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Abstract: The paper compares the single and double floating point 
precision performance of NVIDIA Tesla GPUs. Double precision is crucial 
for the accuracy of some applications containing scientific computation. 
Three representative applications have been chosen in order to compare the 
performances: matrix multiplication, incompressible Navier-Stokes equations 
and the steady state heat conduction problem. The expected values of 
performance decrease lie between two for bandwidth limited applications 
and eight for compute limited applications. Based on the conducted 
experiments, the type of each application has been identified and the 
decreases in performance have confirmed the expected theoretical values. 
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1. Introduction 
 
Graphics Processing Unit (GPU) based 

implementations have introduced an 
alternative to CPU based solutions. GPUs 
were initially used only as graphical 
accelerators in image processing applications. 
A GPU is a many-core processor, which, 
given the need of the graphical applications, 
is designed in order to execute a large 
number of floating point operations in 
parallel on hundreds of cores [11]. The 
transition from graphics applications to 
general purpose applications has been made 
possible by the introduction of CUDA 
(Compute Unified Device Architecture) [3]. 

When a GPU is programmed through 
CUDA, it is viewed as a compute device, 
which is able to run thousands of threads in 
parallel by launching a kernel (a function, 
written in C language, which is executed 
by the threads on the GPU) [13]. The latest 
GPUs contain several streaming multi-
processors, each of them containing eight 
cores.  

Currently all applications which use a 
GPU in order to accelerate the execution 
also use the CPU in order to perform 
auxiliary tasks (like initializations or post-
processing) and also to launch the kernels 
[8]. Until now the GPU is not able to run 
as a stand-alone device, it needs to be 
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launched by a host thread which also 
manages the data located in the global 
memory (it copies initial values to the 
device and copies the results back at the 
end of the execution). 

The first architecture to support CUDA 
programming was the G80 architecture. 
One of the major drawbacks of it was the 
lack of double precision floating point 
support. This aspect was then improved in 
June 2008, when NVIDIA introduced a 
major revision to the G80 GPUs: the GT200 
architecture almost doubled the number of 
cores (240 instead of 128), memory access 
coalescing require-ments were alienated and 
maybe most importantly, double precision 
floating point support was also added in 
order to satisfy the need of scientific high-
performance computing applications.  

The goal of this article is to compare the 
single and double precision floating point 
performance of the GT200 Tesla architecture. 
In various applications containing scientific 
computation, double precision floating 
point math is essential in order to obtain 
accurate results. To perform the comparison, 
three applications have been chosen: a dense 
matrix-matrix multiplication, the numerical 
solution of the incompressible Navier-
Stokes equations on a MAC grid and a 
steady state heat conduction problem. The 
first one is a common operation in linear 
algebra and the other two applications are 
widely spread in the field of computational 
fluid dynamics. Section two provides a 
short overview of the CUDA architecture. 
Section three briefly describes the three 
applications for which the tests have been 
conducted. Section four presents the results 
of the research activity and finally some 
conclusions will be drawn in chapter five.  

 
2. The CUDA Architecture 
 

CUDA refers to both the hardware and 
software architecture, which enables NVIDIA 
GPUs to execute programs written with C, 

C++, Fortran, OpenCL, DirectCompute, 
and even other languages. A CUDA 
program uses the GPU by calling parallel 
kernels [10]. A kernel then launches 
thousands of threads into execution (Figure 
1). These threads are organized at three 
levels. First there is the grid of thread blocks, 
which is a two dimensional arrangement of 
the blocks. Then every block consists of up 
to 512 threads which are organized in three 
dimensions. Finally every group of 32 
threads of the same thread block will form 
a warp. This architecture is called SIMT 
(Single Instruction Multiple Thread), which 
enables different threads to execute different 
instructions at the same time, without loss 
of performance for different warps (ideally 
the threads of the same warp should not 
diverge, otherwise the different execution 
branches will be serialized).  

