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Abstract: The Kalman filters have been widely used for mobile robot 

navigation and system integration. So that it may operate autonomously, a 

mobile robot must know where it is. Accurate localization is a key prerequisite 

for successful navigation in large-scale environments, particularly when global 

models are used, such as maps, drawings, topological descriptions, and CAD 

models. This paper presents the localization of a mobile robot using one 

variation of the traditional Kalman filter: the unscented Kalman filter (UKF). 

For this purpose the filter was implemented for a known kinematic model of 

the robot. 
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1. Introduction 

 

Filtering is a very used method in 

engineering and embedded systems. A 

good filtering algorithm can reduce the noise 

from signals while retaining the useful 

information. The Kalman filter (KF) [8] is 

a mathematical tool that can estimate the 

variables of a wide range of process. It 

estimates the states of a linear system. This 

type of filter works very well in practice 

and that is why it is often implemented in 

embedded control system and because we 

need an accurate estimate of the process 

variables. The KF has been widely used for 

mobile robot navigation [1], [2] and system 

integration. So that it may operate 

autonomously, a mobile robot must know 

where it is. Accurate localization is a key 

perquisite for successful navigation in 

large-scale environments, particularly 

where global models are used. The KF has 

many limitations and that is why many 

authors proposed various fixes and 

modifications to better estimate the process 

variables [4]. 

One of the many variations of the Kalman 

filter is the unscented Kalman filter (UKF). 

This filter is based on the unscented transform 

(UT) [5]. The UKF works by approximating 

a Gaussian distribution, which is much easier 

than approximating an arbitrary nonlinear 

function. The UKF is computationally more 

costly than the EKF, but it reduces 

estimation errors. One of the advantages of 

the UKF over the EKF is that it doesn’t 

need to derive the Jacobian matrices. The 

most important application of the UKF is 
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in simultaneous localization and map 

building (SLAM). It has been applied to 

ground mobile robots [3], [6], but has been 

successfully applied even to unmanned 

aerial vehicles (UAV) [7]. 

This paper presents the implementation 

for the unscented Kalman filter for an 

autonomous mobile robot based on 

Ackerman steering. The simulations in this 

paper will show the accuracy of the UKF. 

In section 2 of the paper we will present 

the traditional KF. In section 3 we present 

the of the UKF implementation for an 

autonomous mobile robot. The last two 

sections of the paper contain the simulation 

results and the conclusions drawn from 

these simulations and future work. 

 

2. The Kalman Filter 
 

The Kalman filter is composed from a 

set of mathematical equations that provide 

the computational means for estimating the 

state of a process, in a way that minimizes 

the mean of the squared error. This type of 

filter is very powerful because: it supports 

estimations of past, present, and even future 

states, and it can do so even when the precise 

nature of the modeled system is unknown. 

The Kalman filter estimates a process by 

using a form of feedback control: the filter 

estimates the process state at some time 

and then obtains feedback in the form of 

noisy measurements. The equations of the 

Kalman filter fall into two categories: time 

update equations and measurement update 

equations. The time update equations are 

responsible for projecting forward (in 

time) the current state and error covariance 

estimates to obtain the a priori estimates for 

the next time step. The measurement update 

equations are responsible for the feedback, 

for incorporating a new measurement into 

the a priori estimate to obtain an improved 

a posteriori estimate. 

The specific equations for the prediction 

step (time and measurement updates) are: 

kkkkkkk uBxFx += −−− 1|11|
ˆˆ , (1) 

 

k
T

kkkkkk QFPFP += −−− 1|11| , (2) 

 

where: Fk is the state transition model which 

is applied to the previous state 1|1
ˆ

−− kkx ; Bk 

is the control-input model which is applied 

to the control vector uk. From the above 

equations we can see how the state and 

covariance estimates are projected forward 

in time, from the time step k – 1 to step k. 

