of complex bodies, allowing for its use in diverse fields such as robotics, aerospace, 
and mechanical design. Lately, this study demonstrates the benefits of using modern 
programming techniques to enhance the accuracy, efficiency, and practicality of center of 
gravity determination. 

 
Fig.1. Objectives for the paper diagram 

 
Specific objectives of the scientific paper, which are presented also in Figure 1: 
Develop an analytical method: the first aim is to explore and formulate a detailed 

analytical method based on mathematical principles for calculating the center. This will 
involve deriving equations for various types of simple and complex bodies using principles 
of integration and summation. 

Apply mathematical principles to real-world objects: another key goal is to apply these 
mathematical formulas to practical situations where the center of gravity needs to be 
accurately determined, including objects with varying shapes, mass distributions, and 
configurations. For instance, this paper will examine a drone model with adjustable 
weights, modeling how it shifts with these changes. 

Build a C# application for center of gravity determination: another objective is to 
develop a software tool that automates the process of calculating it using C#. This 
application will provide for person with a fast and accurate tool for center of gravity 
calculation, capable of handling both simple and complex bodies. The program will 
integrate the theoretical principles into a user-friendly format, allowing real-time center 
computation for different configurations. 

Validate results with numerical and software methods: the final objective of the study 
is to validate the accuracy of the analytical method by comparing results with those 
generated through the C# program. This ensures that both theoretical approaches and 
software applications yield consistent and reliable results. The validation process will also 
involve physical testing, such as constructing a drone model with variable shapes, to 
confirm the theoretical center of gravity calculations align with real-world observations 
[10]. 

Lately, this work aims to provide a comprehensive, accurate, and practical solution for 
determining the center of gravity of complex systems. The paper offers another 
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combination of theoretical analysis and practical implementation, contributing to fields in 
engineering, where the precise knowledge of it is crucial for stability, performance, and 
efficiency. 

 
3. Theoretical framework 
3.1 Mathematical principles and equations for center of gravity calculation 

 
The center of gravity is defined as the point at which the entire weight of a body or 

system is concentrated [12]. Mathematically, the center of gravity is a weighted average 
of the distribution of mass in an object. For simple bodies, the center of gravity can often 
be determined through geometric properties [1, 5]. However, for complex bodies with 
irregular shapes and varying mass distributions, the calculation becomes more 
complicated and requires the use of integrals, summations, and advanced geometrical 
analysis. 

For a rigid body, the center of gravity is determined by considering the distribution of 
mass within the object [1]. This involves calculating the weighted average of the positions 
of the various mass elements in the body. Mathematically, the center is the point where 
the object's moments about each axis (𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎, 𝑦𝑦 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎, 𝑧𝑧 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎) are balanced. 

 
Center of gravity in at two-dimensional plane 
For a two-dimensional object with mass distributed across its area, the coordinates of 

the center of gravity (𝑥𝑥𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐) are given by the following equations: 
 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∫𝑥𝑥𝑑𝑑𝑑𝑑
∫𝑑𝑑𝑑𝑑

 ; 𝑦𝑦𝑐𝑐𝑐𝑐 = ∫𝑦𝑦𝑑𝑑𝑑𝑑
∫𝑑𝑑𝑑𝑑

                                                        (1) 

 
where, 𝑥𝑥,𝑦𝑦 are the coordinates of differential mass elements 𝑑𝑑𝑑𝑑 and ∫𝑑𝑑𝑑𝑑 is the total 
mass of the object.  

In cases where the object has uniform density, it  can be simplified ∫ 𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑑𝑑𝜎𝜎,  𝜎𝜎 
being  the surface mass density and 𝑑𝑑𝜎𝜎 is a differential area element. For a constant 𝜎𝜎, 
the center of gravity simplifies to: 

 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∫𝑥𝑥𝑑𝑑𝑑𝑑
𝑑𝑑

;  𝑦𝑦𝑐𝑐𝑐𝑐 = ∫𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑

                                                          (2) 
 

where 𝜎𝜎 is the total area of the object. These integrals can be solved for specific geometric 
shapes using standard integration techniques. 
 