 

 
Fig. 1. CUDA Thread organiyation 

 
Every thread has access to built-in 

variables which allow it to identify the 
specific input data, which has to be 
manipulated and also where the result 
should be stored. Further the threads of a 
thread block can cooperate, by using the 
shared memory or by waiting for each 
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other through barrier synchronization. 
Also, each thread has access to a per-
thread private memory, which is used for 
intermediate results, usually called 
registers (Figure 2 displays the various 
available memory types). The CPU (the 
host) has access to the global memory, the 
constant and the texture memory of the 
GPU (the device). The three-leveled 
hierarchy of threads maps straight forward 
to the hierarchy of processors of the GPU. 
These are usually called streaming 
multiprocessors and contain 8 cores. Each 
CUDA core has both an integer arithmetic 
logic unit (ALU) and a floating point unit 
(FPU). Also every streaming multi-
processor contains an FPU for double 
precision. Hence the double precision 
performance of a CUDA program, when 
compared to its single precision version, 
should be up to eight times slower. 

In order to obtain optimum performance, 
there are several guidelines which have to 
be followed. Some of the most important 
ones are: minimize transfers of data 
between CPU and GPU, ensure coalesced 
(sequential and aligned) access to the 
global memory, use shared memory to 
avoid redundant access to global memory, 
avoid different execution paths for the 
threads of a warp etc. [9].  

 

 
Fig. 2. CUDA Memories 

3. Test Applications 
 
3.1. Matrix-Matrix Multiplication 

 
Since matrix-matrix multiplication is a 

common operation, only the idea behind 
the GPU kernel performing the operation 
will be discussed (Figure 3). The input 
matrices as well as the result matrix are 
divided into blocks (not necessarily square 
blocks; a very interesting pattern is indicated 
in [5]). A block of threads computes a 
block of elements in the results matrix 
(every thread will usually compute several 
elements) by calculating the dot product of 
the corresponding rows and columns of the 
matrices A and B respectively. In order to 
limit the wasted global memory 
bandwidth, data is brought into shared 
memory in a common effort from the 
threads of the block. Because the shared 
memory is a limited resource, data is read 
in tiles from the global memory and the 
dot-product is computed in several steps.  

 

 
Fig. 3. Matrix Multiplication with Shared  

 Memory 
 

3.2. Incompressible  Navier-Stokes  
    equations 

 
The incompressible (viscous) Navier-

Stokes equations are used in a wide range 
of applications in fluid dynamics. The 
further description refers to two dimensional 
flow problems. Consequently the equations 
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will be composed of a mass conservation 
equation and two momentum conservation 
equations, one for each Cartesian velocity 
component [4], [12]. The dependent 
variables, which will be determined 
numerically, are the pressure p and the 
velocity components u and v in the x and y 
directions respectively (for simplicity only 
the isothermal case will be considered) [6]. 
The mass conservation equation is: 
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The momentum equations on the two 

axes are (Eq. 2-3): 
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The equations above are in the non-

dimensional form which has been obtained 
using the free stream velocity V∞, the 
density ρ∞, the viscosity µ∞ and a length 

scale L. Consequently, 
∞

∞∞

µ
⋅⋅ρ

=
LVRe . The 

main difficulty of the incompressible 
Navier Stokes equations is that there is no 
time dependent term in the continuity 
equation, which makes it difficult to solve 
for the pressure (the momentum equations 
can be solved for u and v but the 
continuity equation does not include p). 
One of the methods to solve this issue, is 
to include an artificial compressibility 
term in the continuity equation: 
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where a is the speed of sound. The term 
related to pressure will actually vanish as 
the scheme progresses to a steady state 
solution. Consequently, at steady state, the 
original continuity equation will be 
recovered.  

The solution method is an explicit one [7] 
and it is implemented on a so called MAC 
grid (or staggered grid), which generally 
improves the stability of the incompressible 
flow (through the stronger coupling 
between pressure and velocity variables). 
Figure 4 shows a detail of the grid. 

 

 
Fig. 4. The MAC grid 

 
A primary (solid lines) and a secondary 

grid (dashed lines) can be distinguished on 
this MAC grid. Usually the pressure is 
defined on the primary nodes and the 
velocities on the secondary grid. 

