
Bulletin of the Transilvania University of Braşov
Series I: Engineering Sciences • Vol. 4 (53) No. 2 - 2011

COMPARISON OF SINGLE AND DOUBLE

FLOATING POINT PRECISION
PERFORMANCE FOR TESLA

ARCHITECTURE GPUs

L.M. ITU1 C. SUCIU1,2
F. MOLDOVEANU1 A. POSTELNICU3

Abstract: The paper compares the single and double floating point
precision performance of NVIDIA Tesla GPUs. Double precision is crucial
for the accuracy of some applications containing scientific computation.
Three representative applications have been chosen in order to compare the
performances: matrix multiplication, incompressible Navier-Stokes equations
and the steady state heat conduction problem. The expected values of
performance decrease lie between two for bandwidth limited applications
and eight for compute limited applications. Based on the conducted
experiments, the type of each application has been identified and the
decreases in performance have confirmed the expected theoretical values.

Key words: GPU, floating point precision, Tesla architecture, speed-up.

1 Dept. of Automatics, Transilvania University of Braşov.
2 Corporate Technology, PSE Siemens Romania.
3 Dept. of Thermodynamics and Fluid Mechanics, Transilvania University of Braşov.

1. Introduction

Graphics Processing Unit (GPU) based

implementations have introduced an
alternative to CPU based solutions. GPUs
were initially used only as graphical
accelerators in image processing applications.
A GPU is a many-core processor, which,
given the need of the graphical applications,
is designed in order to execute a large
number of floating point operations in
parallel on hundreds of cores [11]. The
transition from graphics applications to
general purpose applications has been made
possible by the introduction of CUDA
(Compute Unified Device Architecture) [3].

When a GPU is programmed through
CUDA, it is viewed as a compute device,
which is able to run thousands of threads in
parallel by launching a kernel (a function,
written in C language, which is executed
by the threads on the GPU) [13]. The latest
GPUs contain several streaming multi-
processors, each of them containing eight
cores.

Currently all applications which use a
GPU in order to accelerate the execution
also use the CPU in order to perform
auxiliary tasks (like initializations or post-
processing) and also to launch the kernels
[8]. Until now the GPU is not able to run
as a stand-alone device, it needs to be

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

132

launched by a host thread which also
manages the data located in the global
memory (it copies initial values to the
device and copies the results back at the
end of the execution).

The first architecture to support CUDA
programming was the G80 architecture.
One of the major drawbacks of it was the
lack of double precision floating point
support. This aspect was then improved in
June 2008, when NVIDIA introduced a
major revision to the G80 GPUs: the GT200
architecture almost doubled the number of
cores (240 instead of 128), memory access
coalescing require-ments were alienated and
maybe most importantly, double precision
floating point support was also added in
order to satisfy the need of scientific high-
performance computing applications.

The goal of this article is to compare the
single and double precision floating point
performance of the GT200 Tesla architecture.
In various applications containing scientific
computation, double precision floating
point math is essential in order to obtain
accurate results. To perform the comparison,
three applications have been chosen: a dense
matrix-matrix multiplication, the numerical
solution of the incompressible Navier-
Stokes equations on a MAC grid and a
steady state heat conduction problem. The
first one is a common operation in linear
algebra and the other two applications are
widely spread in the field of computational
fluid dynamics. Section two provides a
short overview of the CUDA architecture.
Section three briefly describes the three
applications for which the tests have been
conducted. Section four presents the results
of the research activity and finally some
conclusions will be drawn in chapter five.

2. The CUDA Architecture

CUDA refers to both the hardware and
software architecture, which enables NVIDIA
GPUs to execute programs written with C,

C++, Fortran, OpenCL, DirectCompute,
and even other languages. A CUDA
program uses the GPU by calling parallel
kernels [10]. A kernel then launches
thousands of threads into execution (Figure
1). These threads are organized at three
levels. First there is the grid of thread blocks,
which is a two dimensional arrangement of
the blocks. Then every block consists of up
to 512 threads which are organized in three
dimensions. Finally every group of 32
threads of the same thread block will form
a warp. This architecture is called SIMT
(Single Instruction Multiple Thread), which
enables different threads to execute different
instructions at the same time, without loss
of performance for different warps (ideally
the threads of the same warp should not
diverge, otherwise the different execution
branches will be serialized).

