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Abstract: This paper present the theoretical and practical aspects of a 3D 
object reconstruction approach. The reconstruction process involves the 
usage of a pair of stereo rectifies images acquired from two digital cameras. 
The imaged object is rebuilt in a virtual 3D space with the help of internal 
and external camera parameters obtained from the camera calibration 
algorithm. For the 2D image detection of the object of interest a color 
segmentation method is applied, followed by triangulation for estimating the 
object-camera distance. 
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1. Introduction 
 
3D object reconstruction is the task of 

generating a 3D model of an object given 
multiple 2D images taken of a scene. Such 
algorithms can be found in applications such 
as robotics, virtual reality and entertainment. 

The most common approach to 3D 
reconstruction, or depth sensation, is 
through stereo vision. Early work, 
conducted in the 1970s and early 1980s, 
was primarily conducted by the image 
understanding community [3]. Barnard and 
Fischler [1] firstly reviewed stereo 
reconstruction methods in 1981, with focus 
on fundamental algorithms and criterias for 
performance evaluation. Recently, books 
by Hartley and Zisserman [9] and Cyganek 
and Siebert [4] provide a wealth of 
information on the geometric aspects of 
multiple view stereo geometry. 

In literature, there are a number of 3D 
object reconstruction methods, which can 
be classified into two different groups [10]: 
active and passive methods. The active 
methods use laser, Time-of-Flight (ToF), 
or structured light systems to obtain 3D 
data. Still, they remain expensive and 
require special skills for the acquisition 
process itself. The passive methods 
approach use digital cameras which acquire 
images from different points of view. The 
3D information is then extracted from the 
sequence of 2D colour images by using 
different techniques [10], [13]. One of the 
most used techniques is based on recovering 
information regarding the structure of a 3D 
space directly from depth measurements. 
The depth is usually obtained from 
computing stereo matching between pairs 
of images [4]. This technique, known as 
triangulation, represent the process of finding 
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coordinates of a 3D point based on its 
corresponding stereo image points, as well 
as with the parameters of the cameras (e.g. 
focal length, optical centre etc.) [4], [11].  

The rest of the paper is organized as 
follows. In Section 2, an object detection 
approach based on color processing is 
presented, followed in Section 3 by a 
detailed description of the 3D reconstruction 
steps. In Section 4, an evaluation of the 
obtained results is given. Finally, 
conclusions are presented in Section 5.  

 
2. Object of Interest Detection 
 

In order to extract the coordinates of the 
object of interest in successive images, 
three steps must be accomplished. Those 
steps are composed of image enhancement, 
segmentation and object detection. 

Usually a color image f(x, y) is represented  

in and RGB (Red, Green, Blue). On this 
RGB image a median filter is applied. The 
process involves the shifting of a filter 
mask, w(i, j), over the input image 

),( yxf . At each point (x, y), the response 
of the filter at that point is calculated using 
a predefined relationship [6]. In our 
implementation a 3 x 3 mask was used.  

The second stage is represented by object 
segmentation, a process based on the HSI 
(Hue, Saturation, Intensity) color model. 
The representation of the model is given in 
Figure 1. The HSI model of an image is 
obtained from the RGB one using the 
following color transformation system [6]: 
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The saturation component is given by: 
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Finally, the intensity component is given 

by: 
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The usage of the HSI systems simplifies 

the object segmentation via color information, 
since in this case the color is represented 
only on the hue image plane, in 
comparison to the RGB system, where the 
color is distributed over all three channels. 

The obtained hue image fh(x, y) is thus 
segmented in order to separate the object 
of interest from background and other 

objects present in the scene. This process 
uses two thresholds values, ],[ 21 TT . The 
output pixels which form the binary 
segmented image are defined based on the 

 

 
Fig. 1. HSI Color model representation 
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input hue pixels and are calculated using 
the following equation [6]: 
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where th(x, y) is the binary segmented hue 
image.  
 The segmentation process is followed by 
the detection of the object’s contour in the 
2D image plane using the chain-code 
border following method [2]. 

These contours are specific for each 
segmented object. Once the contours have 
been detected, their image moments will 
be computed. The moments represent a 
certain particular weighted average of the 
image pixel’s intensities, defined as [2]: 
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where, I(x, y) represent the x and y 
intensity, while Mi,j is the (i, j) moment. 

In cluttered scenes, the imaged objects 
usually have an altered shape in comparison 
to their original reference shape. To solve 
this problem invariant Hu moments are 
computed [2]. This moments use moments 
general to calculate a set of coefficients 
invariant to rotation, translation and scaling. 
Using this characteristic, an object can be 
uniquely detected, frame after frame, and 
its center of gravity (xc, yc) determined for 
the purpose of 3D reconstruction: 
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where, Mi,j represent the moments determined 
using the Equation (6).  
 
3. 3D Object Reconstruction 

 
The main goal of 3D reconstruction is to 

estimate the geometrical distances between 

the viewed scene and the camera. To be 
able to compute a distance between camera 
and an object, a calibrated stereo camera must 
be used. In order to determine the object’s 
3D position, the used images must be 
rectified. The rectification process transforms 
each image plain in such a way that pairs of 
conjugate epipolar lines become collinear 
and parallel to one of the image axes [5]. 

The reconstruction of objects based on 
stereo image acquisition involves the 
following stages: 
• stereo camera calibration and image 

rectification; 
• 2D points matching in pairs of images; 
• distance, or depth, computation. 
 

