
Bulletin of the Transilvania University of Braşov
Series I: Engineering Sciences • Vol. 4 (53) No. 1 - 2011

ONTOLOGY BASED RESOURCE
MANAGEMENT OF REAL AND

EMULATED TELECOM SYSTEMS

T. BĂLAN1 F. SANDU2 V. CAZACU1

Abstract: Because recent heterogeneous telecom networks have developed
into complex distributed systems, the management of these systems is more
elaborated and resource consuming. Self-organization of network resource
colonies based on semantic associations with logical relations can provide a
solution. This paper presents a method for resource management in telecom
distributed testing environments with real and emulated elements. Generic
Path is an object oriented methodology for modelling and engineering of
network functions and services. We propose a method for integration of real
and emulated testing environments and a network model for resource sharing
using Generic Path and a resource management ontology.

Key words: ontology, resource management, Generic Path, emulation.

1 Siemens Program and System Engineering Braşov.
2 Dept. of Electrical Engineering and Computer Science, Transilvania University of Braşov.

1. Introduction

The dimensions and complexity of latest

network architectures makes end-to-end
testing based on real equipment almost
impossible. Emulation/simulation of network
elements is a common practice for
development and testing. Interconnecting
real and emulated elements in complex
testing environments, along with soft-
switching technology proves that the border
between real and emulated is very thin.

From solution implementation point of
view we first focus on the integration of
real network interfaces at simulator/
emulator level, based on sockets, using
OMNeT++ [10]. Using the same simulator
and the Formux Generic Path Architecture
Prototype [3-4] implementation we
describe the method of creating the

Generic Patch (GP) entities at simulator
level.

The paper proposes a solution for real
and emulated interfaces integration and
management of resource colonies. Network
Resource Ontology with formalized
semantics allows automatic composition
and sharing of GPs between different
“layers” as well as between different
domains via mediation points. Resource
grouping, organization and selection are
based on capabilities, QoS, availability and
probing.

2. Network of Information

Ontology is a formal representation of
knowledge as a set of concepts within a
domain, and the relationship between those
concepts.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 1 - 2011

86

It is used for structuring and organizing
of data/information and as means for
information and mechanisms sharing
between different systems, by using shared
vocabulary. Ontology extracts essential
data from information, recognizes conflicts
and allows completing missing knowledge
with the help of available information.

One of the domains where ontology
impact is more visible is Semantic Web,
enabling machines to understand the
semantics, or meaning, of Internet
available information. But networks of
information are largely used also for
artificial intelligence, systems engineering,
software engineering, biomedical
informatics, library and indexing science.

Describing the network resource non-
functional features with network resource
ontology and integrating it into the
resource profiles enables quality-aware
network resource selection and
composition. This is a method for
fulfillment of application service QoS
requirements and objectives. The use of
network resource ontology facilitates
networking interoperability [9].

3. The Generic Path Concept

The Generic Path (GP) [11-12] is an
abstraction that provides object-oriented
constructs in the context of the “network of
information” paradigm, enabling connections
to information objects rather than just too
specific hosts. Generic Path architecture
was proposed in the European FP7 project
4WARD - “Architecture and Design for
the Future Internet“. GP’s objective is to
overcome the rigidness of the OSI layer
model that, together with the TCP/IP
protocol limitations, is considered not
cross-technological adaptable. By adapting
transport procedures to the capabilities of
the underlying network, the GP is intended
to provide an easy-to-use and efficient
operation for both user and network.

The GP model is based on contextualized
communication, meaning the logic behind
elements association and communication is
decided using algorithms that take into
consideration the relationship between
elements, described as ontology.

The GP is a general concept, but can be
better applied in telecom networks. With
the increase use of Cloud Computing,
Generic Path can be a solution for
organizing of the distributed resources and
computational information in the cloud.

We will describe the concepts for the GP
abstraction, as mentioned in the 4WARD
project [11]. “Entities” are the basic
building blocks of the GP architecture. An
Entity is the container for any kind of
programming logic, but are also
responsible for routing, access control,
name resolution and management of
records of the resources used by the GPs.
Additionally, there is one special type of
Entity, unique for each physical node
called Core. All Entities and the Core
together on one single physical node form
a Node Compartment (the vertical
grouping of entities in our diagram). The
Core Entity is responsible for the
management of Entities and the
communication between them.

Furthermore, Entities are grouped in
Compartments when they support the same
Protocol (the horizontal grouping of
entities in our diagram). The decision to
become part of one Compartment is made
by the Entity itself - see Figure 1.