Center of gravity in three-dimensional space 

For three-dimensional objects, the center of gravity coordinates (𝑥𝑥𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐, 𝑧𝑧𝑐𝑐𝑐𝑐) are 
determined by integrating over the volume of the object. The equations for the CoG in 3D 
space are: 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∫𝑥𝑥𝑑𝑑𝑑𝑑
𝑑𝑑

; 𝑦𝑦𝑐𝑐𝑐𝑐 = ∫𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑

 ; 𝑧𝑧𝑐𝑐𝑐𝑐 = ∫𝑧𝑧𝑑𝑑𝑑𝑑
𝑑𝑑

                                                (3) 
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Again, for uniform density ρ, where  𝑑𝑑𝑑𝑑 = ρdV and dV is the differential volume 
element, these equations simplify to [8]: 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∫𝑥𝑥𝑑𝑑𝑑𝑑
𝑑𝑑

;  𝑦𝑦𝑐𝑐𝑐𝑐 = ∫𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑

 ; 𝑧𝑧𝑐𝑐𝑐𝑐 = ∫𝑧𝑧𝑑𝑑𝑑𝑑
𝑑𝑑

                                                  (4) 
 

where 𝑉𝑉 is the total volume of the object.  
 
Center of gravity for composite bodies 

Many real-world objects are made of multiple distinct parts, each with its own mass and 
center of gravity. For composite systems, the overall center of gravity is determined by 
finding the weighted average of the centers of gravity of the individual parts [6]. Suppose 
an object consists of n parts, each with mass 𝑑𝑑𝑖𝑖 and center of gravity (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖). The 
overall center of gravity is given by the following summation: 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∑ 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑑𝑑𝑖𝑖
𝑛𝑛
𝑖𝑖=1

; 𝑦𝑦𝑐𝑐𝑐𝑐 = ∑ 𝑑𝑑𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑑𝑑𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 ; 𝑧𝑧𝑐𝑐𝑐𝑐 = ∑ 𝑑𝑑𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑑𝑑𝑖𝑖
𝑛𝑛
𝑖𝑖=1

                                            (5) 

This method is especially useful for calculating the center of gravity of complex 
machines, structures, or multi-body systems, where each component has a well-defined 
mass and center. 

 
Moment of inertia and center of gravity 

The calculation of the center of gravity is closely related to the concept of moment of 
inertia. The moment of inertia quantifies the resistance of a body to rotational motion 
about an axis. The moment of inertia III with respect to a given axis is calculated as: 

𝐼𝐼 = ∫ 𝑟𝑟2𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉𝑑𝑑                                                              (6) 

where 𝑟𝑟 is the perpendicular distance from the axis to the mass element 𝑑𝑑𝑑𝑑 =
𝜌𝜌(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉. 

The moment of inertia is an important consideration in determining the stability of 
objects in motion and is directly related to the distribution of mass around the center of 
gravity [12]. 

 
3.2. Integrals and summations for simple and complex bodies 

 
The determination of the center of gravity requires calculating how mass is distributed 

throughout an object. For simple bodies with regular shapes, summations may change, 
while for complex or continuous mass distributions, integrals are necessary. This chapter 
delves into both integrals and summations, providing theoretical background, 
explanations, and detailed formulas to calculate the center of gravity for various objects. 

When working with discrete systems or simple bodies the center of gravity can often be 
calculated using summations rather than integrals. This method is especially useful when 
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dealing with objects made up of multiple distinct parts or when the mass distribution is 
concentrated at known points.  

For a system of 𝑛𝑛 point masses 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛, the coordinates of the center of gravity 
𝑥𝑥𝑐𝑐𝑐𝑐,𝑦𝑦𝑐𝑐𝑐𝑐, 𝑧𝑧𝑐𝑐𝑐𝑐 are found by calculating the weighted average of the positions of each mass. 

 
Integral approach for continuous bodies 

For continuous bodies, where mass is distributed over a volume, surface, or line, 
summation is replaced by integration. The integration approach divides the object into 
infinitesimally small mass elements and sums their contributions to the overall center of 
gravity [7]. The integrals consider both the geometry and the mass distribution of the 
object. 

For an object with mass distributed along a one-dimensional curve (e.g., a rod), the 
center of gravity is calculated as follows. Suppose the rod is aligned along the x-axis, with 
mass per unit length, and its length spans from x=a to x = b. The center of gravity is given 
by: 

𝑥𝑥𝑐𝑐𝑐𝑐 = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎

∫ 𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎

                                                                      (7) 

 
where 𝜆𝜆(𝑥𝑥) is the mass per unit length at position x,∫ 𝜆𝜆(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎  gives the total mass of the 
rod.  

