
Bulletin of the Transilvania University of Braşov
Series I: Engineering Sciences • Vol. 4 (53) No. 2 - 2011

CONSTRAINT BASED APPROACH FOR
OPTIMIZED PLANNING-SCHEDULING

PROBLEMS

A. GÎRBEA1 C. SUCIU1,2 F. ŞIŞAK1

Abstract: This paper outlines the way the planning/scheduling applications
can be solved using the optimization potential of the Choco CSP solver.
Consequently two specific problems which can be applied in various fields
were described in this paper. The first one is a pure planning problem and
supposes that a factory should manufacture products ordered by a client in
the shortest time possible. The second one is a scheduling problem regarding
simultaneous file transmission-visualization, where the task is to determine
the start moments of the copy operations. The results show that both
problems, otherwise difficult to solve in a classical way, can be solved
readily using the CSP approach.

Key words: CSP, scheduling, planning, optimization.

1 Dept. of Automatics, Transilvania University of Braşov.
2 Corporate Technology, PSE Siemens, Romania.

1. Introduction

Constraint programming is the study of

computational systems based on constraints.
A constraint is a logical relation between
several variables, where each variable has
a predefined domain. Thus a constraint
restricts the possible values that variables
can take and it represents some partial
information about the variables of interest
[1]. The problems solved through this
approach are called Constraint Satisfaction
Problems (CSP) and consist of:
• a set of variables: x1, x2, …, xn;
• a set of possible values for each

variable: D1, D2, …, Dn;
• a set of constraints which restrict either

the values of a single variable (unary
constraint) or the values which a set of
variables can simultaneously take (binary

constraints, ternary constraints etc.).
The solution of a CSP problem consists

of a tuple v = {v1, v2, …,vn} specifying a
value for each variable, values which
satisfy all constraints [8].

Constraint programming has been
successfully applied in various domains:
operations research problems [2]
(scheduling and routing), database systems
(consistency of data), business applications
(option trading) etc. The two main goals of
the CSP domain are the formulation and
the resolution of the combinatorial
problems [3]. This is a very effective way
of solving several industrial problems such
as scheduling, planning or design of
timetables. The user has to only build the
model of the problem, he is not interested
in the way the problem is solved. Several
frameworks exist to implement Constraint

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

124

Programming [9]: ECLiPSE, CHOCO,
KOALOG, ILOG SOLVER, ILOG
SCHEDULER, ILOG OPL, We have
sought to use an open-source solver so that
our research activity should not be limited
by any license agreement and it should be
accessible to every one. Secondly, we have
tried to use a Java-based solver because we
want to integrate the solver into an
application also containing an OPC UA
server [10], which has already been
developed by us. Through the combined
use of the solver and the OPC UA server
we are able to immediately and
automatically use the solutions of the
problems without any human tasks [7].

The two most important open-source
Java solvers are Choco [12] and JaCoP
[13]. After carefully analyzing the two
APIs we have chosen to use the Choco
solver. The Choco solver has a better
documentation and the code is easier to
understand [4]. Also its API contains more
constraints when compared to JaCoP,
which has a rather minimalistic approach
regarding the supported constraints, and it
allows the use of TaskVariables which is
very useful for scheduling problems. The
only disadvantage of Choco is that it
requires more system resources and it has
longer solving times. A very important
feature of Choco is the possibility to define
an objective variable which is used to
determine the best solution of all possible
solutions of the problem. The solver will
seek to find the values which either
maximize or minimize the chosen
objective variable, as specified by the user.

The goal of this article is to asses the
optimization potential of the Choco CSP
solver for planning-scheduling applications,
based on two specific problems, which we
have developed. The first one is a pure
planning problem [6] and refers to a
factory which manufactures different types
of screws on various work stations which
work in parallel. The goal is to plan the

manufacturing of the screws on the work
stations so as to obtain a minimum
execution time.

