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Abstract: Numerical diffusion impairs the exactness of discrete solutions of 

the equations governing the convective transport of a scalar when the flow is 

not aligned with grid lines. Numerical diffusion leads to unintentional 

smoothing of adverted gradients. This work presents an assessment of 

numerical diffusion in CFD code FLUENT 6.3 and available means of 

reducing impairment. 
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1. Introduction 
 
The solution of transport equations in 

Fluent utilizes of discretionary process, 
where basic problem is exact calculation of 
transport parameter Φ through walls of 
specific volume and his convective flow 
through these boundaries. It is necessary to 
compute with existence “false” numerical 
diffusion and also with occurrence 
discretionary values Φ, which they are 
outside of the region of correct solution. 
This paper compares physical exactness of 
computation by using offered discretionary 
schemas, which they are designed in CFD 
code in Fluent 6.3 and possibility to reduce 
this numerical errors. 

The software Fluent utilizes the finite 
volumes method to transfer (numerically) 
of general transportation equations to the 
system of linear equations by using the 
Gauss-Seidl iteration method. This process 
consist of integrating of equations at each 

control volume - cell. The results are the 
discretionary equations, which present the 
stability of flow, it is the laws of 
conservation every transport parameter Φ 
in a given volume. In this paper is 
demonstrated the discretionary equations at 
a law of preservation to transport parameter 
Φ by stationary flow, which can describe 
by equation in integrating shape (1). The 
equation (1) presents the balance of flow in 
constant volume [5], [6]: 

 

∫ ∫∫ ΦΦ +⋅Φ∇Γ=⋅ρ

A VA

VSAAv ddd
rrr

, (1) 

 
where: ρ - is density; v

r
 is vector of velocity; 

A
r

 - is vector of region; ΦΓ  - is diffusion 

coefficient of parameter Φ; ∇Φ - is gradient 
of parameter Φ; SΦ - is source parameter Φ 
at a unit of volume [1-4]. 

The equation (1) was applied at all control 
volumes (cells) of computing regions. 
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We can get after the discretionary of 
equations (1) in cell: 
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where: Nfaces - is number of walls (faces) 
surrounded of cell; Φf - is value of parameter 
Φ flowed during region f ; 

fff Av
rr

ρ  - is 

weighted flow through surface; fA
r

 - is vector 

of surface f ; ∇Φf  - is gradient of parameter 
Φ per surface f ; V - is volume of cell. 

Left sides of equations (1) and (2) 
introduce the convective transfer of 
parameter Φ, right sides introduce diffusive 
transfer and source member of the transport 
parameter Φ (it is reduction alternatively 
rising). Basic problem at discretionary of 
convective member is exact computing of 
transport parameter on the wall of specific 
volume Φf and its gradient ∇Φf. The 
diffusion process influences transfer of 
transport parameter along its gradient in all 
directions. The convective transfer radiates 
only in direction of flows. It is very difficult 
to find exact discretionary of computing 
scheme by solving of convective member in 
the equation (2). 

The numerical diffusion comes into being 
mainly in example, when the direction of 
flow isn't parallel with walls of grid. This 
optimal status (parallel flow) can be 
obtained only by computations of direct 
sectors of pipes without barriers by using 
hexa cells. The direction of flow (at mostly 
example) is respected in general direction of 
cell’s walls (hexa, tetra, polyhedra). It is 
necessary to expect a numerical error by 
evaluating the solutions. 

The equation (2) contains unknown the 
scalar parameter Φ in centre of cell and 
together unknown the scalar values Φnb in 

nearby cells. The equation is generally 
non-linear and after that the equation is 
transformed to linear form: 

 

∑ +Φ=Φ
nb

nbnbP baa . (3) 

 
Index nb represents contiguous 

(surrounding) cells, ap and anb are linearized 
coefficients for parameter Φ and Φbn. 

Number of surrounding cells depends on 
typology of grid, but a number of cells are 
given by number of walls created of solved 
cell in most of solved examples. The 
equation (3) describes a status into all cells 
of grid. The system of linear equations was 
solved to implicitly by using the Gauss-
Seidl method with combination to 
algebraically „multidrid" multistage 
method, it is AMG in Fluent. 