If the rod has a uniform mass distribution, meaning 𝜆𝜆(𝑥𝑥) = 𝜆𝜆(0), the integrals simplify:  
 

𝑥𝑥𝑐𝑐𝑐𝑐 =
𝑥𝑥0 ∫ 𝑥𝑥𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎

𝑥𝑥0 ∫ 𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎

=
1
2(𝑏𝑏2−𝑎𝑎2)

𝑏𝑏−𝑎𝑎
= 𝑎𝑎+𝑏𝑏

2
                                                           (8) 

 
This result shows that for a uniformly distributed rod, the center of gravity is located at 

the midpoint. 
 

4. Methodology  
 
This chapter provides a detailed account of the procedures and methods used to 

achieve the objectives outlined in this paper, which were described in the previous 
chapter. The methodology is focused on combining mathematical analysis with modern 
digital tools to determine the center of gravity for complex bodies. The process involves 
an analytical approach to solving center problems, 3D modeling of real-world assemblies, 
and the implementation of a C# application for accurate and efficient calculations. The 
methodology ensures that both theoretical and practical aspects of its determination are 
covered comprehensively. 

 
4.1. Analytical method 

 
To determine the center of gravity of the assembly, five main steps were taken. In the 

first step, the main body was divided into simple geometric bodies, and their center of 
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gravity was calculated relative to a unique reference system. In Figure 2 it is visible the 
division of the assembly into complex geometric bodies. 

 

 
 

Fig.2.  Dividing the ensemble into complex geometric bodies 
 
The coordinates of the center of gravity of a simple body are represented by the 

notations 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖. For ease of calculation, we opted for a tabular representation of the 
data. Figure 3 illustrates the division of one of the complex geometric bodies into simple 
geometric bodies. 

 
Fig.3. Dividing the complex body into simple geometric bodies 

 
In the second step, the volume of each simple geometric body was calculated, followed 

by a multiplication operation with the coordinates of the center of gravity found [15]. This 
multiplication operation contributes to the final calculation. Table 1 shows a calculation 
model applied to body 6, the table below presents the coordinates, volumes, and 
products used in calculating the center of gravity for various bodies in the drone model. 
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Brief description of the data in the table for body 6       Table 1 
 

Body 𝒙𝒙𝒊𝒊 𝒚𝒚𝒊𝒊 𝒛𝒛𝒊𝒊 𝑽𝑽𝒊𝒊 𝑽𝑽𝒊𝒊 × 𝒙𝒙𝒊𝒊 𝑽𝑽𝒊𝒊 × 𝒚𝒚𝒊𝒊 𝑽𝑽𝒊𝒊 × 𝒛𝒛𝒊𝒊 
C.G.1 -1.5 0 1 17.94 -26.91 0 17.94 
C.G.2 -1.5 0 1 -0.2113 0.31702 0 -0.2113 
C.G.3 0.1 -0.7 1 0.1005 0.01005 -0.0703 0.1005 
C.G.4 0.1 0.595 1 0.064 0.0064 0.03808 0.064 
C.G.5 0.1 0.995 1 0.064 0.0064 0.06368 0.064 

        
The calculated values for each body in the drone model are used to determine their 

contributions to the overall center of gravity, and these products are used to determine 
the weighted contributions of each body to the overall center of gravity [5], [13]. 

In the third step, the volumes (𝑉𝑉𝑖𝑖) calculated for each body geometry were summed, 
and then sums were performed on each axis. In the next step, the center of gravity for the 
complex body was calculated [2]. In the fourth step, the center of gravity for body 6 was 
determined, as can be seen in Table 2. Finally, in the last step, a unique reference system 
was chosen, relative to which the coordinates of the center of gravity were calculated 
weight of the analyzed complex body. 

 
Coordinates for the body number 6           Table 2 

Calculation 
formula 𝑋𝑋𝑋𝑋 =

∑ 𝑋𝑋𝑎𝑎 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 𝑌𝑌𝑋𝑋 =
∑ 𝑌𝑌𝑎𝑎 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 𝑍𝑍𝑋𝑋 =
∑ 𝑍𝑍𝑎𝑎 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 

Result -1.47964 0.001749 1 

 
4.2. 3D modeling of a complex assembly 

 
After performing the analytical calculation, the 3D model of the complex body was 

created. It was made with the help of the CATIA V5 program. Program that also allows the 
automatic determination of the center of gravity. The 3D model can be seen in Figure 4. 