3.1. Stereo camera geometry 
 

The geometry of a stereo image acquisition 
system is entitled epipolar geometry. This 
geometry is illustrated in Figure 2 and 
behaves as follows. 

Consider a real world 3D point P in 
homogeneous coordinates represented as 
P = [X Y Z 1]. This point is projected onto 
the left and right images planes, IL and IR, 
respectively. The projection points, on the 
left and right images, in homogeneous 
coordinates  are:  pL = [xL yL l]  and  
pR = [xR yR l]. OL and OR are the optical 
centres of both cameras, as show in Figure 2. 

The line between the 3D real point P and  
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Fig. 2. Depth estimation of a point P on a 

pair of rectified stereo images 
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the optical centres, intersect the image plane 
in the projection points. The image plane is 
located at the distance f, or the focal length, 
from the optical centre of an each camera. 

The z axis of each coordinate system 
represents the principal ray, or optical axis, 
whereas (cx, cy) is the principal point placed 
at intersection between the principal ray 
and image plane.  

 
3.2. Stereo camera calibration and image 

rectification 
 

This process represents the computation 
of both camera matrices. Through camera 
calibration the external (extrinsic) and 
internal (intrinsic) parameters of the cameras 
are computed. The intrinsic camera matrix 
has the following expression [4]: 
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where, fx and fy are the camera’s focal 
length over the x and y axes and cx and cy 
represent the focal point. 

The extrinsic matrix contains information 
about the relation between the left and 
right sensors of the stereo camera. This is 
expressed using a rotation matrix R and a 
translation matrix T. The extrinsic camera 
matrix, P, is defined as a combination of R 
and T and represented as: 
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In our implementation we calculate the 

intrinsic and extrinsic matrices using a 
calibration chessboard table, imaged in a 
number of 25 frames.  

The rectification procedure aligns a pair 
of images in such a way that the 
corresponding points in both images reside 
on the same line [5]. Rectification was 

performed using Hartley’s method [8], 
which only needs the computation of the 
fundamental matrix. This can be obtained 
from any matched set of seven or more 
points between the two views of the scene.  

 
3.3. Stereo correspondences computation 
 

In the stereo correspondence process-
matching a 3D point in the two different 
camera views can be computed only over 
the visual areas in which the views of the 
two image sensors overlap [2]. In this 
paper, the method of Block Matching (BM) 
has been used for estimating camera-
objects distances. The block matching 
algorithm is based on using small windows 
to find matching points between the left 
and the right rectified stereo images. The 
match is based by computing a Sum of 
Absolute Differences (SAD) [2], [12]. The 
process of block matching using SAD can 
be divided into three distinct stages:  
• pre-filter the input images, in order to 

enhance textures and to reduce lighting, 
these are done by using a 5x5 window; 
• correspondence is computed with a 

sliding SAD window; 
• post-filtering to eliminate bad 

corresponding matches. 
Since in BM the correspondence point 

calculation is obtained based on rectified 
images, any match must occur on the same 
row in both images of the stereo pair. The 
interval in which the correspondent point is 
search has a finite distance, with its low value 
called minimum disparity, while it’s high 
value is named maximum disparity. The 
interval between the minimum and maximum 
value is the so-called horopter, defined as the 
3D volume that is covered by the search range 
of the stereo algorithm [2], [4].  
 
3.4. Depth computation  
 

The distance between the stereo camera 
and the 3D point can be evaluated based on 
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the baseline (the distance between the two 
optical centres) and the projection points 
pL and pR. Knowing these parameters we 
can obtain the 3D position of P with respect 
to the camera. The 3D position of P is 
determined using the following equations [7]: 
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where, d represent the disparity of the 
projected point P and can be computed as: 
 

RL xxd −= . (13) 
 

In equations (10) to (13) we can see that 
the distance is inversely proportional to the 
disparity. 
 
4. Experimental Results 

 
In order to test the theoretical description 

presented above, a practical experiment 
has been performed. In the experiment two 
Sony Evi-D70P® mono-cameras were used 
in a stereo manner. The considered object 
of interest was a green tennis ball, whose 
centre of gravity must be projected into a 

3D virtual space. For simplicity, in Figure 
3 only the left images are presented, while 
the process is applied to both images, that 
is, to the stereo images. The output of color 
segmentation from the input left image is 
presented in Figure 3a. At this, the optimal 
thresholds T1 = 42 and T2 = 68 used applied 
in order to get the binary segmented image. 
This interval corresponds to the green 
values of the considered object, as shown 
Figure 1. The detected centre of the tennis 
ball is presented in Figure 3b, where the 
red circle represents the centre of gravity. 
Based on the obtained centres, we are able 
to get the 3D position of the object using 
equations (10)…(13). Thus, the 3D position 
(x, y, z) of point P (in this case, the centre 
of the ball) has the coordinates (−0.144, 
0.018, 1.427). Since the real ball-camera 
distance has a value of 1.41 m, that is, over 
the z axis, the estimated depth computation 
error is 0.017 m. Figure 3c illustrates the 
resulted 3D reconstructed scene. 

 
5. Conclusions  
 

In this work a theoretical and practical 
description of a 3D reconstruction algorithm 
has been presented. Using such a system, 
the position of an object of interest within 
a complex scene can be reconstructed. The 
accuracy of the proposed solution depends 
on the stereo acquisition system and the 
calibration process, respectively.  

 

     
Fig. 3. The reconstruction of an object of interest: a) color segmentation result;  

b) object of interest detection; c) 3D depth estimation  
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