The Compartment concept is very
important as it “contextualize communi-
cation and service infrastructures of different
scales or functional complexity; from a
single link, a domestic network, a campus,
an enterprise, to large federated structures”
[12]. In many cases, Compartments can
use, but are not limited, to a specific
protocol, so somehow resemble to OSI
layers. But, as example, Compartments can
represent, in case of mobility, grouping

Bălan, T., et al.: Ontology Based Resource Management… 87

Fig. 1. Basic building blocks of the GP architecture

based on different wireless technologies
(GSM, WCDMA, LTE) or for voice
services the separation between VoIP
elements and GSM elements [2]. In the
case presented in this paper, Compartments
are grouping resources into real and
emulated resources domains in case of
complex testing environments.

The relation established between Entities
is called Generic Path. A Generic Path is,
from the conceptual point of view, the
instantiation of a protocol and optionally
the state of the protocol, too. The GP is a
result of ontology logic processing for
establishing a direct relationship between
communication involved elements.

Entities interact with each other over
“Hooks” and “Ports” or Generic Paths and
Endpoints. Endpoints have an interfacing
role but also take care of error control,
flow control, header processing and data
manipulation (encryption, trans-coding).

The communication is restricted to those
Entities that are part of the same
Compartment. But Node Compartments
enable Entities - supporting different
protocols - to communicate.

When entities in the same Node
Compartment but in different Compartment
are connected, this link is called a Hook,

while the interfaces (Endpoints) of the
Hook are named Ports.

4. Real/Emulated Resource Sharing

Architecture

After presenting the concept of the
Generic Path the model that we elaborated
for resource sharing of real and emulated
testing environment will be introduced.

Resource Management is the process of
allocating and de-allocating available
resources to requesting entities, in order to
avoid colliding access to objects. Resource
management comprises traffic management,
resource allocation strategies and
performance management, thus ensuring
that QoS demands.

When it comes to differentiate between
real and emulated/simulated resources, there
are two main parameters that should be
weighted: processing performance and costs.
In many cases, depending on the simulation
machine, emulators/simulators are not
capable of handling the processing amount
like dedicated equipment that is replaced.

But in many cases emulators can act
several network roles, replacing more
types of dedicated elements (this is one
advantage of emulation).

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 1 - 2011

88

One possible scenario for traffic
separation based on capability can be the
usage of emulators for low bandwidth
traffic, for example for signaling, while
the user-data traffic is handled by the real
equipment. Another possible scenario can
be using in parallel more elements from
the resource colony based on cost, as long
as performance is not affected. Depending
of the protocol/resources used, it is
possible that real and emulated interfaces
do not switch from one to another
excluding each other, but can work in
parallel, sharing resources with help from
mediation points for aggregation and
multiplexing.

A Mediation Point is an Entity that
belongs to many Compartments and has
the capability to “mediate” (switch),
between the respective Endpoints. This
mediation is performed according to the
defined rules of the ontology, based on the
network resource parameters.

Our proposed real/emulated resource
sharing GP architecture has three distinct

horizontal compartments, one Real, one
Emulated and one Common.

The last compartment is a dedicated
shared medium, where the end-to-end GPs
are aggregated and multiplexed. The
aggregation/multiplexing function and its
inverse operation are handled via
mediation points, interrupting and inter-
connecting but not terminating the
different GPs - Figure 2.

Through mediation points, the network
flow can be routed or aggregated,
including new network elements or
replacing real elements in the network flow
with emulated ones, or reverse.

The GPs are “interrupted” by the
mediation points MPrx, MPex in the node
compartment Node-Compartment x. In
order to use the common GP-C, the
mediation points of GP real and GP emu
have to be connected within the node
compartment by a Hook.

In the endpoints of GP common, EPc1
and EPc2, the processing for execution of
the mux/demux function takes place.

Fig. 2. Our proposed real/emulated resource sharing GP architecture

Bălan, T., et al.: Ontology Based Resource Management… 89

5. Integrating Real Interfaces in
OMNeT++

Communication between simulation models

and real-time applications is problematic,
especially from the point of view of event
synchronization, but also from a message
coordination perspective. For this reason,
an adaptation layer is introduced.

The PC that runs the discrete events
simulator software will act as a listening
server for a number of applications that
also run on the real equipment that we try
to emulate: TCP and UDP sockets are the
most used interfaces, but also raw sockets
can be used. The emulator should be
prepared any time to accept messages, the
same way as a real element. The simulation
engine used is OMNeT++, a well-know
open source discrete event simulator. The
simulation engine used is OMNeT++, a
well-know open source discrete event
simulator. OMNeT++ is an object-oriented
modular network simulator, which can be
used for: traffic modelling of telecommu-
nication networks, protocol modelling and
other network-related simulations [8].

