
MICROCONTROLLER BASED ETHERNET
EMBEDDED SYSTEMS

R. DEMETER1 R. CÂMPEANU1

Abstract: Ethernet has traditionally been a quite complex interface. Until today,

the Ethernet chips were difficult to use with a small microcontroller with little

memory. The new ENC28J60 Ethernet chip, which is a small chip with only 28

pins, was developed by Microchip to be used as an Ethernet network interface

for any microcontroller equipped with SPI. So, Microchip opens a whole world

of completely new applications. It is easy to build small devices which can be

spread all over the house and are simply connected via Ethernet, so there is no

need anymore for a separate serial connection or other bus. Everything can be

easily connected via Ethernet. Distance is no longer a limiting factor. Even WIFI

connectivity is possible because the devices can be connected to a wireless bridge.

Key words: embedded system, microcontroller, SPI programming.

1 Dept. of Automatics, Transilvania University of Braşov.

1. Introduction

In this paper we will build a hardware

having an 8 bit AVR microcontroller with

lots of IO interfaces, analog to digital

converter inputs and Ethernet interface.

The main purpose is to show here the

schematic block diagram and explain the

software application. For testing we use a

UDP application to communicate with the

ATmega168 microcontroller (MCU). This

application receives the measured

temperature, humidity and calculated dew

point from the embedded system.

All Ethernet chips until today had 100

pins or more (for example RTL8019,

RTL8139 or SMSC LAN91C111), were

difficult to find in small quantities and

difficult to use with a small

microcontroller with little memory [2].

As shown in Table 1, most of the

Ethernet controllers have ISA, PCI or SNI

interfaces, and cannot connect directly to a

general purpose microcontroller.

Comparison of Ethernet chips Table 1

Ethernet
chip

Number
of pins

Speed
[mbps]

BUS

ENC28J60 28 10 SPI

RTL8201 48 10/100 SNI

RTL8019 100 10 ISA

RTL8139 100 10/100 PCI

LAN91C111 128 10/100 ISA

2. The ENC28J60 Ethernet Controller

Microchip’s ENC28J60 controller is a

28-pin, 10BASE-T standalone Ethernet

Controller, with on board MAC & PHY, 8

Kbytes of Buffer RAM and an SPI (Serial

Peripheral Interface) serial interface used

as an Ethernet network interface for any

microcontroller equipped with SPI interface.

Microchip offers also a free licensed

TCP/IP stack optimized for the PIC18,

PIC24, dsPIC and PIC32 microcontroller

families. The stack is divided into multiple

layers, where each layer accesses services

from one or more layers directly below it

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

250

and includes the following key features:

• Supported protocols: ARP, IP, ICMP,

UDP, TCP, DHCP, SNMP, HTTP, FTP,

TFTP;

• Socket support for TCP and UDP;

• Secure Sockets Layer (SSL);

• NetBIOS Name Service;

• DNS - Domain Name System;

• Support for MPLAB C18, C30, and

C32 compilers.

The ENC28J60 meets all of the IEEE

802.3 specifications. It provides an internal

DMA module for fast data throughput and

hardware assisted checksum calculation,

which is used in network protocols [5].

The ENC28J60 consists of seven important

functional blocks:

• An SPI interface (for the communication

channel between the host controller and the

ENC28J60);

• Control registers (to control and

monitor the ENC28J60);

• A dual port RAM buffer (to receive

and transmit data packets);

• An arbiter to control the access to the

RAM buffer when requests are made from

DMA, transmit and receive data blocks;

• The bus interface (interprets data and

commands received via SPI interface);

• The Medium Access Control (MAC)

module that implements IEEE 802.3

compliant MAC logic;

• The Physical Layer (PHY) module

which encodes and decodes the analogue

data that is present on the interface.

The ENC28J60 also contains: on-chip

voltage regulator, oscillator, level translators

to provide 5 V tolerant I/Os and system

control logic.

The ENC28J60 controller from Microchip

is a very useful chip. It has Tx/Rx buffer,

MAC and PHY in one small chip, as in the

Figure 1 [5]. There are very few external

parts: like an Ethernet transformer. All this

comes in a convenient 28-pin DIP package

and it is easy to solder and it is perfect for

hobby applications. The MCU can then

control remotely any hardware, like:

sensors (light, temperature), switch on an

off something, LCD display etc.

Fig. 1. Schematic block diagram

As presented above, the ENC28J60 uses

SPI interface for communications. SPI

requires 4 signals for bidirectional

communication:

1. Clock (SCK);

2. Data In (SI);

3. Data Out (SO);

4. Chip Select (CS).

The clock signal is controlled by the master

device i.e. the ATmega168. All data is

clocked in and out using this pin. These lines

need to be connected to the relevant pins on

the ATmega168. Any unused GIO pin can

be used for CS, instead pull this pin high.