The software Fluent is saving discreet 
values of scalar parameter Φ in centre of 
cell. Values of scalar parameters Φf are 
required on walls of cells for calculation of 
convective member (left side of equation) 
too. The value s of scalar parameters Φf  
are specified by interpolation from values 
in centre of contiguous of surrounding 
cells. There is used „upwind" scheme in 
this process, it is seen the value Φf is 
derived from value of following cell in 
direction of flow. 

The software Fluent was allowed to 
choose from five “upwind” schemes for 
computation of convective member: First-
order upwind, Power-law, Second-order 
upwind, Quick, Third-order Muscl, but 
Quick schema could be used only for hexa 
cells. 

The diffusion member in equation (2) 
(first member at a right side) is setting in a 
“Central-differencing” computing scheme 
of second order, which is satisfactory exact. 

It is necessary to determinate gradients 
by solution of flow, but for discretization 
of convective and diffusion member in 
equation (2) too. The gradients are needed 
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for computation of values of scalar 
parameters on walls of cells. The gradient 
∇Φ could be computed by three ways: 
Green-Gauss Cell-Based, Green-Gauss 
Node-Based and Least Squares Cell-
Based. Calculation of gradient by way: 
Least Squares Cell-Based is recommended 
for polyhedra cells [4]. 

The Green-Gaus theorems computes 
gradient in centre of cell in form: 

 

( ) ∑Φ=Φ∇
f

fc A
V

r1
0 , (4) 

 
whereby value of cell on wall Φf was 
computed by Green-Gauss Cell-Based 
method as mean value from values of 
nearby cells: 
 

2
10 cc

f
Φ+Φ

=Φ ,  (5) 

 
whereas value of cell is computed by using 
Green-Gauss Cell-Based method as mean 
value from nodes of given wall: 
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,  (6) 

 
Nf is number of nodes. 

The value in node nΦ  was computed 
from values in centre all cells with given 
node. 

 
2. Description of Tested Job 

 
The goal of testing examples was the 

interpretation of degrees of physical 
exactness of numerical calculation in 
dependence not only at a density and shape 
grid, but at a choice of computational 
schemes and the accesses to the calculations 
of gradients of transportation parameter too. 

It was simulated 3D stationary flow of 
fictional gas, where density is ρ = 1 kgm−3, in 
the computing region of dimensions 

1x1x0.2 m (Figure 1). The values of thermal 
conductivity λ [Wm−1K−1] and dynamic 
viscosity µ [Pas] of gas is gone near the zero. 
The boundary conditions are introduced in 
Table 1. 
 

 

Fig. 1. Schema of computed region 

1x1x0.2 m 
 

The object of observation was specified the 
levels of dispersion (numerical diffusion) to 
thermal regions and interpretation of 
attributes the temperature, which are outside 
the region of setting boundary conditions 
(therefore outside the size 300-400 K) at 
different settings of calculations factors. 

The tasks were solved by using three types 
of grid (hexa, tetra and polyhedra). Theirs 
shapes were showed at Figure 2. All types of 
grids were had double density. Hexa and 
tetra cells were created from 40, or from 100 
points per unit of length on all borders of 
region. Polyhedra’s cells were created 
from tetra cells in software Fluent. It was 
begun thereby quite 6 computational regions 
with the same before formulated dimensions 
and with the number of cells showed in 
Table 2. It was showed there important 
saving of the number of cells by using 
polyhedra types. There important saving of 
the number of cells is cardinal argument for 
using polyhedra types in many examples, 
tasks. 

vx, vy 

300 K 

vx , vy 

400 K 

p = 0 Pa p = 0 Pa 

symetry 
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Boundary conditions                Table 1 

Boundary conditions 

velocity inlet 
On two walls constant vertical profile was taken vector of 
velocity vx = vy = 5 m/s Entry  

into regions 
temperature 

One wall 300 K 
second wall 400 K 

Output  
out of regions 

pressure outlet p = 0 Pa 

Side walls symmetry 
Zero’s flow of all parameters trough the border and zero’s 
normal velocity 

