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Abstract: The paper introduces an algorithm which improves the value of 

the real giga floating point operations per second (GFLOPS) for matrix 

multiplication algorithm on Graphical Process Unit-GPU by overlapping the 

data transfers between (CPU) and the device (GPU) with the kernel 

execution. The input matrices are divided into n sections and the output 

matrix into n
2
 sections. Streams are used to perform simultaneous data 

transfers and kernel executions in order to hide the memory copy operations. 

The results show that improved execution times and GFLOP values are 

obtained. The optimum value of n depends mainly on the matrix dimension 

and on the GPU type. 
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1. Introduction 
 

An alternative to CPU based solutions 

has been raised from Graphics Processing 

Unit (GPU) based implementations. The 

GPUs were introduced initially as 

graphical accelerators with focus, mainly, 

to image processing applications. A GPU 

is a stream processor, specifically designed 

to perform a very large number of floating 

point operations (Flops) in parallel by 

using simultaneously multiple computa-

tional units. Currently their performance 

has gone beyond 1 teraflop which makes 

the GPU several times faster than any 

multi-core CPU similar implementation. 

The relative recent introduction of non-

graphics application programming interfaces 

(API) for GPUs brought a new perspective 

on these, transforming in general purpose 

units (GPGPU) [8].  

The GPU’s highly parallel device structure 

is the main reason for its good results [2]. 

When a GPU is programmed through 

CUDA, the GPU is viewed as a compute 

device which is able to run a large number 

of threads in parallel. A kernel is a function, 

written in C language, which is executed on 

the GPU by several threads [9]. The GPU 

contains several streaming multiprocessors, 

each of them containing eight cores.  

Practically, the vast majority of GPU 

implementations are done in a CPU-GPU 

tandem manner. The CPU (called host) is 

responsible for launching the main 

application and initializing the used data 

(e.g. acquired from a database or a 

process). This data has to be transferred to 
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the GPU for processing. The GPU (usually 

also called device) contains a certain 

amount of global memory to/from which 

the CPU or host thread can write/read 

being accessible to all multiprocessors.  

The most important parameter, indicating 

whether it is worth to move the 

computational intensive part of a program 

to a GPU, is the execution time. In order to 

have a complete picture of the comparison, 

when the execution time for the GPU is 

determined, the execution times required 

by the data manipulation between host and 

device have to be taken into consideration. 

When comparing the GFLOPS obtained 

for a GPU and a CPU, one should calculate 

the real GFLOPS for the GPU (sometimes 

also called honest GFLOPS), with the 

following formula [6]: 
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fr - real GFLOPS; nGFLOP - number of giga 

floating point operations; tH→D - time needed 

to copy the data from the host to the 

device; tKE - time needed to execute the 

kernel; tD→H - time needed to copy the data 

from the device to the host. 

Several scientific computation algorithms 

are based on matrix manipulations over 

large sets of data [1]. Therefore, any 

performance improvement for a basic 

matrix operation might imply reduced 

running time for the overall application 

based on the fact that the respective 

operation is called for a significant number 

of times. The goal of this article is to 

introduce an algorithm which improves the 

value of the real GFLOPS for a matrix 

multiplication problem by overlapping the 

data transfers between the host and the 

device with the kernel execution.  

Section 2 will provide a short overview 

of the matrix multiplication problem. 

Section 3 will introduce the idea of 

asynchronous transfers and overlapping of 

transfers and computation. Afterwards we 

will present the generalized form of the 

algorithm and indicate the changes which 

have to be implemented for the matrix 

multiplication kernel in order to use the 

algorithm. Section 4 contains detailed results 

obtained by applying the algorithm on a 

GTX260 device. Finally, we will draw some 

conclusions on our work in section 5. 

 

2. Overview of the Matrix Multiplication 

 

Matrix multiplication is a very popular 

problem in parallel computing and a kernel 

routine of many numerical algorithms [5], 

[4].  

The hardware vendors provide two main 

libraries to be used by the programmers: 

CUBLAS library (for basic linear algebraic 

computation) and CUFFT library (for Fast 

Fourier Transform [3]). 

Solutions for matrix multiplication 

problems are provided in the CUBLAS 

library (SGEMM) [11] and, as a result, this 

is the library to which we will relate to. 

