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Abstract: Voronoi diagrams and Delaunay triangulation have many 
properties that are highly desirable for 3D modelling applications and 
spatial analysis. Therefore they are considered to be the fundamental in 3D 
space reconstruction. We have highlighted in this paper a short and fast 
algorithm to optimally compute the Delaunay triangulation, used in the 
reconstruction of 3D geometric figures where the complexity of the problem 
is greater than the classical 2D plane case. 
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1. Introduction 
 
In the last years, the 3D reconstruction 

and modelling of an object has become a 
topic of interest for several fields of 
research. Particular attention has been paid 
on the reconstruction of a realistic scene, 
which can be applied to a wide range of 
applications such as robotics, virtual 
reality, medicine, surveillance and 
industry, in order to gain a much better 
analysis of the environment. A tri-
dimensional model can be created from a 
set of topographic cross section [14]. Thus, 
the reconstruction approach can be roughly 
classified into two groups: volume 
reconstruction and surface reconstruction. 
The first group can be tackled with the 
classical solution presented in [8], [16], 
while the last group can be treated with 
today’s dominant voxel technique as in [1], 

[3]. On the other hand, these techniques 
can be divided in two completely different 
approaches: approximation and 
interpolation. The approximation approach 
estimates a surface that passes nearly the 
original shape presented by Hoppe in [15], 
while the second approach uses Voronoi 
diagrams and Delaunay triangulation to 
find a topological connection between 
sampled points. 

Voronoi diagrams and their duals 
Delaunay triangulation approach are 
fundamental for modelling a space from a 
set of calculated points. They provide a 
decomposition of the space surrounding 
the set of points into well shaped cells 
which can be used to extract proximity 
information and detect collisions [12], [13]. 

A drawback is that the methods are time 
consuming. There were several attempts to 
optimise the algorithms in order to make 
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them faster [5], [6] and [11]. The most 
relevant modification of the Delaunay 
algorithm, presented in [2], allows the 
computation of millions of points, making 
it suitable for many 3D applications. The 
points needed to reconstruct an object can 
be obtained either from a disparity image 
[9], computed from pairs of stereo-images, 
either from an image range sensor or a 
laser sensor. The last two methods are time 
consuming but offer a much better 
representation of the object of interest.  

This paper is organised as fallows. In 
Section 2 we review the Voronoi diagrams 
and Delaunay triangulations outlining their 
essential characteristics. In Section 3 the 
Delaunay triangulation algorithm is 
described. Section 4 presents some 
applications of the concepts to surfaces in 
the 2D and 3D spaces, respectively. We 
conclude with a discussion on the 
performances of the methods.  
 
2. Solving the Reconstruction Problem 

 
Starting from a set of sampled points, the 

reconstruction problem can be defined as a 
method to establish neighbourhood 
connections between the samples. This 
geometric construction can be made using 
Voronoi diagram and its dual Delaunay 
triangulation.  

 
2.1. Voronoi diagrams. Definition 

 
The Voronoi diagram is easy to describe 

and, via a duality relationship, it facilitates 
the description of the Delaunay triangulation. 
Given a set P of n points in dℜ , the 
Voronoi diagram partitions dℜ  into n cells: 
one cell is associated with each point in P. 
For point p ∈ P, we denote the associated 
Voronoi cell by V(P). The extent of V(p) is 
simply the entire region of dℜ  whose 
distance to P is realized by the distance to p. 
That is, the set of points that is at least as 
close to p as it is to any other point q ∈ P.  

The set of Voronoi cells forms a 
covering of S called the Voronoi diagram 
of P. The Voronoi diagram gives a very 
natural definition of the neighbours of a 
point p ∈ P.  

The Voronoi cells are convex polygons 
in 2ℜ , and in higher dimensions they are 
convex geometric objects with flat sides 
also known as polytopes [10]. Indeed, V(p) 
can be constructed as the intersection of 
the n−1 half spaces each of which contains 
point p and is bounded by the orthogonal 
bisector of [p, q] for some q ∈ P. The 
intersection of d+1 or more Voronoi cells 
is either empty or a single point, called a 
Voronoi vertex. A Voronoi vertex v is 
equidistant from the elements of P whose 
Voronoi cells define it. Thus if 

)(0 i
d
i pVv == I , then the ip  all lie on a 

common hyper sphere centred at v. For a 
random set of points dℜ⊂P , the chances 
of more than d + 1 points lying on a common 
hyper sphere is vanishingly small [7]. The 
set P is said to be in general position if the 
intersection of more than d+1 Voronoi 
cells is always empty. 