The second problem is a scheduling
problem which can be applied in various
fields. In order to provide a specific
framework the following situation is
considered: four files, each representing a
part of a movie, have to be sent over a
network and viewed afterwards. Each file
has a specific size and duration. The files
can be sent simultaneously but the
transmission speed decreases sequentially
with increased number of simultaneous
transfers.

The task is to determine the timing of the
transmissions, namely the moments in time
when to start to copy the files so as to
finish the visualization of these four files
as soon as possible.

During the next section we will focus on
the first problem and its particularities.
Section three presents a detailed
description of the second problem. Then
section four presents the results and finally
we will draw some conclusions on our
work in section five.

2. Optimized Planning for Part

Manufacturing

The first problem refers to a factory
which has to manufacture products
requested by a client. There are four work
stations which work in parallel and each of
them can be used to manufacture four
types of screws (R1, R2, R3, R4). When a
client sends an order, the goal is to
schedule the manufacturing of the screws
on the three work stations so as to obtain a
minimum execution time.

The constraint satisfaction problem,
which we have implemented, is composed
of a model (in which all the constraints and
consequently all the variables are added)
and a solver (which reads the model and
returns one, all or the optimum solution).

Gîrbea, A., et al.: Constraint Based Approach for Optimized Planning-Scheduling Problems 125

After the creation of the model twelve
main variables, whose values will be
determined by the solver, are created. Four
arrays of four elements each are defined,
every array represents a screw type and
every element of an array representing how
many screws of that type will be
manufactured on the corresponding work
station. The upper bound of every variable
represents the number of screws requested
by the client.

After that we have added a set of
constraints stating that the sum of the

number of screws of a certain type
manufactured on the work stations has to be
equal to the number requested by the client.

We have also specified the execution
times (expressed in minutes) for each type
of screw on each machine (Table 1 - as one
can see, the manufacturing times of the
screws depend on the work stations on
which they are manufactured). These values
are specified in this case as integers
(constants). Afterwards another three
variables corresponding to the manufacturing
times of the three stations have been created.

Manufacturing times of the screws on the various work stations Table 1

Screw type Work station 1 Work station 2 Work station 3 Work station 4
R1 3 2 4 9
R2 2 4 5 6
R3 2 3 7 5
R4 5 6 4 7

Listing 1. Minimization of the greatest manufacturing time

Then a fourth variable representing the

maximum of the three manufacturing times
on the work stations has been defined.

Finally, after creating the solver object,
the goal is specified, namely the variable
representing the maximum of the four
manufacturing times has to be minimum
(Listing 1 displays the code corresponding
to these actions).

3. Optimized Scheduling for File

Transmissions

The second problem represents a scheduling

problem. A scheduling problem represents
the allocation of resources to activities
over time so that input demands are met in
a timely and cost-effective manner [5].

Most typically, this involves determining
a set of start and end times of activities,
together with resource assignments, which
satisfy all temporal constraints on activity
execution (following from process
considerations), satisfy resource capacity
constraints, and optimize some set of
performance objectives [11].

This problem consists in sending four
files over a network. Each has a size of
1 GB and represents a part of a movie with
duration of 30 minutes. The transmission
speed depends on the number of files that
are sent simultaneously. If only one file is
sent the transmission speed is of 200 kB/s,
for two files the speed is of 170 kB/s, for
three files the speed is of 140 kB/s and for
four files the speed is of 110 kB/s.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

126

The goal is to determine the timing of the
transmissions, namely the moments in time
when to start to copy the files so as to
finish the visualization of the four files as
soon as possible. Two natural constraints
are that a person can start visualizing a file
only when he/she has received it and that
only one file can be visualized at a time.

Even if at first sight the problem seems
easy it is very difficult to solve because
several scenarios have to be taken into
consideration. Figure 1 shows the various
overlapping possibilities regarding the
transmission of the four files.

In the model of the problem the
transmission speeds are defined as
IntegerConstantVariables. Afterwards we
have defined four TaskVariables for the
four files and other four TaskVariables for
the visualization of the files.

