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Abstract: Agriculture is a top priority both for Romania and the European 
Union. Agriculture can largely benefit from the Earth Observation data freely 
available from the Sentinel 2 satellites within the context of the Copernicus 
program. The validation and correlation of satellite measurements with the 
in-situ measured data are extremely important for the correct exploitation of 
the remote sensing data. One way to foster satellite and in-situ data is to use 
Artificial Intelligence models and tools for extracting useful information for 
farmers and landowners. In this article, we identify the current needs in the 
agricultural domain as well as various aspects where innovation can occur in 
the data processing chain. We focus on convolutional neural networks as this 
type of deep learning model is perfectly suited for the analysis of images. 
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1. Introduction 
 
The world population will increase from 7.5 to 9.7 billion by 2050, resulting in high 

agricultural products demand and pressure on natural resources. Although in many 
countries, agriculture is still the major activity around the world, a decrease in total 
production and employment in agriculture is observed. Agricultural investments and 
technological innovations are considered by experts the solution to boost productivity 
[22]. 6.8 million hectares out of 14.7 million hectares of agricultural capacity in Romania 
are not or are under-exploited. Consequently, Romania can perform an important role in 
the strategic autonomy and food security, as well as the sustainability of Europe. 
Romania’s agricultural capacity is being under-exploited because of the usage of obsolete 
technology and various natural phenomena such as soil fragmentation, erosion, and 
desertification. Over the past thirty years, precision agriculture has evolved from using 
satellite imaging for regional decision-making to using low-altitude remotely sensed data 
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for field-scale site-specific treatment. Researchers implemented a recurrent neural 
network on a low-power device for in situ observations. This embedded system works 
autonomously for 180 days [50]. SMART agriculture requires the integration of such 
sensors into the field to measure crop health, and soil condition and connect them to the 
cloud for further access, and communication between device units [41]. In [44] 
researchers propose a cyber-physical system for precision agriculture that can help 
farmers to improve agricultural productivity. In the paper [43] authors exemplify the 
sensors and their purposes in agriculture and show the results of a few devices that are 
applied in the potato field. Brasov County is considered to be the Potato County of 
Romania. At the heart of Potato County, the National Institute of Research and 
Development for Potato and Sugar Beet (NIRDPSB), Brasov plays an important role in the 
preservation of the potato heritage at the national level [10], [9]. NIRDPSB has more than 
60 years of experience in the field. It promotes strategic, fundamental, and applicative 
research in the potato and sugar beet crop domain. Its research directions are the 
following: maintaining and improving the genetic heritage in potatoes, sugar beet, and 
medical plants; creating new potato varieties; improving potato seed quality and 
biotechnology promoting (in vitro crops, micro- and mini-tubercles); development of 
integrated and differentiated technologies for potato and sugar beet cultivation with low 
energy, low prices and environmentally friendly; development of methods for forecasting 
and warning of major diseases and pests; physical, chemical and biochemical testing of 
plant material; testing, analysing and fight against major diseases affecting potato crops. 
NIRDPSB has rich experience in potato cultivation and exploitation, being the only 
National Institute in Romania dealing with potato research.  

In the past decades, there has been a major increase in scientific interest in using 
remote sensing technologies and many sensors and platforms have been designed for 
Earth Observation (EO). Massive amounts of remote sensing data, particularly acquired 
by satellites, are now accessible for research studies. Nowadays, more than a thousand 
operational satellites are orbiting the planet, many of which are used for remote sensing. 
For agriculture, remote sensing offers invaluable support for precise agricultural 
operations at the scale of farmers’ fields, but also in the strategic planning and 
management of agricultural production at regional and national levels [25]. Artificial 
Intelligence (AI)-based systems and applications have a significant potential for precision 
agriculture. The Copernicus EU Programme provides free access to accurate Earth 
Observation data from Sentinel satellites, which can be used for research and AI-based 
applications aimed at the sustainable development of agriculture in Europe [7].  

Various machine learning techniques have been applied in smart agriculture, like 
Random Forest for crop prediction [20], Decision Tree [45] and k-Nearest Neighbors [54] 
for plants' leaf disease detection. Nowadays, deep learning models are widely used due 
to their high performance in classification and prediction. Convolutional neural networks 
(CNNs) [58] are usually preferred due to their higher effectiveness compared to other 
machine learning models [37]. Another reason is that they are perfectly suited to work 
with image input data. 
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2. Methodology 
  

The area where our current and future studies are being conducted is in Romania’s 
central part, Brasov County. Satellite images for this study were freely downloaded from 
the Copernicus Open Access Hub in the Brasov region. Figure 1 is an RGB colour composite 
with 10 m resolution that was captured by Sentinel-2A satellite and processed in SNAP 
ESA software. It shows the location of the Research, Development, and Innovation (RDI) 
Institute of the Transilvania University of Brasov, emphasizing in its surrounding area the 
various experimental crops (marked in red, blue, and green) for potato and sugar beet, 
belonging to NIRDPSB.  