 
2.2. Delaunay triangulation 

 
For P in general position, the Delaunay 

triangulation of P ∈ dℜ  is the dual of the 
Voronoi diagram of P∈ dℜ . In the planar 
setting, the duality relationship is as 
follows: to each Voronoi vertex c we 
associate a Delaunay triangle, t whose 
vertices are the three samples which define 
c. An edge e = [p, q] of t is dual to the 
Voronoi edge V(p) ∩ V(q). The vertices of 
the Delaunay triangulation are the sample 
points, and they are dual to the 
corresponding Voronoi cells in the 
Voronoi diagram. Let assume triangle ∆pqr 
is counter clockwise and let C be the 
circumscribed circle of ∆pqr. Consider T 
to be a triangulation of P. Let 2)( Pur, ∈  
such that ∆pqr and ∆pqu are triangles of T. 
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We want to design a test which gives 
information about the 4th point, called u, of 
the polygon. If Cu∈  then 

0),,,( =urqpinCircle , else if u is outside 
C then 0),,,( >urqpinCircle  else u is 
inside the circle and satisfy 

0),,,( <urqpinCircle . The inCircle test is 
computed based on Equation 1: 
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Given this approach, it is necessary to 

determine the orientation of the polygon 
edges in 3ℜ . This can be establish easily 
by determining the orientation of 
tetrahedron p q r u which is equal to 
orientation of ),,( PUPRPQ . Equation 2 is 
used to determine the orientation of the 
tetrahedron: 
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All properties which will be mentioned 

have been treated for the planar Delaunay 
triangulation by exploiting the edge flip 
algorithm. We say that edge e′ = [r, u] is 
locally Delaunay if p is not contained in 
the circumscribed circle of ∆qru, or 
equivalently, if q is not contained in the 
circum circle of ∆rpu. Also this can be 
demonstrated by computing the sign of the 
inCircle (p,q,r,u) function. There is to a 
convenient characterization of a locally 
Delaunay edge e′: the sum of the angles at 

the opposing vertices, p, and q, does not 
exceed π [4]. It is easy to show that if edge 
e is not locally Delaunay (NLD), then p q r 
u is a convex quadrilateral and the opposing 
edge, e′, will be locally Delaunay.  

If [p, q] is illegal, we can perform an 
edge flip by removing [p, q] from T and 
insert [r, u], see Figure 1. Now [r, u] 
becomes locally Delaunay. 

 

 
Fig. 1. Perform an edge flip. The lifted 
triangulation gets lower and the upper 

envelope becomes convex 
 

 Note that if all the edges in a 
triangulation are locally Delaunay, then the 
triangulation will be a Delaunay triangulation.  

 
3. The Reconstruction Algorithms 
 

Many surface reconstruction algorithms 
provide guarantees on the quality of the 
output surface if specific sampling density 
assumptions are met [17]. 

 
3.1. A first algorithm 
 

Consider a triangulation T of P. If all 
edges of T are locally Delaunay, the 
algorithm ends, otherwise select an illegal 
edge and flip-it. The algorithm ends when 
all edges of T are locally Delaunay. The 
input for the algorithm is a set P of n planar 
points. The output represents the Delaunay 
triangulation, DT(P), of those points. Figure 
2 shows the algorithm in pseudo code. 
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1: compute a triangulation T  
   of P 
2: initialize a stack which    
   contain all the edges of T 
3: while stack has elements 
4: do pop [pq] segment from  
   stack and  unmark it 
5:    if [pq] is illegal then  
6:     do flip [pq] to [ru]  

7:       for { }up,qu,rq,pqxy∈  
8:        do if xy is not  
          marked 
9:          then mark xy and  
            Push it on stack 
10: return T 

Fig. 2. The Delaunay triangulation flip test  
 
The program runs in Θ(n2) time. An edge 

can be flipped only once because afterward 
it remains above the lifted triangulation. If 
there are Θ(n2) edges, the algorithm will 
run in Θ(n2) time. 