This chapter focuses on the 3D modeling of a complex assembly, designed specifically 
to represent a drone with various components. The objective is to create a realistic and 
detailed 3D model composed of multiple interconnected parts, allowing for accurate 
calculation and analysis of the center of gravity. This process is essential to simulate real-
world conditions and provide input for both analytical and software-based center of 
gravity calculations. 
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Fig.4.  Model 3D- complex body (drone) 

The complex assembly used for this study consists of a drone, which has been 
subdivided into 20 distinct bodies. These bodies represent different structural and 
functional components of the drone. 

The rationale behind dividing the drone into 20 separate parts is to allow for the 
flexibility to analyze each component's contribution to the overall center. By modeling 
these components individually, it can be better understood how variations in mass 
distribution, weight placement, and geometry affect the entire assembly. 

The 3D model not only served as a digital representation for center of gravity 
calculations, but also offered insights into practical design considerations for drones. 

 
4.3. Realization of the application for determining the center of gravity 

 
In this chapter, the development of an application designed to determine the center of 

gravity for complex assemblies, particularly drones, is discussed in detail. The application 
is built using the Unity platform, a widely-used game development environment known 
for its robust 3D modeling, real-time simulation capabilities, and support for advanced 
physics engines. Unity was chosen because it allows for both the visual representation of 
3D models and the integration of programming languages, such as C#, to perform complex 
calculations. The role of the application is twofold: to serve as a practical tool for real-time 
center of gravity determination and to validate the theoretical calculations performed in 
earlier stages. 

The primary goal of the application is to provide a practical interface for calculating and 
visualizing the center of a complex assembly, such as the 20-part drone described earlier. 
The secondary goal is to validate the theoretical calculations derived from the analytical 
method by providing a digital environment where users can interact with the model, 
adjust parameters, and observe changes to it in real-time. This application fills the gap 
between theory and practice, enabling designers and engineers to perform center 
calculations efficiently. 
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Algorithm 1 for application interface designed 
using System.Collections;  
using System.Collections.Generic; 
using JetBrains.Annotations; 
using UnityEngine; 
public class centruGreutateDrona: MonoBehaviour 
// Start is called before the first frame update Vector3 COM = Vector3.zero; 
         public GameObject assembly; GameObject sageata; float cof; 
              void Start() 
         foreach(Transform part in 
              assembly.GetComponentsInChildren<Transform>()){ 
} 
// add rigidbody to each part 
        if(part.GetComponent<Rigidbody>() == null){ print(part.gameObject.name); 
} 
part.gameObject.AddComponent<Rigidbody>(); part.GetComponent<Rigidbody>().useGravity 
= false; 
Rigidbody componentRb = part.GetComponent<Rigidbody>(); COM += 
componentRb.worldCenterOfMass componentRb.mass; c+= 
part.GetComponent<Rigidbody>().mass; 
COM /= c; 
sageata = Instantiate(Resources.Load<GameObject>("SageataRosie"), COM, 
Quaternion.Euler(90, 0, 0)); 
} 
// Update is called once per frame 
          void Update() 
COM - Vector3.zero; 
          float cof; 
foreach(Transform part in assembly.GetComponentsInChildren<Transform>()){ 
} 
Rigidbody componentRb-part.GetComponent<Rigidbody>(); COM += 
componentRb.worldCenterOfMass componentRb.mass; c+= 
part.GetComponent<Rigidbody>().mass; 
COM /= c; 
sageata.transform.position= COM; 
} 

For the development of the application, the Unity platform was used, recognized as one 
of the most popular game development environments globally. In the process of 
implementing the application for determining the center of gravity, advanced algorithms 
were used to precisely calculate the position and relative weight of each component of 
the complex body. By means of these algorithms, it was possible to accurately determine 
the center of gravity of the complex body. A positive aspect of this application is the ability 
to provide a visual and interactive simulation of the drone, thanks to the use of the Unity 
platform. This feature facilitated the rapid visualization and testing of various component 
configurations in order to optimize the stability of the complex body. Algorithm 1 shows 
a code used to implement this application, in which a rigid body was adopted for each 
part and the code lines for updating according to each shape. 
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4.3.1. Implementation in C# 
 
This chapter focuses on the technical aspects of implementing the application for 

determining the center of gravity using the C# programming language within the Unity 
platform. The C# code handles all the main functionality of the application, including 
center calculations, real-time adjustments of component masses and interaction with the 
user interface. The implementation was designed to be both efficient and intuitive, 
allowing users to interact with the drone model dynamically while providing accurate its 
calculations. 