In the observation step we have: 
 

1|
ˆ~

−−= kkkkk xHzy , (3) 

 

k

T

kkkkk RHPHS += −1| , (4) 

 

where: ky~  is called the innovation or 

measurement residual; Hk is the observation 

model which maps the true state space into 

the observed space; 1| −kkP  represents the 

predicted (a priori) estimate covariance; Qk 

is the covariance of the process noise. 

For the measurement update step we have: 
 

1
1|

−
−= k

T

kkkk SHPK , (5) 

 

kkkkkk yKxx ~ˆˆ
1|| += − , (6) 

 

1|| )( −−= kkkkkk PHKIP . (7) 

 

where: Kk is the optimal Kalman gain and 

Sk is the innovation (or residual) covariance. 

The first task during the measurement 

update step is to compute the Kalman gain 

(5). The next step is to actually measure 

the process to obtain zk, and then to 

generate an a posteriori state estimate by 

incorporating the measurement as in (6). 

The final step is to obtain an a posteriori 

error covariance estimate via (7). 

After each time and measurement update 

pair, the process is repeated with the previous 

a posteriori estimates used to project or 

predict the new a priori estimates. 
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3. The UKF Implementation 

 
To model the robot position, we wish to 

know its x and y coordinates and its 

orientation. These three parameters can be 

combined into a vector called a state variable 

vector. The robot uses an overhead camera to 

obtain the information about how far the 

robot has traveled into the environment so 

that it can calculate its position. These 

measurements include a component of error. 

If trigonometry is used to calculate the 

robot’s position it can have a large error and 

can change significantly from frame to frame 

depending on the measurement at the time. 

For the UKF implementation we have used 

the kinematic model of an autonomous 

mobile robot based on Ackermann steering 

(see Figure 1). The mobile robot is supposed 

to move in a 2D coordinate system. 

 

 
 

Fig. 1. The autonomous mobile robot 

representation in a 2D coordinate system 

 

The kinematic equations for the mobile 

robot based on Ackermann steering are 

presented in the following: 
 

θcos⋅= Vx& , (8) 
 

θsin⋅= Vy& , (9) 
 

L

V Φ⋅
=

tan
θ& . (10) 

 

In the above system of equations V is the 

velocity of the robot, L represents the 

distance between the rear axel and front 

one, and Φ is the steering angle. 

From the nonlinear system of equations 

presented above, we deduced that we 

cannot use the traditional form of the KF, 

instead we use the UKF form. 

The problem of propagating a Gaussian 

random variable through a nonlinear 

function can also be approached using the 

unscented transform. Instead of linearizing 

the function, this method uses a set of 

points and propagates the through the 

nonlinear function, and thus eliminating 

the process of linearization (see Figure 2). 

The points are chosen in such manner that 

their mean, covariance and possibly their 

higher order moments match the Gaussian 

random variable.  

 

 
 

Fig. 2. Unscented Kalman filter 

propagation of sigma points from a 

Gaussian distribution through a nonlinear 

function, and recreation of the Gaussian 

distribution by computing the mean and 

covariance of the results 

 

The mean and the covariance can be 

recalculated from the propagated points, 

and thus we can obtain more accurate 

result compared to the ordinary function 

linearization. The main idea is also to 

approximate the probability distribution 

instead of the function. This strategy 

decreases the computational complexity 

and, at the same time, it increases estimate 

accuracy, thus giving more accurate results. 
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The filter starts by augmenting the state 

vector to L dimensions, where L is the sum 

of dimensions in the original state-vector, 

model noise and measurement noise. The 

covariance matrix is similarly augmented 

to a L
2
 matrix. Together this forms the 

augmented state estimate vector a
x̂  and 

covariance matrix aP̂ : 
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The next step consists of creating 2L + 1 

sigma-points in such a way that they 

together capture the full mean and 

covariance of the augmented state. The X 

matrix is chosen to contain these points, 

and its columns are calculated as follows: 

 
a

kkxx 1|1 −−= ,   xX kk =−−
0

1|1 , (13) 
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where: x  and 

a
kkP 1|1 −−  represent the mean and 

covariance of the random variable x. 