Each TaskVariable consists of three
IntegerVariables: the duration, the start
and the end moments. Setting fair values
for these IntegerVariables is very important

a)

b)

c)

d)

Fig. 1. Overlapping scenarios

not only in order to obtain a correct
solution but also to obtain it in a timely
manner. Further, to obtain the solution
faster we have decided to express files sizes
in MB (megabytes) and time intervals as
multiples of five minutes. Hence the
transmission time of a file can vary between
the values of 17 (obtained when sending
only one file at a time) and 30 (obtained
when sending four files simultaneously).
The start moment of the first file is zero of
course. Consequently the end moment of
the transmission of the first file lies
between 17 and 30. For the second file the
start moment may vary between 0 and 17.
And the final moment for the second file
may vary between 19 (in case two files are
transmitted simultaneously) and 33 (in
case the files are sent like in Figure 1d). In
a similar way the start and end times of the
other two files are set.

The duration of visualization tasks is 6
(30 mins/5 = 6) and of course only one file
can be visualized at a time. The start
moment for the visualization of the first
file is equal to the final moment of the
transmission of the same file. And the final
moment is equal to the start moment plus
the visualization time. The same rule
applies to other files. Listing 2 displays the
creation of the tasks corresponding to the
first file.

In order to model the problem adequately
two sets of variables (IntegerVariables)
have been defined: with and without star.
Each set contains both the durations of the
stand-alone tasks and of the overlapping
areas (for two, three and four simultaneous
transmissions): 1, 2, 3, 4, 1/2, 1/2/3, 1/2/3/4,
2/3, 2/3/4, 3/4. The variables without a
star, which represent overlapping areas, are
defined by differences between the end and
the start times of the tasks which define
them. Next the variables with stars and the
constraints for these variables have been
defined. A variable with star represents the
duration of a stand-alone task or overlapping

Gîrbea, A., et al.: Constraint Based Approach for Optimized Planning-Scheduling Problems 127

Listing 2. Operations corresponding to the first file

area without interference of other stand-
alone tasks or overlapping tasks. The
durations displayed in Figure 1 are all with
stars; for example, in Figure 1a, the variable
1/2 without star is composed of the
variables 1/2*, 1/2/3* and 1/2/3/4* because
this is the actual overlapping area between
tasks one and two. The variable 1/2* on the
other hand represents only that portion of
1/2 where no other task interferes.

In order to determine the values of the
variables with stars “if-then-else” constraints
have to be used. Hence the values of these
variables are defined as differences
between the same variables without a star
and their higher ordered neighbors. The
“if-then-else” has to be used to avoid
negative values for these variables. Listing
3 displays the definition of the variable 2/3*.

If the variable with star has only one
neighbor then it is not necessary to use the
“if-then-else” constraint and its value is

equal with the same variable without a star
minus the higher-order neighbor.

Then we have defined constraints for the
four files:

∑
=

⋅=
n

i
ii vtsizeFile

1

* . (1)

As duration variables we have used the

previously defined variables with stars. Eq.
(1) has been implemented using constraints
like “mult” and “sum”. Finally we have used
the “geq” constraint to specify that the
result of the sum is greater or equal with
size of a file (1000MB). We have used the
greater or equal constraint instead of the
equal constraint because the file sizes are
expressed in MB and the time intervals as
multiples of five minutes and hence the
multiplication between different speeds
and durations will not be exactly 1GB.
Listing 4 displays the operations for one task.

Listing 3. Definition of variable 2/3*

Listing 4. File size constraint

Listing 5. Precedence constraints

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

128

Of course we have to define some
precedence constraints between the various
tasks (Listing 5). We have added
constraints “startsBeforeEnd” to establish
the transmission order for the four
transmission tasks. For example the second
file starts before the end time of the first
file, the third file starts before the end time
of the second file and so on.

After that we have defined constraints
“startsAfterEnd” in order to specify that
the visualization tasks can be started only
after the end of the transmission tasks. For
example the first file can be viewed only
after the finalization of its transmission.