Fig. 1. CUDA Thread organiyation

Every thread has access to built-in

variables which allow it to identify the
specific input data, which has to be
manipulated and also where the result
should be stored. Further the threads of a
thread block can cooperate, by using the
shared memory or by waiting for each

Itu, L.M., et al.: Comparison of Single and Double Floating Point Precision Performance… 133

other through barrier synchronization.
Also, each thread has access to a per-
thread private memory, which is used for
intermediate results, usually called
registers (Figure 2 displays the various
available memory types). The CPU (the
host) has access to the global memory, the
constant and the texture memory of the
GPU (the device). The three-leveled
hierarchy of threads maps straight forward
to the hierarchy of processors of the GPU.
These are usually called streaming
multiprocessors and contain 8 cores. Each
CUDA core has both an integer arithmetic
logic unit (ALU) and a floating point unit
(FPU). Also every streaming multi-
processor contains an FPU for double
precision. Hence the double precision
performance of a CUDA program, when
compared to its single precision version,
should be up to eight times slower.

In order to obtain optimum performance,
there are several guidelines which have to
be followed. Some of the most important
ones are: minimize transfers of data
between CPU and GPU, ensure coalesced
(sequential and aligned) access to the
global memory, use shared memory to
avoid redundant access to global memory,
avoid different execution paths for the
threads of a warp etc. [9].

Fig. 2. CUDA Memories

3. Test Applications

3.1. Matrix-Matrix Multiplication

Since matrix-matrix multiplication is a

common operation, only the idea behind
the GPU kernel performing the operation
will be discussed (Figure 3). The input
matrices as well as the result matrix are
divided into blocks (not necessarily square
blocks; a very interesting pattern is indicated
in [5]). A block of threads computes a
block of elements in the results matrix
(every thread will usually compute several
elements) by calculating the dot product of
the corresponding rows and columns of the
matrices A and B respectively. In order to
limit the wasted global memory
bandwidth, data is brought into shared
memory in a common effort from the
threads of the block. Because the shared
memory is a limited resource, data is read
in tiles from the global memory and the
dot-product is computed in several steps.

Fig. 3. Matrix Multiplication with Shared

 Memory

3.2. Incompressible Navier-Stokes
 equations

The incompressible (viscous) Navier-

Stokes equations are used in a wide range
of applications in fluid dynamics. The
further description refers to two dimensional
flow problems. Consequently the equations

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

134

will be composed of a mass conservation
equation and two momentum conservation
equations, one for each Cartesian velocity
component [4], [12]. The dependent
variables, which will be determined
numerically, are the pressure p and the
velocity components u and v in the x and y
directions respectively (for simplicity only
the isothermal case will be considered) [6].
The mass conservation equation is:

0=
∂
∂

+
∂
∂

y
v

x
u

. (1)

The momentum equations on the two

axes are (Eq. 2-3):

,
Re
1

)()(

2

2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

=

⋅
∂
∂

++
∂
∂

+
∂
∂

y
u

x
u

vu
y

pu
xt

u

 (2)

.
Re
1

)()(

2

2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

=

+
∂
∂

+⋅
∂
∂

+
∂
∂

y
v

x
v

pv
y

vu
xt

v

 (3)

The equations above are in the non-

dimensional form which has been obtained
using the free stream velocity V∞, the
density ρ∞, the viscosity µ∞ and a length

scale L. Consequently,
∞

∞∞

µ
⋅⋅ρ

=
LVRe . The

main difficulty of the incompressible
Navier Stokes equations is that there is no
time dependent term in the continuity
equation, which makes it difficult to solve
for the pressure (the momentum equations
can be solved for u and v but the
continuity equation does not include p).
One of the methods to solve this issue, is
to include an artificial compressibility
term in the continuity equation:

02 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

y
v

x
ua

t
p , (4)

where a is the speed of sound. The term
related to pressure will actually vanish as
the scheme progresses to a steady state
solution. Consequently, at steady state, the
original continuity equation will be
recovered.

The solution method is an explicit one [7]
and it is implemented on a so called MAC
grid (or staggered grid), which generally
improves the stability of the incompressible
flow (through the stronger coupling
between pressure and velocity variables).
Figure 4 shows a detail of the grid.

Fig. 4. The MAC grid

A primary (solid lines) and a secondary

grid (dashed lines) can be distinguished on
this MAC grid. Usually the pressure is
defined on the primary nodes and the
velocities on the secondary grid.

Fig. 5. Backward facing step problem

Itu, L.M., et al.: Comparison of Single and Double Floating Point Precision Performance… 135

A first order difference in time and a
second order central difference in space
have been used in the discrete domain
equations (2-4). The incompressible Navier-
Stokes equations have been solved for a
backward facing step problem, which is
very popular in benchmarking activities.
Figure 5 displays the domain of the flow.

3.3. Steady heat conduction problem

Another application which is common in

computational fluid dynamics is the steady
state heat conduction problem, or more
generally the Laplace equation:

02

2

2

2

=
∂
∂

+
∂
∂

y
T

x
T

. (5)

Generally, partial differential equations

(PDE) may be divided into: hyperbolic,
parabolic and elliptic equations. This
classification of PDEs can be obtained by
starting from the general form of
quasilinear equations (the highest order
derivative occurs linearly, i.e. there are no
products or exponentials of the highest
order derivatives) [1]. This approach of the
classification of PDEs is common since all
governing equations in fluid dynamics are
quasilinear.