 

 
Fig. 5. Backward facing step problem 
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A first order difference in time and a 
second order central difference in space 
have been used in the discrete domain 
equations (2-4). The incompressible Navier- 
Stokes equations have been solved for a 
backward facing step problem, which is 
very popular in benchmarking activities. 
Figure 5 displays the domain of the flow. 
 
3.3. Steady heat conduction problem 

 
Another application which is common in 

computational fluid dynamics is the steady 
state heat conduction problem, or more 
generally the Laplace equation: 
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Generally, partial differential equations 

(PDE) may be divided into: hyperbolic, 
parabolic and elliptic equations. This 
classification of PDEs can be obtained by 
starting from the general form of 
quasilinear equations (the highest order 
derivative occurs linearly, i.e. there are no 
products or exponentials of the highest 
order derivatives) [1]. This approach of the 
classification of PDEs is common since all 
governing equations in fluid dynamics are 
quasilinear. 

Eq. (5) can be easily discretized by using 
a five point finite difference scheme (Eq. 
6): 
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The numerical scheme which has been 

obtained is called explicit because it 
contains a single unknown value [2]. 
Because the goal of this paper is to 
perform a comparison of the single and 
double precision performance of a Tesla 

GPU, the heat conduction problem will be 
solved on a simple, rectangular domain as 
the one in Figure 6. The boundary 
conditions are known, and the boundaries 
have been chosen so as to coincide with 
the grid lines. 

 

 
Fig. 6. Rectangular domain of the problem 

and boundary conditions 
 

4. Results 
 

The above described applications have 
been run for both single and double 
precision floating point on a NVIDIA 
GTX260 GPU. In order to deeply 
understand the results, one has to 
determine the main limitation factors for 
the three applications. These can be of 
three types: 

- PCI Express Bus limited: most of the 
execution time is spent on the memory 
copies between the host and the device; 

- Global memory bandwidth limited: the 
execution time is determined by the 
latencies of the global memory read/writes; 

- Compute limited: the execution time is 
determined by the instruction throughput; 

Tables 1, 2 and 3 display the summary 
results of the three types of applications for 
both single and double floating precision 
(the results have been recorded with the 
Visual Profiler). 

By analyzing the values in the tables, the 
first type of limitation can be immediately 
excluded, since the memory copies 
operations occupy only a fraction of the 
total execution time (up to 20% for the 
matrix multiplication and under 3% for the 
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Summary table for the matrix-multiplication application (size 1024x1024)    Table 1 

Operation Nr. of 
Calls 

Execution 
time [µs] 

% of 
Exec. 
time 

Overall global 
mem. throughput 

[GB/s] 

Instruction 
through-put 

FLOAT kernel 1 10178.2 79.45 65.86 0.724 
Memcopies 3 2633.1 20.55 - - 
DOUBLE kernel 1 32968.2 84.96 41.83 0.403 
Memcopies 3 5838.1 15.04 - - 

 
Summary table for the incompressible Navier-Stokes application (250 time steps)    Table 2 

Operation Nr. of 
Calls 

Execution 
time [µs] 

% of 
Exec. 
time 

Overall global 
mem. throughput 

[GB/s] 

Instruction 
through-put 

FLOAT kernel 500 22908.5 97.63 86.32 1.013 
Memcopies 9 556.2 2.37 - - 
DOUBLE kernel 500 150489 99.24 33.90 0.583 
Memcopies 9 1078.2 0.76 - - 

 
Summary table for the steady state heat conduction problem (250 iterations)    Table 3 

Operation Nr. of 
Calls 

Execution 
time [µs] 

% of 
Exec. 
time 

Overall global 
mem. throughput 

[GB/s] 

Instruction 
through-put 

FLOAT kernel 500 39077.8 99.35 110.07 0.694 
Memcopies 3 255.8 0.65 - - 
DOUBLE kernel 500 72372.5 98.01 111.29 0.416 
Memcopies 3 1472.2 1.99 - - 
 

other two applications). In order to determine 
which of the other limitations applies for the 
three applications, some technical data of the 
GPU need to be taken into consideration. On 
the one side, the GTX260 allows an overall 
global memory throughput of 111.9 GB/s 
[9] and on the other side, the instruction 
throughput (ratio of achieved instruction 
rate to peak single issue instruction rate) 
can become greater than 1 (in the case of 
instruction dual-issue coming into play).  