The scientific challenges and needs in Artificial Intelligence and Agriculture were 
identified through discussions with representatives from the National Institute of 
Research and Development for Potato and Sugar Beet Brasov, Romania, and the 
Research-Development Institute for Grasslands Brasov, as well as other institutes, 
companies, and farming associations In the context of AI on remote sensing/EO Data for 
Agriculture, we identified the following challenges: cartography of agricultural crops, crop 
identification (differentiation), vegetation status monitoring, health status monitoring 
(early detection of the presence of pests), yield prediction/production capacity 
monitoring and evolution of technological quality of the agricultural crops, computation 
of vegetation indices and their biological and agronomic significance and map generation  

 

 
Fig. 1. Sentinel 2A satellite view of the NIRDPSB experimental fields (2022). 

 
for the identification of specific plant stress (e.g., need of water and fertilizers), change 
detection based on vegetation indices or other pixel or local features for the early 
detection of plant stress, efficient processing strategies - e.g., interest detection on free 
low-resolution data followed by the acquisition of more precise data, compression, 
simplification, including focal estimates, etc. The data that we consider include mainly 
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satellite data and in-situ measurements. For the satellite data, we consider using the 
Sentinel-1 images (SAR), Sentinel-2 images (multispectral data), PRISMA images 
(hyperspectral data), and Pleiades high-resolution images, as well as data from future 
Copernicus missions. Regarding the in-situ measurements, two types of data are 
considered: i) vegetation indices (NDVI), chlorophyll content, water content, etc., and ii) 
hyperspectral images. For all data and measurements, we consider both the 
representation as time series and data cubes. 
 
3. Innovation in EO for Agriculture 
 
3.1. The in-situ level 

 
Various in-situ measurements are regularly performed every year in order to monitor several 

experimental crops of the NIRDPSB. For soil, the following in-situ measurements are performed 
(indicating in parentheses the equipment that is used): humidity (TDR300), temperature, 
electrical conductivity (VERIS), compaction (FieldScout SC900), and profile-based humidity and 
temperature dynamics. Regarding the crops, the following in-situ measurements are 
performed: crop reflectance (CropScan), chlorophyll concentration (SPAD502), NDVI (NDVI 
Meter), phenology data, and climate data from various meteo stations [41], [43]. All the 
measurements are georeferenced using GPS in order to integrate all data in GIS and produce 
various maps, including vegetation indices maps. The most used and unanimously accepted 
vegetation indices are computed and used for monitoring (e.g. NDVI and Leaf Area Index (LAI)). 
The vegetation indices maps are interpreted and used as they are, but very often they are used 
to perform correlations with the vegetation indices maps computed based on multispectral 
satellite images. Various other vegetation indices exist: Atmospherically Resistant Vegetation 
Index (ARVI) [33]; Green Difference Vegetation Index (GDVI) [51], [34]; Green Vegetation Index 
(GVI) [34]; Optimized Soil Adjusted Vegetation Index (OSAVI) [46]; Simple Ratio (SR) [6]; Soil 
Adjusted Vegetation Index (SAVI) [28]; Transformed Difference Vegetation Index (TDVI) [4]; 
Visible Atmospherically Resistant Index (VARI) [21]; Modified Chlorophyll Absorption Ratio Index 
Improved (MCARI2) [26]; Normalized Difference Water Index (NDWI) [19]; Normalized 
Difference Nitrogen Index (NDNI) [49], [17]; Normalized Difference Infrared Index (NDII) [27], 
[31]; Cellulose Absorption Index (CAI) [15], [14]; etc. 

The crop reflectance spectral data can be acquired using the CropScan technology. We show 
in Figure 2 the spectral reflectance curves obtained using CropScan for two sugar beet crops - 
one healthy and one stressed expressed in percentages as a function of wavelength in 𝑛𝑛𝑛𝑛. The 
CropScan offers the reflectance values for wavelengths comprised between 460 𝑛𝑛𝑛𝑛 and 1500 
𝑛𝑛𝑛𝑛. For the stressed sugar beet crop, the spectral curves indicate that the vegetation status of 
the plant is not the desired one, the plant lacks water, nutrients, or both. This was confirmed by 
the in-situ measurements (NDVI, NI, SR, and chlorophyll content). 