The early versions of CUBLAS (like 1.0) 

have shown poor performance, which were 

then strongly improved in the newer 

versions (like 2.3).  

Besides the global memory of the GPU, 

each multiprocessor also contains shared 

memory and registers which are split 

between the thread blocks and the threads, 

which run on that multiprocessor. A thread 

block is a batch of threads which can 

efficiently cooperate through shared 

memory. The kernel is executed for a batch 

of blocks which form a two dimensional 

grid [7]. Each block will be allocated to a 

multiprocessor, which can contain up to 

eight blocks. The threads of a block will be 

grouped into groups of 32, called warps, 

which are executed in a SIMD (single 

instruction multiple data) fashion. 

The main steps, which have to be 

followed when computational work is 

performed on a GPU, are [6]: allocate host 
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and device memory for the input data as 

well as for the results, copy the data from 

the host to the global memory of the 

device, execute the kernel according to the 

execution configuration, copy back the 

results from the device to the host, and free 

the memory resources. Memory instruct-

tions are very important in the case of 

matrix multiplication. Local and global 

memory copies are not cached for devices 

of compute capability 1.x and as a result 

there are 400 to 600 clock cycles of 

memory latency [10], [12]. 

Shared memory is on-chip memory and, 

therefore, it is faster than global or local 

memory. In [5] the authors assume that the 

multiprocessor accesses shared memory 

with zero latency if there are no memory 

bank conflicts. Shared memory is divided 

into memory banks, which are equally 

sized memory modules that can be 

accessed simultaneously. As a result, the 

load or store operations which use n 

addresses situated in n different memory 

banks can be performed simultaneously 

[10]. If the two addresses of the same 

memory request fall in the same memory 

bank, a bank conflict appears and the 

access has to be serialized. 

Figure 1 illustrates the main idea behind 

the matrix multiplication kernels. The 

input matrices as well as the result matrix 

are divided into blocks (not necessarily 

square blocks; a very interesting pattern is 

indicated in [3]). A block of threads 

computes a block of elements in the results 

matrix (every thread will usually compute 

several elements) by calculating the dot 

product of the corresponding rows and 

columns of the matrices A and B 

respectively. In order to limit the wasted 

global memory bandwidth, data is first 

brought by the threads into shared memory 

Because the shared memory is a limited 

resource, data is read in tiles from the 

global memory and the dot-product is 

computed in several steps.  

 

Fig. 1. Matrix multiplication with shared 

memory 

 

Several papers have indicated that the 

main limiting factor in GPU applications is 

the bandwidth of the host ↔ device 

memory transfers (around 8 GB/s over the 

PCI bus in full duplex mode). This is the 

case for applications where the number of 

floating point operations is rather small, 

but the matrix multiplication is a compute 

intensive problem. However, time can still 

be saved by hiding some or most of the 

host ↔ device memory transfers. The Big-

O notation is a popular way to describe 

how the size of the input elements affects 

the consumption of a computational 

resource for a certain algorithm. In case of 

the matrix multiplication problem, for 

matrices of NxN elements, there are 3N
2
 

transfers and N3 operations (multiply-add). 

As a result the ratio is O(N), meaning that 

the larger the matrix the greater the 

performance benefit. 

 

3. The  Stream-Based  Matrix-Matrix 

Multiplication Algorithm 

 

3.1. Introduction 
 

Data transfers between the host and the 

device, which are performed through 

cudaMemcpy(), are blocking, i.e. the 

control is returned back to the host thread 

only when the transfer is complete. On the 

other side, cudaMemcpyAsync() is non-

blocking but requires pinned host memory 
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and an additional argument, namely a stream 

ID. Pinned memory, also called page locked 

memory, attains the highest bandwidth 

between host and device but excessive use 

can reduce the overall performance 

because it is a scarce resource [10]. 

A stream is a sequence of operations, 

which are performed in order on the 

device. Operations, which are executed in 

different streams can be interleaved or 

overlapped.  

