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Abstract: There has been an increasing interest for mobile robotics structures 

because they allow making activities without human supervision. This paper 

presents the main problems of an autonomous mobile robotic platform, which 

uses digital image processing techniques for extracting important information 

from the environment. In the following, there will be presented acquisition 

approaches based on digital cameras, approaches that will be used for visual 

navigation. The navigation process is based on probabilistic methods. The 

simultaneous localization and mapping structures will be the one that 

integrates both the navigation process and the probabilistic approaches. 
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1. Introduction 

 

A large part of current robotics research 

and development is on aspects that make 

robot systems more autonomous and 

versatile. Robots have used vision for 

navigation to a greater or lesser extent for 

many years [5].  

The earliest attempt at using computer 

vision was probably the robot named 

“Shakey” [15], robot built at Stanford 

University. It operated in an artificial 

environment with coloured blocks. It was 

called Shakey because of the way it vibrated 

when it moved.  

Shakey was followed by the Stanford 

Cart [13] which used two cameras, one of 

which could be moved to provide different 

viewpoints for stereo vision. It was very 

slow and test runs took hours with the 

available computing power at the time. 

Image processing took so long that the 

shadows during outdoor test runs became a 

problem because they would actually move 

noticeably between images.  

In the late 1980s, one of the best known 

robots was Polly, which was built by Ian 

Horswill [8]. This used a low resolution 

black and white camera to detect the floor 

and people. This robot had a built-in map 

of part of a building at MIT, including the 

place where the carpet changed colour so it 

could navigate across this apparent 

“boundary”. Polly was known to have 

several deficiencies, including stopping 

when it saw shafts of light coming in 

through the windows. 

The ER-1 robot (Evolution Robotics 2005) 
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used a web camera to perform what 

Evolution Robotics called visual simultaneous 

localization and mapping (vSLAM) [20]. 

This was basically place recognition based 

on building a large database of unique 

image features. These features were 

obtained using scale invariant feature 

transform algorithm (SIFT) [11]. It is 

common for SIFT-based systems to use 

several thousand features in an image. 

Andrew Davison used features to create 

what he refers to as monoSLAM (SLAM 

with a single camera) [4]. This system built 

maps by tracking hundreds of features 

from one image to the next and eventually 

determining their physical location in the 

world by applying an extended Kalman 

filter (EKF).  

In this paper, our goal is to survey the 

most important aspects of vision for 

mobile robot navigation. This paper is 

organized as follows. In Section 2, are 

presented the computer vision concepts. 

Main issues considered in the navigation of 

an autonomous robot platform will be 

presented in Section 3. Section 4 describes 

the most popular algorithms for vSLAM, 

then in the next section mapping and 

localization techniques are exposed.  

  

2. Computer Vision 

  

The primary objective of a computer 

vision system is to segment images to 

obtain useful information about the 

surrounding environment.  

 

2.1. Digital Cameras 

 
Digital cameras create images consisting 

of picture elements (pixels) there are 

quantization effects when a digital image is 

created. 

The number of pixels across the image is 

known as the horizontal resolution. The 

vertical resolution is the number of rows or 

scanlines in the image. The ratio between 

the horizontal and vertical resolutions is 

the aspect ratio of the camera. Typical 

cameras have an aspect ratio of 4:3. The 

cameras used in computer vision vary 

considerably in their specifications. They 

have fairly low resolution which ensures 

that the amount of computation involved in 

processing images is not excessive. 

Visual motion estimation techniques 

from monocular or stereovision sequences 

provide precise motion estimates between 

successive data acquisitions, but they are 

akin to dead reckoning [10]. 

Using two cameras with a reasonable 

distance between them allows the stereo 

disparity to be calculated, and hence depth 

or distance to objects in the field of view 

established. To extract depth information 

using stereo vision the correspondence 

between pixels in the two images must be 

established unambiguously [5]. This 

correspondence problem is a recurring 

theme in computer vision. It is often 

necessary to match points in two images.  

 

2.2. Camera Features  

 
A camera consists of an image plane and 

a lens which provides a transformation 

between object space and image space. 

This transformation cannot be described 

perfectly by a perspective transformation 

because of distortions which occur 

between points on the object and the 

location of the images of those points [7]. 

By taking pictures of a “calibration 

object” (usually a checkerboard pattern) 

from various different positions, it is possible 

to calculate the intrinsic parameters of the 

camera, which include the focal length and 

various distortion parameters. These 

parameters allow images to be undistorted 

by applying an appropriate algorithm [7]. 