Ground-level referencing plays an important role in the validation of EO data. In Spring 
2017 we developed the metal colour chart for in-situ usage, which is presented in Figure 
3. The colour chart is composed of eight squares, each of them of 0.5 × 0.5 𝑛𝑛 size, painted 
in the following colours: white, red, green, blue, black, magenta, yellow, and cyan. The 
resulting total size of the colour chart is 1 × 2 𝑛𝑛.  
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Fig. 2. Spectral reflectance curves for two different sugar beet crops. 

 
Ground-level referencing plays an important role in the validation of EO data. In Spring 

2017 we developed the metal colour chart for in-situ usage, which is presented in Figure 
3. The colour chart is composed of eight squares, each of them of 0.5 × 0.5 𝑛𝑛 size, painted 
in the following colours: white, red, green, blue, black, magenta, yellow, and cyan. The 
resulting total size of the colour chart is 1 × 2 𝑛𝑛.  

 

 
Fig. 3. Spectral reflectance curves for two different sugar beet crops (used from [29]). 

 
We performed various in-situ spectral measurements on the colour chart, using a 

portable spectrometer. The raw measured values represent the radiance expressed in 
𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐/𝜇𝜇𝜇𝜇, at 1 𝑛𝑛𝑐𝑐 integration time. The measurements are depicted in Figure 4 for the 
eight patches of the colour chart, as well as the radiance of the sunlight. The reflectance 
curves for the eight patches of the colour chart were computed by normalizing the 
radiance values with respect to the radiance of the illuminant (sunlight on a sunny day, 
which should correspond to a CIE D65 standard illuminant). 
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The referencing is very important for the validation of multi or hyperspectral image 
acquisition. The in-situ colour chart and multispectral measurements will be further used 
to validate the acquisition with a portable Specim IQ hyperspectral camera or to perform 
colour correction of the acquired aerial views acquired with the hexa-spectral camera. 
Further on, all the data (in-situ measurements, multispectral measurements, and images) 
will be correlated to the measurements (e.g., of vegetation indices) performed on 
Sentinel-2 multispectral images. 

 

  
(a) (b) 

Fig. 4. The radiance (a) and the reflectance (b) curves of the colour patches and the 
incident sunlight 

 
3.2. The ground level 
 

At the ground level, we considered soil surface roughness, which is an important 
parameter of the soil. Soil roughness represents the soil surface irregularities as a direct 
consequence of soil texture, aggregate size, rock fragments, vegetation cover, and land 
management [55]. Soil roughness plays an important role in water surface storage, 
infiltration, overland flow, floods, and ultimately sediment detachment and erosion [3], 
[23]. One of the widely used measurements for roughness is defined by [2]: the soil 
roughness is computed as the natural logarithm of the standard deviation (STD) of 
multiple height measurements after eliminating the possible bias (like slope and oriented 
roughness, or the 10% of upper and lower extreme values). However, according to [13], 
the STD of height measurements after eliminating the slope effects is sufficient for the 
measurement of random roughness. We considered this technique in our study. Methods 
for soil roughness measurement can be divided into two broad categories: contact and 
non-contact. Contact methods are the roller chain method [48] and the pinboard method 
[2]. They are also referred to as reference methods. Non-contact methods are Terrestrial 
Laser Scanning (TLS) [5], stereophotogrammetry [1], and Xtion Pro [39]. A study and 
comparison of all these methods are presented [55]. As in-lab preparatory experiments 
for the future in-situ measurement campaign foreseen for spring 2023, we created several 
artificial surfaces and performed several soil roughness measurements. In the chain 
method, the chain is one meter long and the soil roughness is estimated by computing 
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the index in eq. (1) [48]: 
𝐶𝐶𝐶𝐶 = �1 − 𝐿𝐿2

𝐿𝐿1
� × 100                 (1) 

where, 𝐿𝐿1, - is a distance over a surface that indicates the size of the chain (1 𝑛𝑛) and, 
𝐿𝐿2, - is the Euclidean distance measured by a ruler over the sample surface (𝑛𝑛). 