Afterwards we have used the same
constraint “startsAfterEnd” to establish the
order of the visualization tasks (for example
the second file can be visualized only after
finishing the visualization of the first file).
The same rule applies to the other files.

And finally we have minimized the final
time of the latest visualization task because
the goal is to finish viewing all four files as
soon as possible.

4. Results

The problems described in the previous

chapters have been implemented with the
help of the Choco solver v.2.1.1 and the
programming environment Eclipse Galileo.

For a constraint problem the most
important aspect is the approach. First of
all the problem should be understood very
well and then it should be implemented
using the constraints which describe the
problem in a clear way so that the
constraints do not overwrite/overlap or
reduce the effect of each other. The search
strategy should not be overlooked! A
suited search strategy can reduce: the
execution time, the number of expanded
nodes, the number of backtracks.

One of the major challenges has been the
total solving time for the scheduler. To
show the power of the CSP approach, for

the first problem the following example
has been considered: a client requests 20
screws of type R1, 18 screws of type R2,
22 screws of type R3 and 16 screws of type
R4.

Figure 2 displays the solving times
corresponding to the manufacturing of the
screws ordered by the client. We have
displayed the solving times for the five
best search strategies.

0

200

400

600

800

1.000

1.200

Solving time [ms]

Default

DomOverWDegBran
ching -
IncreasingDomain
MinValueDomain -
IncreasingDomain

MinDomain - MidVal

MinDomain - MinVal

Fig. 2. Solving times using various search

strategies

The best search (branching) strategy for

this problem has been DomOver-
WDegBranching in combination with
IncreasingDomain (a value iterator which
selects the variable with the smallest
value). It is known that DomOver-
WDegBranching is a n-ary branching
assigning distinct values to an integer
variable. Thus the best solving time was of
359 milliseconds. The legend displayed on
the right hand side of Figure 2 always
contains pairs of options. The first
expression is the variable selector and the
second one is either a value selector or a
value iterator. The second best solving
time has been obtained for the variable
selector MinDomain and the value selector
MidVal (594 seconds). Table 2 displays the
planning results for manufacturing the
order of the client. They show that the
solver distributes optimally the work onto
the three work stations, keeping them
constantly occupied.

Gîrbea, A., et al.: Constraint Based Approach for Optimized Planning-Scheduling Problems 129

Results for the planning problem corresponding to an order of 76 screws Table 2

Screw type Work
station 1

Work
station 2

Work
station 3

Work
station 4

Total number of
screws

R1 0 19 1 0 20
R2 10 0 8 0 18
R3 12 2 0 8 22
R4 0 0 0 16 16

Execution time 44 44 44 40 Total execution
time (max): 44

The results for the second problem may

vary depending on the values set for file
sizes, transmission speeds and visualization
times. According to these values the data
transmissions will follow one of the four
patterns presented in Figure 1. The results
presented in Table 3 correspond to the first
case from Figure 1 where the transmissions
of all four files are overlapped. We have
seen that the visualization of a task is
started as soon the transmission is finished.
We have modified the visualization times
of each file to an hour (60 minutes/5 = 12)
and the obtained results are presented in
Table 4. The results correspond to the third
case presented in Figure 1 where at most
the transmissions of two files are
overlapped at a time.

Scheduling results Table 3

File Transmission
interval

Visualization
interval

File 1 [0, 21] [21, 27]
File 2 [4, 27] [27, 33]
File 3 [10, 33] [33, 39]
File 4 [19, 39] [39, 45]

Table 4

Scheduling results for modified
visualization durations

File Transmission
interval

Visualization
interval

File 1 [0, 18] [18, 30]
File 2 [12, 30] [30, 42]
File 3 [23, 42] [42, 54]
File 4 [36, 54] [54, 66]

5. Conclusions

Constraint-based methods have proven
successful when problems are hard (solutions
not obvious, many hard constraints, strong
constraint interactions), when domain-
specific and redundant constraints are
available, and when problems change
often. The two different problems presented
in the paper clearly show the difference
between planning and scheduling problems.
Both of them use timing information, but
scheduling problems provide the exact
moments in time when to start certain
operations, while planning problems only
provide information regarding the
resources on which the operations should
be executed. This is the main reason why
planning problems are usually solved
much faster than scheduling problems.