Given the intrinsic parameters, it is also 

possible to calculate the extrinsic parameters 

for a given image using the same software. 

The extrinsic parameters consist of a rotation 
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matrix and a translation vector that 

transform camera coordinates to real-world 

coordinates aligned with the calibration 

target. These parameters can be used to 

obtain the camera tilt angle. 

One of the camera significant problems 

of many digital cameras is a limited field 

of view (FOV). A typical web camera has 

a FOV of 40°-60° (in contrast, humans 

have a FOV of up to 200°). 

A restricted FOV means that the robot 

must “look around” to get a good view of 

the surrounding environment when 

building a map. Also, to make the best use 

of the available FOV, the cameras on 

robots are often tilted downwards as in 

Figure 1. Even with this tilt, there might be 

an area in front of the robot that cannot be 

seen, labelled as the blind area in Figure 1. 

Panoramic cameras have been widely 

used to overcome FOV limitations [18]. 

There are various types of special-purpose 

cameras: omnidirectional cameras (360° 

FOV); panoramic cameras (around 180° 

FOV) and cameras with wide-angle or 

fish-eye lenses. 

The common factor in all of these is 

significant distortion of the image. In these 

cases, standard perspective no longer 

applies and straight lines no longer appear 

straight in the image. Nayar [14] 

specifically developed a catadioptric camera 

(one that uses mirrors) so that he could 

extract true perspective images from the 

omnidirectional image. 

 

2.3. Range Estimation 

 

To build metric maps (maps that are 

drawn to scale) it is necessary to measure 

distances. Recovering depth information 

from images is one of the key areas of 

vision research. There are many different 

ways to do this. 
If the pixels in the image can be 

classified as either floor or non-floor, this 

eliminates one degree of freedom in the 3D 

locations of the real-world points that 

correspond to the floor pixels, which must 

be on the ground plane (floor). Simple 

geometry can then be used to obtain range 

estimates assuming that the camera 

configuration is known [16]. 

Strongly related by range estimation are 

effects of camera resolution. Thus, 

consider for example one of the earliest 

digital cameras that only had a resolution 

of 64x48 pixels. Each horizontal scanline 

(one of the 48 rows of pixels) corresponds 

to a large distance across the floor in the 

real world. Now imagine a camera with a 

resolution of 640×480 (VGA resolution) 

that captures exactly the same scene. 

Obviously the higher resolution means that 

the distances to obstacles can be resolved 

more accurately.  

 

 
 

Fig. 1. Camera orientation and vertical field of view 
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Furthermore, the tilt angle of the camera 

has an effect as well. It is only necessary to 

consider two cases to illustrate this - a 

camera oriented parallel to the ground and 

one facing directly down at the ground. 

For the horizontal camera, the centre 

scanline corresponds to the horizon, which 

is at infinity. One scanline below this is 

still a long way away, but significantly less 

than infinity, and so forth until the bottom 

scanline which is right in front of the robot. 

On the other hand for a camera oriented 

vertically, the distance from the camera 

(measured across the floor) is zero at the 

centre scanline and only varies by some 

small amount from the top scanline to the 

bottom scanline of the image. 

 

3. Navigation  
 

The navigation could be described as the 

process accomplished by a mobile robotic 

platform, for determining the reasonable and 

safe path between a starting and a target point. 

 

3.1. Visual Navigation 

 

Robots have been navigating using 

vision since the days of the Stanford Cart 

[13]. Many robots today still use sensors 

such as sonar, infra-red or laser range 

finders, and do not have cameras at all. 

Even those that do have cameras often rely 

on them only to identify places or objects 

that they are searching for, but use sonar or 

lasers for actual navigation. 

A wide range of image processing 

algorithms and image processing tools (the 

Intel Open Computer Vision Library) are 

available today as open source code. 

However, processing steps such as edge 

detection, segmentation, line detection etc. 

do not constitute vision on their own. 

Computer vision requires analysis of the 

scene and high-level understanding.  

The most fundamental problem facing an 

autonomous robot using vision is obstacle 

detection. However, despite decades of 

research, there is no agreement within the 

computer vision community on how best to 

achieve this task, especially as a precise 

definition of obstacle detection is 

surprisingly difficult [20]. 

In its simplest form, obstacle detection is 

the process of distinguishing an obstacle 

from the floor. It is not necessary to 

understand what is seen in order to avoid 

obstacles - simply distinguishing between 

the floor and all other objects (even 

moving humans) is sufficient [20]. 