 
Algorithm 2 for determination of center of gravity 
using System.Collections; 
using System.Collections.Generic; 
using JetBrains.Annotations; 
using UnityEngine; 
using TMPro; 
public class centruGreutateDrona : MonoBehaviour 
{ 
    // Start is called before the first frame update 
    Vector3 CoM = Vector3.zero; 
    public GameObject assembly; 
    public GameObject greutateAlbastra; 
    public GameObject greutateVerde; 
    public TMP_Text pozitieCoMlabel; 
    public TMP_Text greutateAlbastraCoMlabel; 
    public TMP_Text greutateVerdeCoMlabel; 
    GameObject sageata; 
    float c = 0f; 
    void Start() 
    { 
        foreach(Transform part in assembly.GetComponentsInChildren<Transform>()){ 
                        // add rigidbody to each part 
            if(part.GetComponent<Rigidbody>() == null){ 
                part.gameObject.AddComponent<Rigidbody>(); 
                part.GetComponent<Rigidbody>().useGravity = false; 
                if(part.gameObject.name == "brat"){ 
                    part.GetComponent<Rigidbody>().mass = 0.013f; 
                } 
                else if (part.gameObject.name == "camera"){ 
                    part.GetComponent<Rigidbody>().mass = 0.006f; 
                } 
                else if (part.gameObject.name == "picior"){ 
                    part.gameObject.GetComponent<Rigidbody>().mass = 0.003f; 
                }  
                else if(part.gameObject.name == "corp"){ 
                    part.gameObject.GetComponent<Rigidbody>().mass = 0.014f; 
                } 
                else if(part.gameObject.name == "cam2"){ 
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                    part.GetComponent<Rigidbody>().mass = 0.006f; 
                } 
                else if (part.gameObject.name == "suportcam2"){ 
                    part.GetComponent<Rigidbody>().mass = 0.006f; 
                } 
                else if (part.gameObject.name == "suportcam1"){ 
                    part.GetComponent<Rigidbody>().mass = 0.004f; 
                } 
                else if (part.gameObject.name == "pin"){ 
                    part.gameObject.GetComponent<Rigidbody>().mass = 0.001f; 
                } 
                else if (part.gameObject.name == "Component6:1" || part.gameObject.name == 
"Component6:2"){ 
                    part.gameObject.GetComponent<Rigidbody>().mass = 0.004f; 
                } 
                else { 
                    part.gameObject.GetComponent<Rigidbody>().mass = 0.0001f; 
                } 
                    } 
            Rigidbody componentRb = part.GetComponent<Rigidbody>(); 
            CoM += componentRb.worldCenterOfMass * componentRb.mass; 
            c += part.GetComponent<Rigidbody>().mass; 
        } 
        CoM /= c; 
        sageata = Instantiate(Resources.Load<GameObject>("SageataRosie"), CoM, 
Quaternion.Euler(90, 0, 0)); 
    } 
    // Update is called once per frame 
    void Update() 
    { 
        CoM = Vector3.zero; 
        float c = 0f; 
} 

The algorithm presented above provides insights into how each part of the code works 
to compute the CoG, along with a real-time visual representation. This approach is 
particularly useful for assessing the balance and stability of the drone model, as the CoG 
is a central factor in its flight dynamics and performance. The algorithm supports dynamic 
adjustment, meaning that changes in the mass or configuration of drone components can 
be instantly reflected in the CoG. This is particularly useful for examining how real-world 
scenarios—such as adding payload or adjusting parts—would impact drone balance, 
which is a main goal for the upcoming research for the current study. 