The asynchronous transfers lead to 

overlap of memory copies and 

computation in two situations: 

• host computation can be overlapped 

with both memory copies and kernel 

execution; for example, when a kernel is 

launched and if the CUDA device is idle, 

the kernel immediately starts running 

based on the execution configuration and 

according to the function arguments; 

meanwhile, the host continues to the next 

line of code after the kernel launch; 

• kernel execution can be overlapped 

with memory copies.; this requires some 

additional conditions to be fulfilled: both 

operations have to be executed in different 

non-default streams (with non-zero stream 

IDs) and the device must be capable of 

“concurrent copy and execute”; the most 

important fact is to ensure that 

simultaneous operations in different 

streams do not operate on the same data 

segments when using streams. 

 

3.2. The algorithm 
 

The input matrices A and B are split into 

n slices or sections, then these slices are 

copied from the CPU memory into the 

global memory of the GPU and the 

elements of the result matrix C are 

processed as these slices become available 

for the GPU. The elements of matrix C are 

computed by n
2
 kernels. Further, matrix C 

is also split into slices and when all 

elements of a slice have been processed, 

the whole slice is copied back to the CPU 

memory, while the processing of the next 

slice takes place (Figure 2). 

To be able to use this technique, the only 

additional requirement is that matrix A has 

to be stored in the CPU memory in row-

major order and matrix B in column-major 

order. This requirement is necessary in 

order to be able to efficiently copy the 

slices of the two matrices into the GPU 

global memory. 

The maximum value of n depends on the 

size of the matrices. If n is too high, the 

execution configuration of the kernels may 

contain too little blocks and as a result the 

kernel may not take full advantage of the 

capabilities of the GPU and the total 

execution time may increase. As a result, 

the optimum value of n depends on the 

matrix size and one should experiment in 

order to find the value corresponding to the 

shortest execution time. Thus only 1/n of 

the memory operations can not be hidden 

through the described algorithm. 

Although the matrices are divided into n 

slices, only two streams are needed to 

handle the overlapping scenarios. Figure 3 

displays the operations for the generalized 

form of the algorithm. The first stream is 

used to perform the memory copies for the 

first section of each input matrix and for all 

kernel executions. 

When the kernels corresponding to a 

section of the result matrix have been 

processed, an event is recorded and as a 

result, a total of n events are recorded. The 

second stream first performs all memory 

copies left for matrix B, because the kernels 

corresponding to the first section of matrix 

C need these data for the computation. Then 

all memory copies, which correspond to 

matrix A, are accomplished. Finally the 

sections of matrix C are copied back to the 

host. These copies are synchronized by the 

events recorded in the first stream, as they 

can only take place after all kernels of a 

section have finished their processing. 



Itu, L.M., et al.: GPU Enhanced Stream-Based Matrix Multiplication 83 

 

 

Fig. 2. Generalized slicing principle for the matrix multiplication algorithm 

 

 

Fig. 3. Mapping of the operations to the 

two streams of the generalized algorithm 

 

As discussed earlier in the paper, all the 

CUDA functions used for the algorithm are 

asynchronous, which means control is 

immediately returned back to the host 

thread.  

 

3.3. Changes to the multiplication kernel 
 

In order to be able to apply the algorithm 

described above, obviously the kernel will 

have to undergo some changes. Since two 

additional parameters are needed for the 

kernel (row and column index for each 

kernel), the total amount of shared memory 

used by each block increases by 8 bytes. 

The main changes inside the kernel are 

determined by the fact that two additional 

parameters have to be considered when 

determining the row and the column of the 

elements in the result matrix, which are 

computed by the threads. Further, because 

of the fact that matrix B is stored in 

column-major order, we have chosen to 

transpose the rows of the tiles read from B 

when they are copied into the shared 

memory. This way the reads performed by 

a half warp are coalesced and there is no 

wasted bandwidth when accessing the 

global memory. A problem though appears 

when storing the values read from global 

memory into shared memory. For 

simplicity, we will address this problem 

for tiles of 16x16, but it is similar for 

greater tiles, as those used in the optimized 

matrix multiplication algorithms described 

in chapter two. Devices of compute 

capability 1.x have 16 memory banks and 

if the matrix is stored in row-major order 

all locations of the same column are 

situated in the same memory bank. 