In Table 2 is an overview of SPI instruction

set implemented for the ENC28J60 [5]:

Demeter, R., et al.: Microcontroller Based Ethernet Embedded Systems 251

SPI instruction set Table 2

Instruction Opcode
Read Control Register (RCR) 000

Read Buffer Memory (RBM) 001

Write Control Register (WCR) 010

Write Buffer Memory (WBM) 011

Bit Field Set (BFS) 100

Bit Field Clear (BFC) 101

Soft Reset 111

2.1. Initialization

During initialization the following

operations are executed: setting the buffer

memory and registers, putting the MAC-

address on the right location, setting PHY

register to half/full-duplex communication,

setting the LED configuration, and

enabling automatic padding, enabling CRC

operations and the interrupts.

The Ethernet buffer contains transmit

and receive memory used by the Ethernet

controller. The entire buffer is 8 Kbytes,

divided into separate receive and transmit

buffer spaces. The sizes and locations of

transmit and receive memory are fully

programmable by the host controller using

the SPI interface. Any space within the 8-

Kbyte memory, which is not programmed

as part of the receive FIFO buffer, is

considered to be the transmit buffer.

2.2. Transmitting Packets

A MAC packet consists of a 7 byte

preamble, 1 byte start of frame delimiter, a

6 byte MAC source address, 6 byte MAC

destination address, 2 byte type/length

packet, 46-1500 data bytes and a 4 byte

checksum.

The MAC module inside the ENC28J60

will automatically generate the preamble

and Start-Of-Frame delimiter fields when

transmitting. Additionally, the MAC can

generate any padding (if needed) and the

CRC if configured to do so. The host

controller must generate and write all other

frame fields into the buffer memory for

transmission.

Additionally, the ENC28J60 requires a

single per packet control byte to precede

the packet for transmission. Before

transmitting packets, the MAC registers

which alter the transmission characteristics

should be initialized and then, the host can

generate all the other sections and place

them in the correct place within the

ENC28J60’s memory map.

To transmit a packet, the host controller

should:

1. Program the ETXST Pointer to point

to an unused location in memory. It will

point to the per packet control byte

2. Use the WBM SPI command (Table 1)

to write a per packet control byte, the

destination address, the source MAC

address, the type/length and the data

payload.

3. Program the ETXND Pointer. It

should point to the last byte in the data

payload.

4. Clear EIR.TXIF, set EIE.TXIE and

EIE.INTIE to enable an interrupt.

5. Start the transmission process by

setting ECON1.TXRTS.

2.3. Receiving Packets

Assuming that the receive buffer has

been initialized, the MAC has been

properly configured and the receive filters

have been configured to receive Ethernet

packets; the host controller should enable

reception by setting ECON1.RXEN.

After reception is enabled, packets which

are not filtered out will be written into the

circular receive buffer. Any packet which

does not meet the necessary filter criteria

will be discarded and the host controller

will not have any means of identifying that

a packet was thrown away. When a packet

is accepted it is completely written into the

buffer.

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

252

To process the packet, the host controller

will normally use the RBM (Read Buffer

Memory) SPI command (Table 2) and start

reading from the beginning of the next

Packet Pointer. The host controller will

save the next Packet Pointer, any necessary

bytes from the receive status vector and

then proceed to read the packet contents.

To minimize the processing requirements

of the host controller, the ENC28J60

incorporates several different receive

filters which can automatically reject

packets which are not needed. Six different

types of packet filters are implemented:

unicast, pattern match, magic packet, hash

table, multicast and broadcast.

The individual filters are all configured

by the ERXFCON register. More than one

filter can be active at any given time.

Additionally, the filters can be configured

by the ANDOR bit to either logically

AND, or logically OR, the tests of several

filters. In other words, the filters may be

set so that only packets accepted by all

active filters are accepted, or a packet

accepted by any one filter is accepted.

The device can enter in promiscuous

mode and receive all packets by clearing

the ERXFCON register. The proper setting

of the register will depend on the

application requirements.

A driver for the ENC28J60 will contain

the following accessible functions:

1. Initialize the ENC28J60 controller;

2. Write a packet on to the Ethernet;

3. Try to Read a packet from the MAC.

The driver functions have the following

prototypes:

// initialize the Ethernet interface for transmit/receive

void enc28j60Init(uint8_t* macaddr);

// do a ENC28J60 read operation

uint8_t enc28j60ReadOp(uint8_t op, uint8_t address);

// do a ENC28J60 write operation

void enc28j60WriteOp(uint8_t op, uint8_t address, uint8_t data);

// copy the packet from the receive buffer

void enc28j60ReadBuffer(uint16_t len, uint8_t* data);

// copy the packet into the transmit buffer

void enc28j60WriteBuffer(uint16_t len, uint8_t* data);

// copy the packet into the transmit buffer.

// send the contents of the transmit buffer onto the network

void enc28j60PacketSend(uint16_t len, uint8_t* packet);

// gets a packet from the network receive buffer, if one is available.

// the packet will be headed by an ethernet header.

// returns the packet length in bytes if a packet was retrieved, zero otherwise.

uint16_t enc28j60PacketReceive(uint16_t maxlen, uint8_t* packet);

The ENC28J60 driver should be portable

across a number of platforms, so ideally

any platform specific code should be kept

out of the driver module. In this case the

platform specific details will be in the

SPI.