In the Algorithm 3 below, the primary objective of this algorithm is to allow dynamic 
adjustments to the masses of specified components—particularly the blue and green 
weights—within the 3D drone model. This enables real-time recalculations of the drone's 
center of gravity based on user input for mass values and desired CoG coordinates. 
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Algorithm 3 for change in mass of bodies 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using UnityEngine.UI; 
using TMPro; 
using System; 
public class SchimbaGreutate : MonoBehaviour 
{ 
    public TMP_InputField inputGreutateAlbastra; 
    public TMP_InputField inputGreutateVerde; 
    public TMP_InputField inputCoordonateX; 
    public TMP_InputField inputCoordonateY; 
    public TMP_InputField inputCoordonateZ; 
    public GameObject greutateAlbastra; 
    public GameObject greutateVerde; 
    public GameObject assembly; 
    public void Aplica() 
    { 
        try 
        { 
            greutateAlbastra.GetComponent<Rigidbody>().mass = 
Convert.ToSingle(inputGreutateAlbastra.text); 
        } 
        catch 
        { 
            greutateAlbastra.GetComponent<Rigidbody>().mass = 1; 
        } 
        try 
        { 
            greutateVerde.GetComponent<Rigidbody>().mass = 
Convert.ToSingle(inputGreutateVerde.text); 
        } 
        catch 
        { 
            greutateVerde.GetComponent<Rigidbody>().mass = 1; 
        } 
    } 
    public void SetareCentruDeGreutate() 
    { 
        Vector3 CoMDorit = new Vector3(); 
        try 
        { 
            CoMDorit.x = Convert.ToSingle(inputCoordonateX.text); 
            CoMDorit.y = Convert.ToSingle(inputCoordonateY.text); 
            CoMDorit.z = Convert.ToSingle(inputCoordonateZ.text); 
        } 
        catch 
        { 
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            Debug.LogError("Coordonatele introduse nu sunt valide"); 
            return; 
        } 
        CalculeazaMasePentruCoM(CoMDorit); 
    } 
    void Start() 
    { 
        greutateAlbastra.GetComponent<Rigidbody>().mass = 0.1f; 
        greutateVerde.GetComponent<Rigidbody>().mass = 0.1f; 
        inputGreutateAlbastra.interactable = true; 
        inputGreutateVerde.interactable = true; 
        inputGreutateAlbastra.text = "0.1"; 
        inputGreutateVerde.text = "0.1"; 
    } 
    void CalculeazaMasePentruCoM(Vector3 CoMDorit) 
    { 
        float totalMass = 0f; 
        Vector3 currentCoM = Vector3.zero; 
                foreach (Transform part in assembly.GetComponentsInChildren<Transform>()) 
        { 
            Rigidbody componentRb = part.GetComponent<Rigidbody>(); 
            totalMass += componentRb.mass; 
            currentCoM += componentRb.worldCenterOfMass * componentRb.mass; 
        } 
        currentCoM /= totalMass; 
        Vector3 offset = CoMDorit - currentCoM; 
        Vector3 positionAlbastra = greutateAlbastra.transform.position; 
        Vector3 positionVerde = greutateVerde.transform.position; 
        float distanceAlbastra = Vector3.Distance(positionAlbastra, CoMDorit); 
        float distanceVerde = Vector3.Distance(positionVerde, CoMDorit); 
        float masaNouaAlbastra = greutateAlbastra.GetComponent<Rigidbody>().mass + 
offset.magnitude * distanceVerde / (distanceAlbastra + distanceVerde); 
        float masaNouaVerde = greutateVerde.GetComponent<Rigidbody>().mass + 
offset.magnitude * distanceAlbastra / (distanceAlbastra + distanceVerde); 
        greutateAlbastra.GetComponent<Rigidbody>().mass = masaNouaAlbastra; 
        greutateVerde.GetComponent<Rigidbody>().mass = masaNouaVerde; 
        Debug.Log($"Masa noua greutate albastra: {masaNouaAlbastra}, masa noua greutate 
verde: {masaNouaVerde}"); 
    } 
} 
 
The dynamic mass-adjustment algorithm is essential for validating and optimizing the 

drone’s CoG, balance, and stability. Users can directly specify coordinates for a target CoG 
location, which the algorithm then uses to calculate the necessary mass changes for each 
component. 
 
Functionality of the Application 

The primary functionalities of the application are: 
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Calculation of the center of gravity: the application calculates the CoG of the drone 
based on the masses and positions of its components in real-time. This involves 
computing a weighted average of the positions of the individual components, taking into 
account their masses. 

Real-time mass modification: users can interact with the application to change the 
mass of individual components and observe how this affects it. The application 
immediately recalculates and visualizes the updated center as changes are made. 

These two functionalities work together to provide users with a dynamic tool for 
understanding how modifications in mass distribution impact the balance and stability of 
a complex assembly, such as the drone. 

 
User interface (UI) of the application 

The Unity platform was used to create a user-friendly interface that allows for easy 
interaction with the drone model and the center calculation system. The interface 
includes the following elements: 

Control Panel, which is positioned alongside the 3D window, providing input fields and 
sliders that allow users to modify the mass of individual components in real-time. Each 
slider corresponds to a specific part of the drone (e.g. fuselage, arms, propellers, battery) 
and changes in mass are reflected immediately in the center calculation. 