Considering now only the float versions 
of the applications, the steady state heat 
conduction problem is clearly limited by 
the global memory bandwidth, since the 
overall global memory throughput (110.07 
GB/sec) is close to the peak value (111.9 
GB/sec). The incompressible Navier-Stokes 
equation is clearly compute limited, since 
the instruction throughput exceeds the 

value of 1. The matrix multiplication 
application lies somewhere in between.  

Before displaying the results of the 
comparison between float and double, 
expected values of performance decrease 
can be determined. For bandwidth limited 
applications the performance should decrease 
by a factor of two, since the application has 
to read twice more data for the double 
precision version than for the single precision 
version. For compute limited applications the 
performance should decrease by a factor of 
eight, since every multiprocessor contains 
eight single precision floating point units 
and only one double precision floating point 
unit. Figures 7, 8 and 9 display the results of 
the comparison for the three applications. 

The measured values confirm the 
theoretical predictions, which have been 
based on the limitation of each application. 



Itu, L.M., et al.: Comparison of Single and Double Floating Point Precision Performance… 137

For the steady state heat conduction 
problem, the averaged measured execution 
time increase is of 1.95 and hence very 
close to the predicted value of 2.  

 

 
Fig. 7. Comparison of the execution time 
for the single and double floating point 
precision for the matrix multiplication 

application 
 

 
Fig. 8. Comparison of the execution time 
for the single and double floating point 

precision for the incompressible Navier-
Stokes application 

 

 
Fig. 9. Comparison of the execution time 
for the single and double floating point 

precision for the steady state heat 
conduction application 

For the incompressible Navier-Stokes 
application the averaged measured execution 
time increase is of 6.98, i.e. also close to 
the predicted value of 8. For the matrix 
multiplication problem, which could not be 
categorized as a certain type of application, 
the averaged measured execution time 
increase is of 2.94, i.e. somewhere in 
between the limiting values of two and eight. 
 
4. Conclusions and Future Work 

 
This paper assesses the performance gap 

between the double and single precision 
performance of NVIDIA’s Tesla architecture 
GPUs. Double precision floating point 
performance is very important for specific 
applications in order to obtain the desired 
accuracy for the results. A good example is 
the conjugate gradients method, with or 
without preconditioner, which is used to 
solve large and very large sparse linear 
systems of equations. Using single 
precision, the tolerance, i.e. the difference 
between the current and the actual 
solution, can not be diminished further 
than 1e-8. On the other side, using double 
precision for the floating point operations, 
values of 1e-20 or even lower for the 
tolerance, are no problems. 

In order to analyze the performance gap, 
three representative applications have been 
chosen: matrix multiplication, incompressible 
Navier-Stokes equations and the steady 
state heat conduction problem. The second 
one is compute limited, the third one is 
bandwidth limited and the first application 
lies somewhere in between. The nature of 
each application has been determined 
through the values reported by the CUDA 
profiler, regarding execution time, global 
memory bandwidth and instruction 
throughput. 

Bandwidth limited applications should 
have their performance decreased by a 
factor of two, because the number of bytes 
to be read is doubled (8 instead of 4). 
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Compute limited applications should have 
their performance decreased by a factor of 
eight because there are eight times less 
double precision than single precision 
floating point units in each multiprocessor 
of the GPU. These values are confirmed by 
the experiments. The execution time of the 
incompressible Navier-Stokes application 
increases by a factor of around seven, the 
execution time of the steady state heat 
conduction problem increases by a factor 
of two and the execution time of the matrix 
multiplication problem increases by a 
factor of three, confirming its mixed nature. 

Future research activity will focus on the 
new Fermi architecture, which has been 
implemented inside the newest NVIDIA 
GPUs. The Fermi architecture should 
provide double precision performance which 
represents half of the single precision 
performance, instead of only an eighth as 
is the case with the Tesla architecture. 
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