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Abstract: This paper presents a simple methodology for obtaining the entire set 

of continuous controllers that cause a nonlinear dynamical system to exactly 

track a given trajectory. The trajectory is provided as a set of algebraic 

differential equations that may or may not be explicitly dependent on time. The 

method provided is inspired by results from analytical dynamics and the close 

connection between nonlinear control and analytical dynamics is explored. The 

results provided in this paper here yield new and explicit methods for the control 

of highly nonlinear systems. The paper is based on previous work of the authors. 
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1. Introduction 
 

Most of the robotic applications are 

restricted to slow-motion operations without 

interactions with the environment. This is 

mainly due to limited performance of the 

available controllers in the market that are 

based on simplified system models. To 

increase the operation speed with more 

servo accuracy, advanced control strategies 

are needed. 

The main specifically properties in the 

high speed motion control of the robots 

systems are the complexity of the dynamics 

and uncertainties, both parametric and 

dynamic. Parametric uncertainties arise from 

imprecise knowledge of kinematics 

parameters and inertia parameters, while 

dynamic uncertainties arise from joint and 

link flexibility, actuator dynamics, friction, 

sensor noise and unknown environment 

dynamics. 

The operational-space formulation is 

particularly useful in the context of motion 

and force control systems. On the other 

hand, in the joint space control methods, is 

assumed that the reference trajectory is 

available in terms of the time history of 

joints positions and orientations of robot 

arm. 

For design of the tracking controller, one 

assumes that the reference trajectory and 

path have been pre-computed. 

Control of robot manipulators is 

naturally achieved in the joint space, since 

the control input are joint torques. But, the 

user specifies a motion in the task space, 

and thus it is important to extend the 

control problem to the task space. This can 

be achieved by different strategies. The 

more natural strategy consists of inverting 

the kinematics of the manipulator to 

compute the joint motion corresponding to 

the given end-effectors motion. 
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Thus, the methods used to appointment 

primarily depend on linearization and/or 

PID-type control, and they envisage 

suppositions on the structure of the control 

effort. 

 

2. Control  of  Nonlinear  Dynamical 

Systems 

 
Most physical robotic systems are 

inherently nonlinear. Thus, control of 

nonlinear systems is a subject of active 

research and increasing interest. However, 

most controller design techniques for 

nonlinear systems are not systematic 

and/or relate only to very specific cases.  

Current systematic approach to design 

controllers for nonlinear systems is 

feedback linearization. The basic idea of 

this technique is to design a control law 

that cancels the nonlinearities of the plant 

and yields a closed-loop system with linear 

dynamics [5]. However, the technique is 

not robust to disturbances and uncertainties 

in the robot parameters, can yield to 

uncontrolled dynamics called zero 

dynamics and can only be applied to 

systems verifying certain vector field 

relations [3]. 

The development of controllers for 

nonlinear complex systems has been an 

area of intense research. Many controllers 

that have been developed for trajectory 

tracking of complex nonlinear and multi-

body systems rely on some approximations 

and/or linearization [1]. Most control 

designs restrict controllers for nonlinear 

systems to be affine in the control inputs. 

Often, the system equations are linearized 

about the system’s nominal trajectory and 

then the linearized equations are used 

along with various results from the well-

developed theories of linear control. While 

this often works well in many situations, 

there are some situations in which better 

controllers may be needed. This is 

especially so when highly accurate 

trajectory tracking is required to be done in 

real time on systems that are highly 

nonlinear such the robotic systems.  

In the robotics literature trajectory 

tracking using inverse dynamics and model 

reference control has been used for some 

time now, and the methods developed 

therein can be seen as particular subclasses 

of the formulation discussed in the present 

paper. Trajectory tracking in the adaptive 

control context (which is not the subject of 

this paper) has also been explored together 

with specific parameterizations to 

guarantee linearity in the unknown 

parameters of a system [4].  
 

 3. The  Equation  of  Motion  for 

Constrained Multi Body Robotic 

System  
 

The equations of motion for constrained 

mechanical systems are based on the 

principle of Lagrange. The principle states 

that at each instant of time t, a constrained 

mechanical system evolves in such a 

manner that the total work done by all the 

forces of constraint under any set of virtual 

displacements is always zero. This 

principle, which in effect prescribes the 

nature of the forces of constraint which act 

upon a mechanical system, has been found 

to yield, in practice, adequate descriptions 

of the motion of large classes of 

mechanical systems, thereby making it an 

extremely useful and effective principle.  

One considers the robot equation of 

motion for constrained robotic systems, 

given by the joint-space formulation, 

usually presented in the canonical forms:  
 

τFJqgqqCqqM T
=+++ )()()( &&& ,,t , (1) 

 

M is an n by n symmetric, positive-definite 

matrix and is called the generalized, or 

joint-space, inertia matrix, C is an n by n 

matrix such that C q& is the vector of 

Coriolis and centrifugal terms - collectively 
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known as velocity product terms - g is the 

vector of gravity terms and F is a vector of 

forces exerted by the end-effectors. More 

terms can be added to this equation, as 

required, to account for other dynamical 

effects (e.g., viscous friction). 