  

3.2. Image Segmentation 
 

One approach to image segmentation is 

to use clustering whereby pixels that are 

similar (according to some measure of 

similarity) are grouped together. A popular 

clustering algorithm is k-means [6]. 

Ulrich and Nourbakhsh [17] developed a 

system that was intended to be used in a 

variety of environments. The simplified 

version of their method consists of the 

following four steps [2]: 

1.  filter colour input image; 

2.  transformation into hue saturation 

intensity colour space; 

3.  histogramming of reference area; 

4.  comparison with reference histograms. 

The primary objective was to relax the 

constraint that the reference area must be 

free of obstacles. The reference area was 

only assumed to be the ground if the robot 

had just travelled through it. A “reference 

queue” was kept to “remember” the past 

reference areas [17]. 

Detecting the floor has also been a 

common topic in the Robot Soccer 

literature. James Bruce [1] presented a 

scheme using the YUV (YUV is a colour 

space typically used as part of a colour image 

pipeline) colour space that allowed them to 

track several hundred regions of 32 distinct 

colours at a resolution of 640 × 480 at a 

frame rate of 30 Hz using a 700 MHz PC. 
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Quite recently, the winning team in the 

DARPA Grand Challenge in 2005 used a 

mixture of Gaussians to extract the road 

surface from camera images [3]. 

Other problem which appears in image 

processing is about object tracking. 

Difficulties in tracking objects can arise 

due to abrupt object motion, changing 

appearance patterns of both the object and 

the scene, no rigid object structures, object-

to-object and object-to-scene occlusions, and 

camera motion. Tracking is usually performed 

in the context of higher-level applications 

that require the location and/or shape of the 

object in every frame. Typically, assumptions 

are made to constrain the tracking problem in 

the context of a particular application [19].  

  

4. Probabilistic Filters 

 
Most modern SLAM algorithms rely on 

the use of probabilistic filters. The most 

commonly used forms of filters are 

Kalman filters [16] and particle filters [12]. 

The reason for the popularity of 

probabilistic techniques stems from the 

fact that robot mapping is characterized by 

uncertainty and sensor noise. 

Probabilistic algorithms approach the 

problem by explicitly modelling different 

sources of noise and their effects on the 

measurements [16]. 

 

4.1. Kalman Filters 

 

A Kalman filter is basically a recursive 

state estimator [16]. The “state” consists of 

a set of “features” observed in the 

environment plus the robot’s pose. 

Estimating the location of the features 

effectively builds a map. 

The reason for the early popularity the 

Kalman filter is that it is analytically 

tractable and the update equations can be 

expressed in closed form. Being a recursive 

filter, it is also computationally efficient 

[2].  

Kalman filters approximate the robot 

motion model using a linear function 

obtained via Taylor series expansion. The 

resulting Kalman filter is known as EKF, 

and single motion commands are often 

approximated by a series of much smaller 

motion segments, to account for 

nonlinearities [16]. 

 

4.2. Particle Filters 

 

A popular form of localization is called 

Monte Carlo localization (MCL) [12].  

MCL represents the belief in the current 

pose of the robot as a set of particles. In 

simple terms, a particle consists of a pose 

estimate and any necessary state information 

that is required to perform updates to the 

pose. As the robot moves, these particles 

trace out trajectories (or paths) on the map 

[12]. 

If the set of particles is sufficiently large 

and has an appropriate distribution that 

adequately represents the true posterior 

probability distribution, then the average of 

the particles should be near to the actual 

pose of the robot. Ideally, one of the 

particles should be very close to correct. If 

there is no such particle, then there are 

insufficient particles in the set and the 

filter is likely to diverge. 

  

5. Mapping and Localization 

 
The process of SLAM means tracking 

the position of a mobile robot relative to its 

environment and building a map of the 

environment [2]. This has been a central 

research topic in mobile robotics. Accurate 

localization is a prerequisite for building a 

good map, and having an accurate map is 

essential for good localization. Therefore, 

SLAM building is a critical underlying 

factor for successful mobile robot 

navigation in a large environment, irrespective 

of what the high-level goals or applications 

are [2]. 
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5.1. Mapping 

 

One obvious function of a map is to enable 

the robot to remember the terrain that it has 

driven over. This provides positive proof 

of free space. The robot might use this 

prior information (in its memory) to 

predict what a new view should look like 

for comparison with actual sensor 

information. It can adjust its pose in the 

previous “obstacle map” according to its 

own motion and then compare what it sees 

with what is already in the map [16]. 