Consequently, when the threads of a half 

warp store the values read by them through 

a single global memory transaction into the 

shared memory, there will be 16 bank 

conflicts, all write operations will be 

serialized and plenty of time will be lost. A 

very simple solution to this problem is to 

allocate a further column of memory in the 

shared memory, which will not be used. 

This way only 16 x 4 = 64 extra bytes of 

shared memory per block will be used, the 

problem is solved in a very elegant way 

and there should be no issues regarding the 

occupancy of the multiprocessors. 

If we choose to not transpose the tile 

read from global memory, then the 

problem described above still appears. The 

only difference is that it is postponed until 
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the values are read from shared memory 

(when the dot-product is calculated). As a 

result, a column still has to be added to the 

matrix allocated in the shared memory. If 

we choose to transpose the matrix, the 

code which calculates the dot-product 

remains the same and needs no changes. 

 

4. Results 
 

The algorithm has been tested on a 

NVIDIA GPU device (GTX260) of 

compute capability 1.3, containing 27 

streaming multiprocessor and a total of 216 

cores. Every SM of the GTX260 can 

contain up to 1024 threads and like every 

other NVIDIA GPU a total of 8 blocks. As 

the kernel discussed in section 3.3 uses 

blocks of 256 threads, a maximum of four 

blocks can reside inside a SM at any 

moment in time. This means, that in order 

to take full advantage of the capabilities of 

this GPU, the kernel should be launched 

with a grid of at least 4x27=108 blocks so 

that all SMs are fully occupied at start 

time. Nevertheless, this doesn’t mean that 

when a grid of fewer blocks than 108 is 

used (and thus a higher value for n), the 

execution time can not become shorter 

compared to a grid with more blocks. 

Table 1 displays the sizes of the matrices 

computed by one kernel and the 

corresponding number of blocks in the 

execution configuration, for different 

values of n (for tiles of 16x16).  

 

Table 1 

Execution configurations for  

different values of n 

n 
Size of matrix 

computed by one 

kernel 

Number of 

blocks in the 

grid 

1 2048x2048 16384 

2 1024x1024 4096 

4 512x512 1024 

8 256x256 256 

16 128x128 64 

As one can see, when the value of n is 

doubled, the number of blocks in the grid 

is divided by four. For n = 8 the number of 

blocks is still high enough to keep all SMs 

busy at the initial moment, for n = 16 

though the number of blocks is less than 

108 and may lead to an increase of the 

total execution time. 

Next we will present the results we have 

obtained for matrices of 2048 x 2048 

elements and for different values of n. First 

we have run the regular matrix 

multiplication algorithm, which does not 

use any streams (which actually is the case 

of n = 1), or more precisely which uses the 

default zero stream (Table 2 displays the 

execution duration for this case).  

 

Table 2 

Case n = 1 (regular matrix 

multiplication algorithm) 

Stream0 
End time 

[ms] 

Duration 

[ms] 

copyHtoD(1) 3.55 3.55 

copyHtoD(2) 7.04 3.49 

Execute(3) 88.01 80.97 

copyDtoH(3) 94.32 6.31 

 

Afterwards we have tested the generalized 

form of the algorithm with n = 2 (Table 3) 

and n = 4 (Table 4). In each table the total 

execution duration is displayed in bold. 

The time measurements were performed 

by using CUDA events, as described in the 

introduction, and the numbers represent 

average values obtained after several 

iterations of the same code.  

The execution time has been reduced by 

1.7 ms for n = 2 and by 3.04 ms for n = 4 

through the generalized algorithm. By 

reducing the execution time, the value of 

the real GFLOPS (see Eq. (1)), or 

“honest” GFLOPS have increased 

correspondingly. 

We have stated in the previous chapter 

that with the basic form of the algorithm 

half of the memory copies can be hidden. 
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The total time needed for the memory 

copies, for n = 1, is 13.35 ms. This means 

that for n = 2, the execution time should be 

shorter by 6.675 ms. The difference though 

is of only 1.7 ms because the kernel 

execution for the second case takes longer 

compared to the first one (88.03 ms as 

opposed to 80.97 and a total increase of 

7.06 ms). On the other side in the second 

case the memory copies are performed 

much faster, presumably because of the 

smaller portions of data that are copied 

(8.97 ms as opposed to 13.35 ms). From 

the 8.97 ms needed for memory copies, 

4.38 ms are hidden and as a result the total 

time for memory copies is reduced by 8.76 

ms. As a result 7.06 ms have been lost on 

the kernel execution side but 8.76 ms have 

been gained on the memory copy side. 