Center of gravity display: it is a section of the UI displays the numeric coordinates of it, 
showing the X, Y, and Z positions relative to the drone’s frame of reference. This helps 
users monitor how the center changes as they adjust the drone’s configuration. 

The C# scripts for calculating the center and changing component masses are seamlessly 
integrated into the Unity environment. The application ties together 3D visualization, user 
interaction, and mathematical computation in a way that allows users to: 

• Modify the drone’s configuration dynamically. 
• Visualize the impact of those changes on the center in real-time. 
• Compare the results with theoretical calculations to validate the accuracy of the 
method. 
 

4.4. Printing and assembly for the 3D model 
 
In order to determine the center of gravity on a physically complex body, the 3D printer 

was used to make its components. After 3D modeling with the help of the CATIA program, 
each part was taken separately to be printed. The material used was PLA. Material fill was 
between 2% and 100%. The thickness of the walls was adapted according to its need 
(between 1.2 mm and 5 mm, for the pieces that did not have 100% filling with material). 
Figure 5 shows the physical model of the drone. 

This chapter describes the process of creating and assembling a physical 3D model of a 
drone to validate the theoretical calculations of the center of gravity. The method 
involved using a 3D printer to manufacture the individual components based on a detailed 
3D model created with CATIA software.  
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Fig. 5.  Physical model of the complex body 

 
Assembly of the physical model 

Construction - after printing, the individual components were assembled to create the 
complete drone model. This physical assembly mirrored the 3D model used in the 
theoretical calculations. 

Verification - the assembled drone was then used to verify the center calculations by 
comparing the theoretical center with the experimentally measured center of the physical 
model. 

With all components printed, the next step was the assembly of the physical drone 
model. The assembly process was executed with precision to ensure that the final model 
accurately represented the theoretical design. 

• Component fitting: each printed part was fitted together according to the design 
specifications from CATIA. The assembly involved aligning and connecting parts to 
form the complete drone structure, as shown in Figure 5. 
• Verification: the assembled model was checked for any misalignments or issues that 
might affect the accuracy of the center of gravity calculations. Any adjustments were 
made to ensure that the model was fully functional and ready for testing. 

The printing and assembly of the 3D model provided a practical means to validate the 
theoretical center calculations. By using PLA for the printing process and following precise 
assembly procedures, the study ensured that the physical model accurately represented 
the theoretical design. 

 
5. Analytical calculation results 

 
In order to determine the center of gravity of the assembly (drone), analytical 

calculations were carried out. Table 3 shows the results for determining the coordinates 
on the three axes of each complex body, where 𝑋𝑋𝐶𝐶 ,𝑌𝑌𝐶𝐶 ,𝑍𝑍𝐶𝐶  represent the coordinates 
relative to the system of the complex body, and 𝑋𝑋𝐹𝐹 ,𝑌𝑌𝐹𝐹 ,𝑍𝑍𝐹𝐹represent the coordinates 
relative to the single chosen reference system. 
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                       Three axes coordinate for centre of gravity          Table 3 
 

Body 
analysed 

𝑿𝑿𝑪𝑪 𝒀𝒀𝑪𝑪 𝒁𝒁𝑪𝑪 𝑿𝑿𝑭𝑭 𝒀𝒀𝑭𝑭 𝒁𝒁𝑭𝑭 

1 8.403997 5.000638 1.495672 0.903997 0.000638 1.495672 

2 -3.46042 -2.0055 0.733471 0.039577 -0.0055 3.733471 

3 0 0 0 2.5 0 6 

4 0 0 0.170198 0 0 5.123198 

5 7.60761 1 0.935225 0 0 2.935225 

6 -1.47964 0.001709 1 2.52036 0.001749 6 

7 0 1 0.545892 1.5 1 5.045892 

8 7.60761 1 0.935225 0 0 2.935225 

9 0 0 0.170198 0 0 5.123198 

10 -0.78336 0 0 9.664642 1 1 

11 -0.78336 0 0 9.664642 -1 1 

12 0.363599 0 1.804602 10.3636 0 0.804602 

13 0.507816 1.24612 0.985186 11.00782 0.00112 -1.26481 

14 0 0 0 11 0 -1.25 

15 0 0 0.889162 0 0 -2.11084 

16 7.60761 1 0.935225 0 0 2.935225 

17 0 0 0.889162 0 0 -2.11084 

18 0 0 0.170198 0 0 5.123198 

19 7.60761 1 0.935225 0 0 2.935225 

20 0 0 0.170198 0 0 5.123198 

Table 4 shows the final results for the center of gravity of the complex assembly. 
𝑋𝑋𝐶𝐶 ,𝑌𝑌𝐶𝐶 ,𝑍𝑍𝐶𝐶   represent the coordinates on the three axes of the reference system. 