3. Ethernet Based Temperature, Humidity
and Dew Point Monitoring

The monitoring system is built using a

few embedded modules, described above.

Each embedded module is equipped with

Demeter, R., et al.: Microcontroller Based Ethernet Embedded Systems 253

an ATmega168 [1], [4] and an ENC28J60

Ethernet controller.

Instead of the ATmega168 any MCU

that has at least 16 KB of non-volatile

memory and an SPI interface can be used

from the AVR or PIC families. The AVR

and PIC MCUs have the same

performances and similar pricing. Also, for

picking the MCU we have to consider the

programming language and the SDK. For

the AVR family there is avr-gcc, a targeted

version of gcc, which is completely free

and works on Windows, Linux and

MacOS. The C language used for AVR is

standard C, with the standard libraries,

includes, linking, unions, structs and

pointers, which means that porting code is

really easy because everyone uses it. All of

PIC compilers aren’t 100% compatible and

the SDK, MPLAB IDE, student version

has only level 2 optimizations.

So, we chose ATmega168 from AVR

family to show that ENC28J60 driver is

platform independent and can be used with

another microcontroller instead of PIC

family MCUs.

To upload the firmware in ATmega168

MCU PonyProg [3] was used, which is

serial device programmer software,

available for Windows and Linux

operating systems. SI-Prog programmer

hardware interface [3], is a board that

offers support for most of the PIC and

AVR MCUs. Using PonyProg and SI-Prog

Wafercard for SAT, eeprom within GSM,

TV or CAR-RADIO can be programmed.

Furthermore it can be used as a low cost

starter kit for PIC and AVR

microcontrollers.

The monitoring system, besides the

ATmega168 and Ethernet controller, also

has a subsystem with SHT11 sensors [6],

for measuring temperature and humidity

connected to the MCU using the I2C serial

bus. SHT11 sensors are powered by

Sensirion Inc., which has ±3.0 humidity

accuracy and ±0.4 temperature accuracy.

For the I2C communication any one of the

MCU’s digital IO ports can be used.

To initiate a transmission, a

“Transmission Start” sequence has to be

issued. The subsequent command consists

of tree address bits and five command bits.

SHT11 list of commands Table 3

Instruction Opcode
Reserved 0000x

Measure Temperature 00011
Measure Humidity 00101
Read Status Register 00111

Write Status Register 00110

Reserved 0101x-1110x

Soft reset, resets the

interface, clears the status

register to default values and

wait 11ms

11110

After issuing the measurement command

(Table 3) (00000101 for RH and 00000011

for Temperature) the MCU has to wait for

measurement to complete (data ready).

After that, two bytes of measurement data

and one byte of CRC-8 checksum will then

be received.

With measured temperature T of air and

relative humidity RH, the dew point Td can

be calculated, using a well-known

approximation:

),(

),(

RHTa

RHTb
Td

ϕ−

ϕ
= , (1)

where:

100
ln),(

RH

Tb

aT
RHT +

+
=ϕ , (2)

and the temperatures are in degrees

Celsius.

The a and b constants are:

a = 17.271,

b = 237.7 °C.

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

254

This expression (1) is based on the

August-Roche-Magnus approximation for

the saturation vapor pressure of water in

air as a function of temperature.

From the entire network traffic we only

need the UDP traffic with the destination

of our MAC address. On top of that we

have to process ping (IP/ICMP packets for

our MAC address) and ARP packets

(content-type=ARP) to our MAC or to

broadcast, because no IP networking is

possible without ARP. All other packets,

especially broadcast IP packets can be

ignored.

Each embedded system transmits at one

minute intervals a MAC broadcast frame,

packaged with the module’s identifier and

with the measured values of temperature,

humidity and calculated value of dew

point. The transmitted data by embedded

systems are received by a monitoring

system and saved into a database.

4. Conclusion

The temperature, humidity and dew point

monitoring application is just a simple

example to show the possibilities of this

method. It can be used for any kinds of

applications (including monitoring and

control) where different sensors and

devices need to be interconnected even

over large distances.

With a small foot print package size, the

ENC28J60 minimizes complexity, board

space and cost. Target applications with

Ethernet chip include Voice over IP,

Industrial Automation, Building Automation,

Home Control, Security and Instrumentation.

References

1. Dhananjay, V.G.: Programming and

Customizing the AVR Microcontroller,

McGraw-Hill, 2001.

2. Jan, Axelson: Embedded ETHERNET

and Internet complete. Lakeview

Research LLC, 2003.

3. Lanconelli Open Systems (LancOS).

Available at: http://www.lancos.com/

prog.html. Accessed: 16-06-2009.

4. *** Atmel ATmega168 AVR Micro-

controller Data Sheet. Atmel Co, 2004.

5. *** ENC28J60 Data Sheet - Stand-Alone

Ethernet Controller with SPI Interface.

Microchip Technology Inc., 2008.

6. *** SHT11 Humidity and Temperature

Sensor Data Sheet. Sensirion Inc., 2007.