Before mapping can be done using vision, 

it is necessary to transform the camera images 

back to representations of the real world. 

To draw maps correctly, the robot must 

always know precisely where it is. In 

simulation this is not a problem because 

the robot’s motions are always perfect. 

However, in the real world the robot’s pose 

can only be estimated because there are 

random errors in motions. Determining the 

robot’s pose is a localization problem. As 

should already be apparent, in practice it is 

not possible to completely separate 

localization from mapping [2]. 

There are two fundamentally different 

types of maps: topological and metric. 

The topological map, extracts the 

environmental entities as abstracted 

models like nodes and edges. Then, it 

represents the environment as spatial 

relations of those entities, usually in graph 

structure. This graph representation is 

useful to generate a robot path as a 

sequence of places to a goal position [9]. 

The metric map represents exact location 

of geometric entities with respect to a 

reference frame. This exact representation is 

helpful for the robot to perform elaborate 

tasks which require high accuracy [9]. 

 

5.2. Localization 
 

Localization is the process that a robot 

uses to determine where it is in the world. 

Usually this is done by comparing 

surrounding features with a map. The 

definition of localization can therefore be 

re-stated as the process of updating the 

pose of a robot based on sensor input [2]. 

Sonar sensors were used in a lot of the 

early research on localization. Typically 

the sensors were arranged in a ring around 

the perimeter of the robot. This meant that a 

full 360° sweep could be obtained without 

moving the autonomous mobile robot.  

Localization methods fall into two broad 

categories [2]: 

1.  Kalman filters which track features, 

using normal distributions to estimate 

errors in feature locations. 

2.  Markov localization methods, also called 

MCL or particle filters, which approximate an 

arbitrary probability distribution using a set 

of particles and operate on a grid-based map. 

It is important to note that most popular 

localization methods make the assumption 

that the system can be represented as a 

first-order Markov process. In terms of 

localization, this means that the robot’s 

pose at a particular time t, depends only on 

its pose at the previous time step, (t−1), 

and the control input applied to the robot’s 

motors in the intervening time interval. In 

general, the pose at time t might depend on 

a finite number of previous poses, but this 

is ignored [16]. 

 

5.3. Simultaneous  Localization  and 

Mapping 

 
For autonomous mobile robots to operate 

in human environments they need SLAM, 

also referred to as concurrent mapping and 

localization (CML). 

The primary problems that SLAM has to 

solve are: 

1.  determining the robot’s pose from 

uncertain input data; 

2.  estimating the relative position of 

observed features from measurements 

containing noise. 
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Building a map is not one of the 

significant problems if the input data is 

accurate. Also, the exploration algorithm 

does not have a strong effect. 

However, if the robot’s pose is not 

correct, or the observations contain gross 

errors, then features will be inserted into 

the map in the wrong locations. These 

errors accumulate, resulting in distortions 

of the map. It is even possible for the robot 

to become completely lost [16]. 

Digital cameras are the most recent type 

of sensors to be used and there is a great 

deal of research currently in progress on 

using vision for SLAM. One of the key 

advantages of vision, which was part of the 

initial impetus for this research, is that 

cameras are now very cheap. The 

disadvantage is that digital cameras are 

very complex sensors [2]. 

 

5.4. Visual  Simultaneous  Localization 

and Mapping 

 
Visual localization and mapping for 

mobile robots has been achieved with a 

large variety of methods. Among them, 

topological navigation using vision has the 

advantage of offering a scalable 

representation, and of relying on a 

common and affordable sensor [2]. 

There are several research threads 

running through the field of vSLAM, 

including visual localization and visual 

odometry. Also, some researchers have 

attempted to reconstruct 3D maps, whereas 

others assumed that the robot moved in 2D 

on a ground plane and used the 

homography of the ground plane as a 

constraint [16]. 

 

6. Conclusions 

 

This paper has outlined a wide range of 

different subject areas that must be 

addressed in order to perform mapping 

using vision. From the wide range of 

SLAM approaches, the vSLAM is the 

newest and most challenging one. In this 

type of SLAM the classic sensors were 

replaced with a new type of sensor, the 

video camera. Currently, in the scientific 

community, there is a lot of work on 

mapping using vision based robotic 

platforms that are able to produce maps of 

unknown environments and at the same 

time to self localize using the created map.  
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