Eq. (5) can be easily discretized by using
a five point finite difference scheme (Eq.
6):

.0
2

2

2
1,,1,

2
,1,,1

=
∆

+⋅−
+

∆

+⋅−

−+

−+

y
TTT

x
TTT

jijiji

jijiji

 (6)

The numerical scheme which has been

obtained is called explicit because it
contains a single unknown value [2].
Because the goal of this paper is to
perform a comparison of the single and
double precision performance of a Tesla

GPU, the heat conduction problem will be
solved on a simple, rectangular domain as
the one in Figure 6. The boundary
conditions are known, and the boundaries
have been chosen so as to coincide with
the grid lines.

Fig. 6. Rectangular domain of the problem

and boundary conditions

4. Results

The above described applications have
been run for both single and double
precision floating point on a NVIDIA
GTX260 GPU. In order to deeply
understand the results, one has to
determine the main limitation factors for
the three applications. These can be of
three types:

- PCI Express Bus limited: most of the
execution time is spent on the memory
copies between the host and the device;

- Global memory bandwidth limited: the
execution time is determined by the
latencies of the global memory read/writes;

- Compute limited: the execution time is
determined by the instruction throughput;

Tables 1, 2 and 3 display the summary
results of the three types of applications for
both single and double floating precision
(the results have been recorded with the
Visual Profiler).

By analyzing the values in the tables, the
first type of limitation can be immediately
excluded, since the memory copies
operations occupy only a fraction of the
total execution time (up to 20% for the
matrix multiplication and under 3% for the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

136

Summary table for the matrix-multiplication application (size 1024x1024) Table 1

Operation Nr. of
Calls

Execution
time [µs]

% of
Exec.
time

Overall global
mem. throughput

[GB/s]

Instruction
through-put

FLOAT kernel 1 10178.2 79.45 65.86 0.724
Memcopies 3 2633.1 20.55 - -
DOUBLE kernel 1 32968.2 84.96 41.83 0.403
Memcopies 3 5838.1 15.04 - -

Summary table for the incompressible Navier-Stokes application (250 time steps) Table 2

Operation Nr. of
Calls

Execution
time [µs]

% of
Exec.
time

Overall global
mem. throughput

[GB/s]

Instruction
through-put

FLOAT kernel 500 22908.5 97.63 86.32 1.013
Memcopies 9 556.2 2.37 - -
DOUBLE kernel 500 150489 99.24 33.90 0.583
Memcopies 9 1078.2 0.76 - -

Summary table for the steady state heat conduction problem (250 iterations) Table 3

Operation Nr. of
Calls

Execution
time [µs]

% of
Exec.
time

Overall global
mem. throughput

[GB/s]

Instruction
through-put

FLOAT kernel 500 39077.8 99.35 110.07 0.694
Memcopies 3 255.8 0.65 - -
DOUBLE kernel 500 72372.5 98.01 111.29 0.416
Memcopies 3 1472.2 1.99 - -

other two applications). In order to determine
which of the other limitations applies for the
three applications, some technical data of the
GPU need to be taken into consideration. On
the one side, the GTX260 allows an overall
global memory throughput of 111.9 GB/s
[9] and on the other side, the instruction
throughput (ratio of achieved instruction
rate to peak single issue instruction rate)
can become greater than 1 (in the case of
instruction dual-issue coming into play).

Considering now only the float versions
of the applications, the steady state heat
conduction problem is clearly limited by
the global memory bandwidth, since the
overall global memory throughput (110.07
GB/sec) is close to the peak value (111.9
GB/sec). The incompressible Navier-Stokes
equation is clearly compute limited, since
the instruction throughput exceeds the

value of 1. The matrix multiplication
application lies somewhere in between.

Before displaying the results of the
comparison between float and double,
expected values of performance decrease
can be determined. For bandwidth limited
applications the performance should decrease
by a factor of two, since the application has
to read twice more data for the double
precision version than for the single precision
version. For compute limited applications the
performance should decrease by a factor of
eight, since every multiprocessor contains
eight single precision floating point units
and only one double precision floating point
unit. Figures 7, 8 and 9 display the results of
the comparison for the three applications.

The measured values confirm the
theoretical predictions, which have been
based on the limitation of each application.

Itu, L.M., et al.: Comparison of Single and Double Floating Point Precision Performance… 137

For the steady state heat conduction
problem, the averaged measured execution
time increase is of 1.95 and hence very
close to the predicted value of 2.