The symbols q, ,q& q&& and τ represent n-

dimensional vectors of joint position, 

velocity, acceleration and effort variables 

respectively, where n is the number of 

degrees of motion freedom (DoF) of the 

robot mechanism.  

This equation shows the functional 

dependencies explicitly: M is a function of 

q, C is a function of q and ,q& and so on. 

Once these dependencies are understood, 

they are usually omitted. 

Consider an unconstrained nonlinear 

mechanical robot system described by the 

second order differential equation of motion 

under the form:  

 

)()( t,,t, qqQqqM &&& = , (2) 

 

0)0( qq = , 0)0( qq && = , (3)  

 

where, q0 and 0q&  are the position and 

velocity vectors at initial time of the robot 

with n DoF; the dots indicate 

differentiation with respect to time. 

Equations (1) and (2) can be obtained 

using Lagrangean model.  

The n-nonlinear vector ),( t,,qqQ &  on the 

right hand side of Equation (2) is a ‘known’ 

vector in the sense that it is a known 

function of its arguments. By ‘unconstrained’ 

one means that the components of the 

initial velocity 0q&  of the robot system can 

be independently assigned [2]. 

By ‘unconstrained’ one means here that 

the n coordinates, q are independent of one 

another, or are to be treated as being 

independent of each other. 

One requires that this mechanical system 

will be controlled so that it tracks a 

trajectory that is described by the following 

constrained set of m equations: 
 

0)( =t,i qΦ ,  hi ...1= ,  (4)  
 

and 
 

0)( =t,,i qqΨ & ,  ,...mhi 1+= . (5) 

 

Suppose further that the unconstrained 
system is now subjected to the m constraints. 

One assumes that the mechanical robot 

system’s initial conditions are such as to 
satisfy these relations at the initial time. In 

order to control the system so that it exactly 

tracks the required trajectory i.e. satisfies 

Equations (3) and (4) one must apply an 

appropriate control n-vector )( t,,qqQ &  so 

that the equation of motion of the controlled 

system becomes: 

 

)()( t,,t, qqQqqM &&& = + )( t,,c qqQ & , 

0)0( qq = , 0)0( qq && = , 
(6) 

 

where now, the components of the n-

vectors q0 and ,0q&  satisfy Equations (4) 

and (5) at the initial time, t = 0.  

Throughout this paper, one shall, for 

brevity, drop the arguments of the various 

quantities, unless needed for clarity. 

The controlled system is described by the 

Equation (6), where Qc is the control vector. 

One begins by expressing Equation (6) in 
terms of the accelerations of the system. 

For any positive-definite n by n matrix P 

(q, t), one define the matrix:  
 

12/1 )]()([)( −
= t,t,t, qMqPqqG . (7) 

 

Pre-multiplying Equation (6) by P1/2(q, t), 

the ’’pondered’’ equation, which will indicate 

using the superscript p, is obtained as: 
 

p
c

pp qaq &&&& += , (8) 
 

where: 
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aGa 1−
=

p , and c
p
c qGq &&&&

1−
= . (9) 

 

One designates the acceleration of the 

uncontrolled system by:  

  

),,(),(),,( 1
ttt qqQqMqqa &&

−
= . (10) 

 

In Equation (6), one identifies the 

expression: 

 

),,(),(),,( 1
ttt cc qqQqMqqq &&&&

−
= , (11) 

 

witch can be viewed as the deviation of the 

acceleration of the controlled system from 

that of the uncontrolled system. 

From Equation (8), one obtains the 

expression: 
 

cqaq &&&& += . (12) 

 

One differentiates Equation (4) twice and 

Equation (5) once with respect to time t, 
giving the set of equations: 

 

),,(),,( tt qqbqqqA &&&& = , (13) 

 

where A is an m by n matrix of rank k and 

b is an m-vector. With Equations (6), (8) 

and (12) Equation (13) can be further 

expressed as [5]:  
 

),,(),,( tt c qqbqqqB &&&& = , (14) 

 

where B is an m by n matrix who is 

calculated by the expression: 

 

.)],(),()[,,(

),,(

12/1 −
= ttt

t c

qMqPqqA

qqqB &&&

 (15) 

 

One can now express the accelerations n-

vector q&&  in terms of its orthogonal 

projections on the range space of B
T and 

the null space of B, so that: 

 

qBBIqBBq &&&&&& )( ++
−+= . (16) 

In Equation (16), the matrix B+ denotes the 

Moore-Penrose generalized inverse of the 

matrix B. It should be noted that Equation 
(16) is a general identity that is always valid 

since it arises from the orthogonal partition 

of the identity matrix I = B
+
B + (I – B

+
B). 