There are two time domains that need to
be coordinated: the simulation time of
OMNeT++ with the real time used by the
equipment that generates the traffic on the
real interface [6].

For that purpose, a scheduler class was
implemented, based on the model of
cSocketRTScheduler that OMNeT++ offers.
This class has the role of receiving real
messages and buffering them in a byte
array variable. Also, the time of receiving
packets is registered.

For reading from and writing to the
buffer, an external interface class is
implemented [1]. At simulator level, the
external interface is visible as a separate
module, which acts as client for another
module that is the server - see the diagram
of Figure 3.

In order to start the real listening socket,

the external client has to run an initialization
method that also triggers the listening state.

Fig. 3. Architecture of the “mixed reality”

test environment

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 1 - 2011

90

For reading incoming packages from the
buffer, the external interface class is using
self-destined packages. This is a common
method used by OMNeT++ as trigger for
events execution. The incoming packets
are replayed, one by one, in a serialized
way into the simulator, in close
coordination with the scheduler class for
time synchronization. Before each event
execution there will be some small delays.

The real messages are mapped into the
message structure of the simulator. The
OMNeT++ INET framework has support
for many types of protocols, so the
message mapping can be done directly to
one of the INET classes.

For sending packages, the process is
reversed: the message is converted into a
byte array, and passed to the buffer.

A method of the scheduler class is
invoked, so outgoing packages are played
on the real interface using the socket.

This adaptation layer may prove
disadvantageous when the number of real
messages sent is greater than the scheduler
class’ ability to process, like the case of
flooding one interface with traffic.

The effect will be a break of the socket
connection.

In order that the simulation keeps up
with real time, the OMNeT++ simulation
should be run in fast or express mode. For
didactic purpose, normal animation time
can be used in message analysis. When
simulation is running with animation and
the external interface is waiting for a reply,
timeout that might occur represent quite a
big risk, because the simulator time is
delayed.

6. Real and Emulated Interfaces

Integration with Generic Path

Extending the Formux Generic Path
OMNeT modules [3] with real interfaces is
performed using the socket based method
described in the previous paragraph. The

module acting as Server for the socket-
based real interface connection can be
included in any other OMNeT++ module.
So in this case the Server functionality is
embedded in the GP Entity module. At
OMNeT level, the Simulated Entities
modules can include also the logic of the
emulated equipment node (protocol
implementations and their functionality).

The OMNeT simulator is using the
information provided in specific
configuration files. The topology description
with mentioning of the network elements is
performed through the usage of.ned files or
in a “visual programming” graphical way.

Another mandatory file for the
simulation is the.ini file where certain
parameters for the simulation can be
defined. In order to initialize the “GP
enabled” network nodes, the initString
should be configured: every node from
the Formux implementation is basically a
Compartment Node and the Entities and
Compartment affiliation for each Entity
can be described, like in the example
below:

**.node1.os.initString=
"EmuEntity:emuEntity1,
Emulation:emuEntityA;realEntity:
realEntity1, Real:realEntityA"

In the above example the Node

Compartment consists of two Entities, each
being part of “Emulation” and “Real”, that
are the names of the two Compartments.
The names of the Entities for each
Compartments are emuEntityA and
realEntityA.

For instantiating a Generic Path the
function createGP() should be called, with
suitable parameters:

include <ForMux/Core/ForMux.h>
using namespace ForMux ;
public MyEntity : public Entity {
 void someMethod () {
AbstractEntity :: createGP (&
ourCompartment, & myName,&

Bălan, T., et al.: Ontology Based Resource Management… 91

destinationName, boost :: bind (&
MyEntity :: _createGPCallback,
this, _1));
}

One important element in the OMNeT

implementation is the way Capabilities are
defined, because they define the network
resource ontology components: Network
Resource Parameter, Metric, Unit, Type,
Relationship, Impact, Aggregated
(ontology parameters are similar to the
QoS ontology described in [5], [7]).

Capabilities are intended to provide a
way of expressing the needs for services
when establishing a communication path
between more communication partners via
GP. These needs will be expressed via sets
of Capabilities, whereas each Capability is
represented by a name and a set of
Properties. A Property essentially is a key-
value pair with the addition of a type. The
Capability identifier is a simple string,
called CapabilityList, representing a point
within the hierarchy to insert this
capability:

Capability :: pointer cap =
Capability :: create (
<unique capability identifier >,
<property name 1>, Property ::
value_t :: < TYPE >, param
a1,..., param an,

The OMNeT nodes are Node

Compartments. Each Node consists of
several Entities that represent the same
type of resource. The resource election is
related to the ontology defined by
Capability parameters.