Now let us compare the cases n = 2 and 

n = 4. For n = 4, the total execution time 

should be shorter by a quarter of the total 

time spent on memory copies for n = 2, i.e. 

2.24 ms. The difference though is of only 

1.34 ms. Now, for n = 4 the total time 

spent for memory copies is of 8.96, i.e. 

approximately equal to the case of n = 2. 

Of these 8.96 ms, 6.63 ms are hidden. 

Regarding the kernel execution, it has 

increased from 88.03 ms to 88.95 ms. As 

opposed to the previous comparison, this 

time the kernel code is exactly the same, 

consequently the time difference can only 

be explained through the overhead needed 

to launch a kernel (this time 16 kernels are 

executed compared to only 4 in the previous 

case). As a result, compared to the 

previous case 2.26 ms have been gained on 

the memory copy side and 0.92 ms have 

been lost on the kernel execution side. 

 

5. Conclusions 

 
In this paper we have introduced an 

algorithm used to hide the memory copies 

between the host and the device for a 

matrix multiplication problem (AxB=C) in 

order to improve the total execution time. 

 

Case n = 2 (basic form of the stream-based matrix multiplication algorithm)    Table 3 

Stream 1 
End time 

[ms] 

Duration 

[ms] 
Stream 2 

End time 

[ms] 

Duration 

[ms] 

copyHtoD(1) 1.53 1.53 copyHtoD(4) 4.51 1.41 

copyHtoD(3) 3.10 1.57 copyHtoD(2) 5.97 1.46 

Execute (5)1-(5)2 47.13 44.03 copyDtoH(5) 48.64 1.51 

Execute (6)1-(6)2 91.13 44 copyDtoH(6) 92.62 1.49 

 

Table 4 

Case n = 4 (generalized form of the stream-based matrix multiplication algorithm) 

Stream 1 
End time 

[ms] 

Duration 

[ms] 
Stream 2 

End time 

[ms] 

Duration 

[ms] 

copyHtoD(1) 0.763 0.763 copyHtoD(6) 2.29 0.72 

copyHtoD(5) 1.57 0.807 copyHtoD(7) 3.01 0.72 

execute (9)1-(9)4 23.84 22.27 copyHtoD(8) 3.74 0.73 

Execute (10)1-(10)4 46.08 22.24 copyHtoD(2) 4.49 0.75 

Execute (11)1-(11)4 68.33 22.25 copyHtoD(3) 5.20 0.71 

Execute (12)1-(12)4 90.52 22.19 copyHtoD(4) 5.96 0.76 

   copyDtoH(9) 24.59 0.75 

   copyDtoH(10) 46.82 0.74 

   copyDtoH(11) 69.08 0.75 

   copyDtoH(12) 91.28 0.76 
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The novelty of the approach is to divide 

the input matrices A and B into n horizontal, 

respectively vertical sections and to compute 

the elements of the result matrix C through 

n
2 kernels. This way only the memory copies 

corresponding to the first section of matrix A 

and B and to the last section of matrix C can 

not be hidden by the kernel execution. As a 

result we have managed to hide (n-1)/n of 

the memory operations. 

The kernel had to be adapted (two 

additional input parameters and extra shared 

memory in order to avoid memory bank 

conflicts) but the performance penalties 

determined by the changes have been 

outweighed by the hidden memory copy 

time.  When the value of n increases, the 

time of the unhidden memory transfers is 

reduced, but there is a slight increase of the 

total kernel execution time caused by the 

overhead needed to launch the kernels. 

Another aspect that has to be considered is 

that for values which are too high, the grid 

may contain too few blocks to keep the 

GPU busy. This is why it is important to 

test the code with various values of n in 

order to find value corresponding to the 

shortest execution time. It can be concluded 

that the optimum value of n depends on 

many factors, like: matrix dimensions, GPU 

type, and CUDA toolkit version. 
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