Fig. 7. Comparison of the execution time
for the single and double floating point
precision for the matrix multiplication

application

Fig. 8. Comparison of the execution time
for the single and double floating point

precision for the incompressible Navier-
Stokes application

Fig. 9. Comparison of the execution time
for the single and double floating point

precision for the steady state heat
conduction application

For the incompressible Navier-Stokes
application the averaged measured execution
time increase is of 6.98, i.e. also close to
the predicted value of 8. For the matrix
multiplication problem, which could not be
categorized as a certain type of application,
the averaged measured execution time
increase is of 2.94, i.e. somewhere in
between the limiting values of two and eight.

4. Conclusions and Future Work

This paper assesses the performance gap

between the double and single precision
performance of NVIDIA’s Tesla architecture
GPUs. Double precision floating point
performance is very important for specific
applications in order to obtain the desired
accuracy for the results. A good example is
the conjugate gradients method, with or
without preconditioner, which is used to
solve large and very large sparse linear
systems of equations. Using single
precision, the tolerance, i.e. the difference
between the current and the actual
solution, can not be diminished further
than 1e-8. On the other side, using double
precision for the floating point operations,
values of 1e-20 or even lower for the
tolerance, are no problems.

In order to analyze the performance gap,
three representative applications have been
chosen: matrix multiplication, incompressible
Navier-Stokes equations and the steady
state heat conduction problem. The second
one is compute limited, the third one is
bandwidth limited and the first application
lies somewhere in between. The nature of
each application has been determined
through the values reported by the CUDA
profiler, regarding execution time, global
memory bandwidth and instruction
throughput.

Bandwidth limited applications should
have their performance decreased by a
factor of two, because the number of bytes
to be read is doubled (8 instead of 4).

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

138

Compute limited applications should have
their performance decreased by a factor of
eight because there are eight times less
double precision than single precision
floating point units in each multiprocessor
of the GPU. These values are confirmed by
the experiments. The execution time of the
incompressible Navier-Stokes application
increases by a factor of around seven, the
execution time of the steady state heat
conduction problem increases by a factor
of two and the execution time of the matrix
multiplication problem increases by a
factor of three, confirming its mixed nature.

Future research activity will focus on the
new Fermi architecture, which has been
implemented inside the newest NVIDIA
GPUs. The Fermi architecture should
provide double precision performance which
represents half of the single precision
performance, instead of only an eighth as
is the case with the Tesla architecture.

Acknowledgements

This paper is supported by the Sectorial
Operational Programme Human Resources
Development (SOP HRD), financed from
the European Social Fund and by the
Romanian Government under the contract
number POSDRU/88/1.5/S/76945.

References

1. Blazek, J.: Computational Fluid

Dynamics: Principles and Applications.
London. Elsevier, 2007.

2. Bruaset, A.M., Tveito, A.: Numerical
Solution of Partial Differential
Equations on Parallel Computers.
New York. Springer, 2006.

3. Chen, G., Li, G., et al.: High
Performance Computing Via a GPU.
In: 1st International Conference on
Information Science and Engineering,
Nanjing, China, Dec. 26-28, 2009, p.
238-241.

4. Chung, T.J.: Computational Fluid
Dynamics. Cambridge. Cambridge
University Press, 2002.

5. Cui, X., Chen, Y., et al.: Improving
Performance of Matrix Multiplication
and FFT on GPU. 15th International
Conference on Parallel and Distributed
Systems, Shenzhen, China, Dec. 8-11,
2009, p. 42-48.

6. Hoffmann, K.A., Chiang, S.T.:
Computational Fluid Dynamics. Wichita.
Engineering Education System, 1998.

7. Jin, Q., Thomas, D.B., et al.: Exploring
Reconfigurable Architectures for
Explicit Finite Difference Option
Pricing Models. In: International
Conference on Field Programmable
Logic and Applications, Prague, Czech
Republic, August 31-September 2,
2009, p. 73-78.

8. Kirk, D., Hwu, W.M.: Programming
Massively Parallel Processors: A
Hands-on Approach. London. Elsevier,
2010.

9. NVIDIA Corporation: CUDA,
Compute Unified Device Architecture
Best Practices Guide v3.1. Available at:
http://www.nvidia.com. Accessed: 01-
12-2010.

10. NVIDIA Corporation: CUDA,
Compute Unified Device Architecture
Programming Guide v3.1. Available at:
http://www.nvidia.com. Accessed: 01-
12-2010.

11. Owens, J.D., Houston, M., et al.: GPU
Computing. In: Proc. of the IEEE 96
(2008) No. 5, p. 879-884.

12. Wendt, J.F.: Computational Fluid
Dynamics: An Introduction. Berlin.
Springer, 2009.

13. Zou, C., Xia, C., et al.: Numerical
Parallel Processing Based on GPU
with CUDA Architecture. In:
International Conference on Wireless
Networks and Information Systems,
Shanghai, China, Dec. 28-29, 2009, p.
93-96.