Using Eq. (14) in the first member on the 

right hand side of Eq. (16), and Eq. (12) to 

replace q&&  in the second member, one gets: 

 

))(( cqabBIbBq &&&& +−+=
++ , (17) 

 

which, due to Equation (11), yields: 
 

)( BabBqBB −=
++

c
&& . (18) 

 

The general solution of the linear set of 

Equations (18) is given by [5]: 

 

.

c

zBBBBI

BabBBBq

)]()([

)()(

+++

+++

−+

−=&&
 (19) 

 

After any combination one obtains the 

second equality: 

 

zBBIBabBq )()( ++
−+−=c

&& , (20) 

  

where the n-vector ),,( tqqz &  is any arbitrary 

n-vector. To obtain the second equality 

above, one used the property that 

)()( BBBB +++
=  in the two members on 

the right hand side along, with the property 

so that +++
= BBBB . 

The set of all possible controls )( t,,c qqQ &   

(or controllers) that causes the controlled 

system to exactly track the required 

trajectory is explicitly given by: 

 

.)(

)(),,(

2/1

2/12/1

zBBIP

BabBPqPqqQ

+

+−

−+

−== cc t &&&
(21) 

 

The mechanical robotic system, described 

by the nonlinear Lagrange Equation (1), is 

explicitly controlled through the addition 

of a control, n-vector )( t,,c qqQ & , provided 
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by Equation (21), in witch the n-vector z 

may be chosen still are exactly satisfied the 

imposed constrains. 

 

4. Explicit Equations of Motion for 

General Constrained System 

 

The constrained mechanical system 

described by Eqs. (1)…(4) evolves in time 

in such a manner that the total work done 

at any time, t, by the constraint force n-

vector Qc under virtual displacements at 

time t is given by (21). 

The work done by the forces of 

constraints under virtual displacements at 

any instant of time t can be expressed as: 

 

),,(),,( tt
T

c
T qqCwqqQw && = ,  (22) 

 

where ),,( tqqC &  is an n-vector describing 

the nature of the non-ideal constraints, which 

could be obtained by experimentation and/or 

observation. The virtual displacement vector, 

w(t), is any non-zero n-vector that satisfies: 

 

 0),,( =wqqA t& . (23) 

 

Solving Equation (23), the n-vector w can 

be written as (we suppress the arguments 

for clarity):  

w = (I – A
+
A) γγγγ, (24) 

 

where γ is any arbitrary n-vector, and A+ is 

the Moore-Penrose inverse of the matrix 

A. Substituting Equation (24) in Equation 

(22), one obtains: 

 

.),,()(

),,()(

t

tc

qqCAAIγ

qqQAAIγ

&

&

+

+

−=

−
 (25) 

 

Since each component of the vector γγγγ can 

be independently chosen, Equation (25) 

yields: 

 

.),,()(

),,()(

t

tc

qqCAAI

qqQAAI

&

&

+

+

−=

−
  (26) 

 

Pre-multiplying Equation (6) by (I – A+
A) 

and using Equation (26), one gets: 

 

 
.)],,(),,([)(

),()(

tt

t

qqCqqQAAI

qqMAAI

&&

&&

+−=

−

+

+

(27) 

  

Equation (27) and Equation (13) can now 

be written together and will be obtained 

Equation (28). One can solve Equation (28) 

to get Equation (29), with ηηηη - an arbitrary n-

vector: 

 








 +−
=







 −
++

b

qqCqqQAAI
q

A

qMAAI )]()([)()()( ,t,,t,,t &&
&& , (28) 

 

  ηMMI
b

qqCqqQ
qMq )(

)]()([
)(

))&&)
&&

++
−+







 +
=

,t,,t,
,t . (29) 

 

The matrix M
)

 defined above is a (m x n) x 

n rectangular matrix: 

 








 −
=

+

A

qMAAI
M

)()( ,t)
.  (30) 

 

Equation (29) is the general explicit 

equation of motion for constrained robotic 

systems with non-ideal constraints.  

 

5. Conclusions 

  

This paper presents the motion in terms 

of second-order differential equations. This 

methodology has been inspired by results 
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in analytical dynamics. This paper takes a 

generally different approach that is based 

on recent results from analytical dynamics. 

Here the complete nonlinear problem is 

addressed with no assumptions on the type 

of controller that is to be used, except that 

it will be continuous. 

Assuming that the system’s initial 

conditions satisfy the description of the 

trajectory the explicit closed-form 

expression (17) provides the entire set of 

continuous tracking controllers that can 

exactly track a given trajectory description. 

The explicit closed-form expressions for 

the controllers can be computed in real 

time. 

Closed-form expressions for all the 

continuous controllers required for 

trajectory tracking for nonlinear systems 

do not make approximations. Furthermore, 

no approximations or linearization are 

made here with respect to the trajectory 

that is being tracked, which may be 

described in terms of nonlinear algebraic 

equations or nonlinear differential equations. 

Moreover, the approach arrives not just 

at one nonlinear controller for controlling a 

given nonlinear system, but also at the 

entire set of continuous controllers that 

would cause a given set of trajectory 

descriptions to be exactly satisfied. 
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