Using the real and emulated interfaces
described in chapter 5 we were able to
integrate an emulated element in a real
logical network chain. A Generic Path was
established between one node that
represented the simulated element and the
node that was containing the listening
socket for the real interface.

So far only GP establishment test and

Hook creation tests were performed but the
goal is to test also relocation scenarios
based on capabilities (accessed via
ontology logic).

7. Conclusions

Semantic organization of network

resources represents a solution for the
autonomous management of distributed
telecom networks. By the means of
Generic Path concept, introduced by the
4WARD FP7 project, the object-oriented
network is organized as a network of
information. GP offers possibility to
preserve service modularity, enable
abstraction, reuse algorithms, and compose
networks and network services in a
structured way. By means of cloud
computing and virtualization, resources
location and type (real or emulated) are
more diverse. The Generic Path ontology
based framework can be used for the
abstraction and management of federation
of resources. Using a socket-based method
for connecting real interfaces to simulation
environment and grouping the network
elements in logical compartments using the
OMNeT Formux implementation.

References

1. Bălan, T., Sandu, F., Cserey, S., Cazacu,

V.: LTE eNodeB Demonstrator with
Real and Simulated Interface. In: 10th
Int. Conference on Development and
Application Systems, Suceava, Romania,
May 27-29, 2010, p. 179-184.

2. Curpen, D.M., Szekely, I.: Elements
of a Modern Telecommunication
Infrastructure. In: Bulletin of the
Transilvania University of Braşov
(2005) Vol. 12 (47), New Series,
Series A1, p. 365-371.

3. Draxler, M., Droge, S., et al.: ForMux/
GP Prototype Design & Implementation.
In: Project Group Augmented Internet

Bulletin of the Transilvania University of Braşov • Series I • Vol. 4 (53) No. 1 - 2011

92

II, University of Paderborn, Germany,
June, 2010. Available at: genericpath.
googlecode.com/files/gp_doc.pdf.
Accessed: 28-06-2011.

4. Draxler, M., Droge, S., et al.: Generic
Path Architecture Prototype. Available
at: http://code.google.com/p/genericpath/.
Accessed: 25-04-2011.

5. Guo, G.: A Method for Semantic Web
Service Selection Based on QoS
Ontology. In: Hunan Institute of
Humanities, Science and Technology,
Journal of Computers 6 (2011) No. 2,
p. 377-386.

6. Mayer, C., Gamer, T.: Integrating Real
World Applications Into OMNeT++.
In:Institute of Telematics, Universität
Karlsruhe (TH), Technischer Bericht,
Nr. TM-2008-2, Feb. 2008, p. 80-89.

7. Papaioannou, I., Tsesmetzis, D., et al.:
A QoS Ontology Language for Web-
Services. In: Proceedings of the IEEE
20th International Conference on
Advanced Information Networking
and Applications, 2006, p. 101-106.

8. Sandu, F., Cserey, S., et al.: Simulation-
Based UMTS e-Learning Software. In:
Proceedings of the 1st International
Conference on PErvasive Technologies

Related to Assistive Environments,
July 2008, p. 326-331.

9. Serrano, M., Foghlú, M., Donnelly, W.:
Enabling Information Interoperability
in the Future Internet: beyond of a
SOA Design Requirement. In: FIA
Session Linked Data in the Future
Internet, FIA Assembly, Ghent, 15-17
December 2010, online proceedings.
Available at: http://linkeddata.future-
internet.eu. Accessed: 20-05-2011.

10. Varga, A.: OMNeT++ Discrete Event
Simulation System Version 3.2. In:
User Manual, 2005, Available at:
www.OMNeTpp.org. Accessed: 28-
06-2011.

11. *** 4WARD: Architecture and Design
for the Future Internet. In: Deliverables,
D-5.2 Mechanisms for Generic Paths
FP7-ICT-2007-1-216041-4WARD/D-
5.2. Available at: http://www.4ward-
project.eu. Accessed: 20-06-2011.

12. *** 4WARD: Architecture and Design
for the Future Internet. In: Deliverables,
D-5.3 Evaluation of Generic Path
Architecture and Mechanisms, FP7-ICT-
2007-1-216041-4WARD/D-5.3.
Available at: http://www.4ward-
project.eu. Accessed: 20-06-2011.