We validated the pinboard setup by performing several in-lab measurements (Figure 5 
(a), (b) and (c)). For the in-situ measurement campaign, we took 12 different 
measurements in a field with chain and pinboard. Figure 5 (d) shows the usage of a chain 
method while Figure 5 (e) shows the usage of a pinboard. Figure 5 (f) is the close-range 
format of the pinboard setup to record the height of the pins and it was taken with a 
Canon 5D Mark II digital camera with 1 𝑛𝑛 distance from the pinboard and 30 𝑐𝑐𝑛𝑛 height 
from the ground. These parameters were kept as standard in all measurements. With the 
value of the height of the recorded pins, we computed the STD. Figure 5 (g) indicates the 
locations of the 12 measurements in the field, for more details, see [43]. Furthermore, we 
conducted in-lab experiments with laser on multiple surfaces such as Figure 5 (h) and (i). 
We used this data to train CNN networks namely, VGG-11 and ResNet-18 to estimate soil 
roughness [30]. 

 

   
(a) In-lab usage of pinboard 

on Sample B 
(b) Sample C (c) Sample D 

   
(d) Chain measurement on 

soil in-situ 
(e) In-situ usage of 

pinboard 
(f) In-situ usage of 

pinboard (close view) 

   
(g) In-situ measurement 

locations  
(h) Laser on sample C (i) Laser on the soil 

surface 

Fig. 5. Usage of chain and pinboard setups, in-situ measurement locations and in-lab 
experiments with the laser to estimate soil surface roughness using CNN 
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3.3. The satellite image analysis level 
 

Human vision is limited to a very small part of the electromagnetic spectrum, called the 
visible spectrum. Multispectral and hyperspectral cameras are capable of acquiring data 
both in the visible and outside the visible spectrum, very often the infrared spectrum. The 
spectral data can be very useful for many applications: object detection [57], issues 
detection in farming (nutrient deficiencies, diseases, etc.) [38], forensic medicine [16], 
biomedicine [8], food safety and quality control [24], etc. Due to the multi-dimensional 
nature of the spectral data, the visualization of a colour display with only 3 colour channels 
is a challenge. Various methods have been proposed for the visualization of remote 
sensing data.  

The band selection approach is to select three spectral bands and map them into R, G, 
and B colour channels [52]. More complex band selection methods have been proposed 
[53]. Transform-based visualization is done by converting the spectral data cube to a 
feature space that is suitable for dimension reduction [12]. The most widely adopted one 
is principal component analysis (PCA) which proposes a display strategy based on the first 
three principal components of the spectral data and mapping them into R, G, and B colour 
channels, which capture the most significant variation in the data. Other types of 
approaches include image fusion based on a weighted sum of spectral bands [32]; 
multiresolution-based techniques based on a decomposition of the data on base images 
to generate multi-resolution pyramidal representations [56]; or wavelet-based 
techniques [35], [36]. Another example of an AI-based approach is described in [42] where 
authors proposed an ANN model to visualize the hyperspectral data, the study inspired 
by [11]. 

In Figure 6 we show a snapshot of our own MATLAB GUI used for the visualization, 
segmentation, and analysis of both LANDSAT and Sentinel-2 images. The GUI implements 
various analysis tasks: choice of spectral bands for band selection-based image 
visualization, pixel spectral signature display for the selected pixel of interest, image 
segmentation based on pixel spectral signature through k-means classification with the 
possibility of choosing the number of classes, etc. We are currently extending the 
interface to be able to work with Sentinel-2 images as well by developing new 
visualization techniques using AI models [42] as well as developing new datasets for 
training the CNN models. 

For future work, we focused on Sentinel-2 Level-2 images which is atmospherically 
corrected, Surface Reflectance products [59] and a time series of images was downloaded 
for free from the ESA Open Access Hub. The satellite images were imported into the SNAP 
ESA software application [60] and resampled at 10 𝑛𝑛 spatial resolution. The next step was 
setting the area of interest to the following coordinates: North latitude bound = 45.679°, 
West latitude bound = 25.513°, South latitude bound =45.662°, East latitude bound = 
25.57°. The band selection for rendering the colour RGB composites of the Sentinel-2A 
images was 4,3,2. 
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Fig. 6. A snapshot of the MATLAB GUI used for LANDSAT image visualization, 

segmentation, and analysis. 
 

A subset of four images from 2022 is depicted in Figure 7. The following dates 
correspond to the time series: 19th February, 14th March, 13th April, and 29th June 
respectively.  

 

  
(a) February (b) March 

  
(c) April (d) June 

Fig. 7. Colour RGB composites of the Sentinel 2A images acquired for 4 consecutive 
months in 2022 over the area of interest. 