 
3.1. Randomize incremental algorithm 

 
Considering the above algorithm let 

suppose that we have to introduce new 
points in a desired area. Those points will 
rip the edges in that zone. In this case we 
have to recompute the triangles from that 
area. Before we introduce the new point 
we have to be sure that all the triangles are 
DT(P). After that, we introduce the new 
point 1p  and split the surrounding triangle 
in 3 triangles. Perform edge flips until no 
illegal edge remains. After that, all the 
triangles become DT. Repeat the process 
for all new points. Figure 3 shows the 
algorithm in pseudo code. 

An edge between two triangles that do 
not contain the new point p1 was locally 
Delaunay before the insertion and will 
remain locally Delaunay. In conclusion we 
flipped only edges of triangles that contain 
point p1. The time needed to update the 
current triangulation is proportional with the 
number of edges that contain p1. Each new 

 1: Find the triangle ∆pqr of the 
  DT(P U { 1p })containing p1 

 2: Insert edges rp,qp,pp 111  
 3: Check for conflict ⇒   
   Perform SwapTest([pq]) 

 4: if [pq] is an edge of the  
   exterior face  

 5: do return 
 6:   u ← vertex of right edge  
     of [pq] 

 7:  if inCircle(p1,p,q, u) < 0  
 8:  do flip edge [pq] for p1u] 
 9:      SwapTest([pu]) 
 10:    SwapTest([uq]) 
 11:    Perform SwapTest([uq]) 
 12:    if [uq] is an edge of  
        the exterior face  
 13:    do return 
 14:    m ← vertex of right edge  
        of [uq] 
 15:  if inCircle(p1,q,u,m) < 0 
 16:  do flip edge [uq] for [p1m] 
 17:    SwapTest([qm]) 
 18:    SwapTest([mu]) 
 19:    Perform SwapTest([pu]) 
 20:    if [pu] is an edge of  
        the exterior face  
 21:    do return 
 22:    n ← vertex of right edge  
       of [pu] 

 23:  if inCircle( 1p ,p,u,n) < 0 
 24:  do flip edge[pu]for [p1n] 
 25:     SwapTest([pn]) 
 26:    SwapTest([nu]) 
 27: SwapTest([qr]) (similar to  
    point 3) 

 28: SwapTest([pr]) (similar to  
    point 3) 

Fig. 3. Incremental Algorithm 
 

edge will contain, after splitting the original 
triangle, the new point with a probability 

of 
i
2  where i is the number of the inserted 

points. Overall, the time needed to compute 
all triangulation can be approximated using 
the next formula:  
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. (3) 
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Knowing the Delaunay triangulation P 
we can find the Voronoi diagrams of P in 
Θ(n) time. 

 
4. Applicability 
 

Most results pertaining to surface 
representation by Delaunay structures have 
arisen in the context of surface meshing 
and surface reconstruction. Both depend on 
surface sampling theory and the geometric 
accuracy of triangle meshes. 

Also, the Delaunay triangulation have 
applicability on 2ℜ , in generation of the 
nearest neighbourhood graph, minima, 
spanning tree (MST), or finding the largest 
empty circle.  

In 3ℜ  is used for 3D reconstruction, 
meshing, remeshing or path planning.  

In surface meshing, it is used to produce 
a set of samples P and a mesh M, from a 
surface S. The vertices of the mesh are 
represented by the P samples. The 
algorithm must produce a mesh that meets 
given geometric accuracy requirements.  

In surface reconstruction, the input is the 
set of samples P and, aside from some 
regularity assumptions (i.e. that it was a 
smooth surface), the surface S is unknown. 
Again one wishes to construct a model that 
adequately represents S (see Figure 4). 

 

 
Fig. 4. Lifting the DT(P) to produce a tree 

dimensional shape 

The time needed to obtain the 
triangulation from Figure 4 was 30.98 
milliseconds. For one point, the algorithm 
was covered in 2.38 milliseconds. For a 
complex set of point, the triangulation can 
be computed in seconds, thus making this 
approach suitable for many 3D applications. 
 
5. Conclusion 
 

In this paper we present a technique for 
constructing Voronoi diagrams and how to 
optimally compute a Delaunay 
triangulation. The algorithms are simples, 
easy to implement and efficient. The 
theoretical worst-case running time is 

)log( nnΘ , thus making this approach 
suitable for many real-time 3D 
reconstruction application. The question of 
space and time complexities of Delaunay 
refinement algorithms for three 
dimensional domains remains mostly open. 
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