Coordinates of centre of gravity for complex assembly           Table 4 

Calculation 
formulas 𝑋𝑋𝑋𝑋 =

∑ 𝑋𝑋𝑋𝑋 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 𝑌𝑌𝑋𝑋 =
∑ 𝑌𝑌𝑋𝑋 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 𝑍𝑍𝑋𝑋 =
∑ 𝑍𝑍𝑋𝑋 ∗ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

∑ 𝑉𝑉𝑎𝑎𝑛𝑛
𝑖𝑖=1

 

Final result 0.836354 0.009872 2.195715 

 
6. Validation of analytical results through experimental setup 

 
With the help of the Unity engine, the application was made that can determine the 

center of gravity of a complex body. In order to observe how the center of gravity changes 
depending on the mass of the bodies, two buttons have been introduced through which 
the weight of the bodies positioned on the wings of the drone can be entered manually. 
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After entering these data, the application will show the exact real-time position of the 
complex body. Figure 6 shows the application interface for determining complex bodies 
with variable bodies such as weight. 

In this chapter, the focus was on the validation of the analytical calculations for 
determining the center of gravity by testing the application developed in the previous 
chapters. The goal was to ensure that the theoretical results obtained from the analytical 
method align with the experimental measurements of the physical 3D model.  

 

 
 

Fig.6. Interface of the application created 

The results were validated through a physical experiment. The coordinates obtained 
from the analytical calculations and the developed application were compared to 
determine the center of gravity of the physical model. A special support was used to keep 
the assembly in a stable equilibrium position. In Figure 7, the experimental confirmation 
of the accuracy of the calculations and the application in determining the center of gravity 
of the assembly is presented. 

 

 
Fig. 7.  Physical validation of the results by experiment 
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The validation process demonstrated that the application created for calculating the 
center and the physical 3D model were both effective tools for verifying the accuracy of 
the analytical calculations. 

By testing both the application interface and the physical model, this chapter 
provided a comprehensive validation of the center determination process. The 
successful validation supports the use of the analytical method and the application in 
real-world engineering applications, highlighting their utility in designing and 
analyzing complex assemblies. 

 
7. Conclusions and upcoming research 

 
Following the study, we can draw the conclusion that determining the centers of gravity 

is extremely important in engineering. Also, following the realization of an application 
with the help of programming in the C# language, the centers of gravity can be 
determined much faster and precisely. It should be noted that the analytical part helped 
to create the code and finally to validate the results with the help of the model made after 
3D printing. 

This study has achieved several key outcomes in the determination of the center of 
gravity for complex bodies, particularly focusing on a drone model: 

• Effective analytical method: We developed a reliable analytical method for 
calculating the center of complex assemblies. This method uses mathematical 
principles and integrals to ensure accurate results. 

• Successful 3D modeling and printing: A detailed 3D model of the drone was 
created and printed using PLA. The model, divided into 20 parts, accurately 
represented the theoretical design and allowed for effective validation. 

• Functional application: An application was built using Unity and C# to calculate 
and visualize the center. Testing confirmed that the application works as 
intended, providing accurate results based on user inputs. 

• Validation of results: The physical model was used to verify its calculations. 
Experimental measurements closely matched the theoretical results, confirming 
the accuracy of both the analytical method and the application. 

• Practical implications: The study highlights the importance of combining 
theoretical calculations with practical tools like 3D printing and software 
applications. This approach is valuable for engineering fields where balance and 
stability are crucial. 

 
The following are proposed directions for future work, such as: extension to more 

complex geometries and bodies, the analysis and determination of CoG to a wide range 
of geometries and assemblies, that would demonstrate the adaptability and test the 
calculation and software. Another direction proposed is to develop the software 
capability, building on the Unity application, which may include real-time updates, based 
on adjustments, automatic optimization of mass distribution and visualizations of CoG 
under varying loads. 
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