 
Based on the remote sensing multi-spectral images, a series of vegetation indices can 

be computed for the analysis of vegetation status and health. Normalized Difference 
Vegetation Index (NDVI) is the most widely used vegetation index [47]. NDVI is computed 
as indicated in eq. 2 based on the red and near-infrared spectral bands. The differentiated 
reflection between red (RED) and near-infrared (NIR) bands allows the monitoring of the 
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green vegetation’s density and intensity using solar radiation’s spectral reflectivity [18]. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

                                                       (2) 

 
The NDVI values range from −1 to +1. The NDVI usually gives a negative result for the 

water areas, around 0 for the land area with little to zero vegetation and positive values 
usually indicate regions of land with developed vegetation. Consequently, NDVI served as 
a tool for analysing and predicting changes in vegetation status or health, as a direct 
influence of the environmental conditions. In Figure 8 we show the NDVI pseudo-coloured 
images computed using ESA SNAP based on the images in Figure 7. The colour palette, 
‘meris vegetation index’ from SNAP software was chosen so that the green colour 
represents the areas covered with vegetation (where usually the temperature is relatively 
low) and the yellow-orange colour represents the areas with built-up areas or with 
precarious vegetation (where the temperatures are relatively higher). The density and 
health of the vegetation are indicated by the NVDI value computed for each pixel in the 
satellite images, thus measuring the vegetation’s greenness. The index is based on the 
contrast between the red and near-infrared spectral bands: the red band indicates the 
absorption of chlorophyll pigments, while the near-infrared band the high reflection of 
plant materials. 

 

  
(a) February (b) March 

  
(c) April (d) June 

Fig. 8. NDVI pseudo-coloured images. 
 

4. Framework 
 

In this section, we describe the framework for our future work from two perspectives: 
first, the one of the AI4AGRI project, and second, the legal aspects framing the analysis of 
agricultural fields based on EO data. The AI4AGRI project 2022-2025, financed under grant 
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agreement no. 101079136, aims to create an excellent research centre at Transilvania 
University of Brasov, Romania, dedicated to AI in EO for the agricultural sector. The 
project is implemented in a consortium with two top research institutes in France and 
Italy in AI and EO: Université Toulouse III Paul Sabatier (and the affiliated Université 
Toulouse II Jean Jaurès) and Università degli Studi di Roma Tor Vergata, respectively. 
AI4AGRI research centre will operate to train young scientists in the domain of AI and EO 
data analysis for agriculture, providing various products like vegetation status maps for 
Romanian farmers based on EO data using AI. The AI4AGRI project aims to develop 
administrative and management skills for research and innovation by enhancing 
networking activities between partners through joint research, short-term staff 
exchanges, expert visits, short-term training, joint summer schools, and workshops, as 
well as conference attendance, dissemination of research results, and outreach activities. 

 
5. Conclusion 

 
In this paper, we introduced the framework for innovation in Earth Observation 

applications for agriculture in the context of the AI4AGRI project financed by the European 
Union. Agriculture is a high priority for the European Union and Romania. The potential 
of the land in Romania for agriculture is huge and Brasov County is especially known for 
its large number of potato crops. On the other hand, available remote sensing data about 
agricultural land that the Copernicus programme offers provide farmers with 
opportunities for improvement in their production. However, using such datasets is a 
challenge, and this framework can overcome challenges and potentially lead to 
innovation. We identified that there are 3 levels of measurement for the conditions of 
crops: ground level, drone level (low altitude), and satellite level. At the ground level, we 
explored several in-situ measurements, and we specifically focused on soil roughness 
estimation, including CNN-based approaches as it represents an important parameter 
highly correlated to the humidity of the soil. We employed chain and pinboard methods 
to measure soil roughness while at the drone level, measurements were performed by a 
drone with a multispectral camera that is attached to it. Finally, at the satellite level, we 
performed visualization, segmentation, and analysis of the remote sensing images from 
LANDSAT, Sentinel 2 and PRISMA (Italian Space Agency) hyperspectral images. SNAP 
software and our own built MATLAB GUI were employed for visualization purposes and 
analysis. Furthermore, a review of available techniques and challenges in hyperspectral 
image visualization was addressed. The proposed framework can be improved by 
continuing further studies and contributions with support from AI4AGRI which aims at 
creating an excellent research center at Transilvania University of Brasov, Romania, 
dedicated to AI in EO for the agricultural sector. 
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