Section four has showed that a crucial
part of the constraint-based approach,
besides the correct definition of the model,
and especially when the optimum solution is
sought, is to choose the right search strategy.
Considering the planning problem as an
example, we have seen that the total
execution time has been reduced by 67.23%.

Another advantage of the CSP approach
has been proven through the scheduling
problem. We have seen that a minor
change in the input data has lead to a
totally different schedule. This shows that
once the model is correctly built, the solver
finds a solution (the best solution for
optimization problems) for any input values,
which have been provided by the user.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 2 - 2011

130

An important aspect, which we have kept
in mind throughout the development, is to
build a CSP model which is scalable, i.e. to
choose a very general approach. Both of
the models described in the paper fulfill
this requirement, e.g. one could easily
model a planning problem with n
workstations or with n files to be sent.

As a final conclusion we would say that
complex planning/scheduling scenarios
can be implemented readily through the
open source Choco library. The solving
times, especially of scheduling problems
can become a problem for complex
scenarios, but they can be greatly reduced
through adequate search strategies.

Acknowledgment

This paper is supported by the Sectoral
Operational Programme Human Resources
Development (SOP HRD), financed from
the European Social Fund and by the
Romanian Government under the contract
number POSDRU/88/1.5/S/59321.

References

1. Baker, K.R.: Introduction to

Sequencing and Scheduling. New
York. Wiley & Sons, 1974.

2. Baptiste, P., Le Pape, C., Nuijten, W.:
Incorporating Efficient Operations
Research Algorithms in Constraint-
based Scheduling. In: Workshop on
Artificial Intelligence and Operations
Research, Timberline Lodge, Oregon,
June 6-10, 1995, p. 13-19.

3. Baptiste, P., Le Pape, C., Nuijten, W.:
Constraint-Based Optimization and
Approximation for Job-Shop Scheduling.
In: SIGMAN Workshop on Intelligent
Manufacturing Systems, Montreal,
Canada, August 20-25, 1995, p. 21-27.

4. Benavides, D., Segura, S., Trinidad, P.,
Ruiz-Cortes, A.: Using Java CSP
Solvers in the Automated Analyses of
Feature Models. In: Generative and
Transformational Techniques in
Software Engineering, Braga, Portugal,
July 4-8, 2005, p. 399-408.

5. Fromherz, M.P.J., Carlson, B.: Optimal
Incremental and Anytime Scheduling.
In: Workshop on Constraint Languages/
Systems and their Use in Problem
Modeling, Syracuse, N.Y., USA, Feb.,
1994, p. 45-59.

6. Fromherz, M.P.J., Saraswat, V.A.,
Bobrow, D.G.: Model-based Computing:
Developing Flexible Machine Control
Software. In: AI Journal 114 (1999)
No. 1-2, p. 157-202.

7. Girbea, A., Suciu, C., Sisak, F.:
Design and Implementation of a Fully
Automated Planner-Scheduler
Constraint Satisfaction Problem. In:
Proceedings of the 6th IEEE
International Symposium on Applied
Computational Intelligence and
Informatics, Timişoara, Romania,
May 19-21, 2011, p. 54-59.

8. Hentenryck, P.: Constraint Satisfaction
in Logic Programming. Cambridge.
MIT Press, 1989.

9. Hentenryck, P.: The OPL Optimization
Programming Language. Cambridge.
MIT Press, 1999.

10. Mahnke, W., Leitner, S.H., Damm,
M.: OPC Unified Architecture. Berlin.
Springer Press, 2009.

11. Zweben, M., Fox, M.: Intelligent
Scheduling. Burlington. Morgan
Kaufman, 1994.

12. http://choco.emn.fr. Accessed: 06-12-
2010.

13. http://jacop.osolpro.com/. Accessed: 12-
11-2010.