Then the sigma points are propagated 

through the nonlinear function: 

 

)( 1|11|
i

kk
i

kk XfX −−− = , Li 2...,,0= , (16) 

 

from which the mean and covariance can 

be approximated: 
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Each sigma-point is also assigned a 

weight. These weight are derived by 

comparing the moments of the sigma-

points with a Taylor series expansion of 

the models while assuming a Gaussian 

distribution.  

The resulting weights for mean m and 

covariance c estimates then becomes: 

 

λ

λ0

+
=

L
Wm , (19) 

 

β)α1(
λ

λ 20
+−+

+
=

L
Wc , (20) 

 

λ)(5.0 +== LWW
i

c
i

m , Li 2...,,1= , (21) 

 

LkL −+α=λ )(2 . (22) 

 

In the above equations α and k control 

the spread of the sigma points and β is 

related to the distribution of x. The α 

parameter is chosen in the interval 0 < α ≤ 1, 

and it is set to a low value, 0.001, to avoid 

non-local effects. 

When we first use the filter we need to 

initialize it: 
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The filter then predicts next state by 

propagating the sigma-points through the 

state and measurement models, and then 

calculating weighted averages and covariance 

matrices of the results: 

LiXh
i

kk
i

kk 2...0),( 1|1| ==γ −− , (23) 
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The predictions are then updated with 

new measurements by first calculating the 

measurement covariance and state-measure-

ment cross correlation matrices, which are 

then used to determine the Kalman gain:  

 

[ ] [ ]∑ −⋅−=
=

−−−− γγ
L

i

T

kk
i

kkkk
i

kk
i

czz zzWP
2

0
1|1|1|1|

ˆˆ , (25) 

 

[ ] [ ]∑ −⋅−=
=

−−−− γ
L

i

T

kk
i

kkkk
i

kk

i
cxz zxXWP

2

0
1|1|1|1

ˆˆ , (26) 

 
1−

= zzxzk PPK , (27) 
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T
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4. Experimental Results  

 

In this section of the paper we show the 

results obtained by simulating UKF case 

for an autonomous mobile robot. For this 

purpose the UKF filter was implemented in 

the programming and simulation 

environment called Matlab. For our tests 

we have considered a very simple case: a 

robot that follows a predefined path. The 

position of the robot in the environment is 

obtained by using an overhead camera. On 

the robot we’ve put a square marker. To 

obtain the position of the marker we’ve 

developed an application in Visual C++, 

using the augmented reality toolbox 

ARToolkit. The data obtained from the 

marker detection application is fed into the 

UKF which will estimate the robot’s 

position from the real noisy measurements. 

In the below figure it is presented the 

estimated path of the robot compared to 

the real path. The green line is the 

predefined path that was chosen randomly, 

and the red line is the estimated path. Also, 

in the simulations, the blue triangle 

represents the robot’s real position and the 

red one is the robot’s estimated position. 
 

5. Conclusions 
 

In this paper one of the main variations 

of the Kalman filter used for the position 

estimation of an autonomous mobile robot 

based on Ackermann steering. From the 

simulation results shown earlier we have 

deduced that the UKF has shown 

promising results. The difference in 

nonlinearity between systems encountered 

in everyday life can give a big difference 

in the results obtain from the presented 

filtering techniques. The advantage of the 

UKF over other variations of the classical 

KF increases with the degree of nonlinearity 

in the measurement model. 

In the future we will try to combine the 

fuzzy logic the filter presented in this 

paper for a better position estimation. 

Furthermore, we will use the UKF in a 

visual based SLAM system, where camera 

calibration and correct feature detection 

play a vital role in solving the data 

association problem. 
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Fig. 3. Trajectory estimation with the UKF 
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