 
Number of cells in computing region          Table 2 

Type 
of grid 

Hexa 
40 points 

Hexa 
100 points 

Tetra 
40 points 

Tetra 
100 points 

Polyhedra 
40 pointstetra  

Polyhedra 
100 pointstetra 

Number  
of cells [−−−−103] 

12.8 200 83.9 1332 16.6 
238 

 

   
hexa tetra polyhedra 

Fig. 2. Typology of cells 

 
The computations with tetra and polyhedra 

cells were tested by using sequential setting 
of three computational schemas (First-order 
upwind, Second-order upwind, Third-order 
Muscl). The computation by hexa cells was 
done in addition by using of calculation 
applied the scheme Quick.  

The computation of gradient by using 
hexa and tera cells was resolved by using 
Green-Gauss Cell-Based and Green-
Gauss Node-Based method. It was used 
Green- Squares Cell-Bassed procedure at 
polyhedra cells, which is recommended in 
Fluent. All results were compared for 
various condition of setting of computing 
tasks. The computation scheme Power-
law wasn’t been tested, because this 

example was calculated equally as First-
order upwind. 

 
3. Considering of Results 
 

The under showed images introduce 
temperature’s field in longitudinal cuts, 
witch was led in the centre of computational 
regions by different setting of conditions of 
computation’s schema. Scale of temperatures 
in Kelvin [K], (Figure 3), is valid for others 
pictures too. The temperature region would 
have been diagonal sharp divided in ideal 
case on two fields, there were recommended 
of input parameters. The temperatures 
wouldn’t have been existed outside the 
amplitude 300-400 K. 
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3.1. Influence of density of grid 
 

The density of grid had the major influence 
on the size of numerical diffusion. The 
thermal dispersion by hexa grid was shown 
on Figure 3, grid with density 40 points and 
100 points per unit of length by using 
computational scheme First order. The 
density had the same influence on dispersion 

of thermal region by using of the others both 
grids. The influence of general dispersions 
and differences of density of grids were 
smaller by using of computational schemes 
Second-order upwind, Quick, Thirt-order 
Muscl (Figure 4), but there are problems 
with values of transportation parameter 
(temperature) outside amplitude of input 
parameters (more in Chap. 3.3).  

 

   
hexa cells 40 points/m 

First-order 
 hexa cells 100 points/m 

First-order 

Fig. 3. Temperature region, influence of density of grid on numerical diffusion 

    

  
hexa cells 40 points/m 

Second-order 
hexa cells 100 points/m 

Second-order 

Fig. 4. Temperature region, influence of density of grid on numerical diffusion 
 

3.2. Influence of type of grid 
 

Typology of grid have influence at a 
numerically diffusion of transportation 
parameter too, even if not so expressive, as 
was seen from Figure 5. The dispersions of 
temperature regions were compared (in 
Figure 5) for all tree types of grids by 
comparable density (100 points per m) and 
by identically choosing of computing 

scheme (Second-order upwind). It is 
evident, that the smallest dispersion was 
achieved by using of hexa grid. It isn’t 
possible to use this grid (hexa) due to types 
of computing regions and flowed solids 
very often. Type of grid was limited partly 
using of computing schema and method of 
computing of gradient too, it was showed 
on exactness of computation markedly 
(view next Chapter).  
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hexa 100 pt./m 
Second-order 

tetra 100 pt./m 
Second-order 

polyhedra 100 pt./m 
Second-order 

Fig. 5. Temperature region, influence of type of grid at numerical diffusion 
 

3.3. Influence of choose of computational 
schema 

 
The most exact results was achieved by 

using Quick computing schema in the 
region numeric diffusion, by the smallest 
occurrence of values outside the region 
input parameters too (on Figures 6 and 7 
colorless regions).  

Computing schemes First-order and 
Power-law were showed reciprocal 
equivalent results. The values of 
temperatures weren’t existed in temperature 
region outside the required amplitude, but 
the marked numerical diffusion was given 
by of both schemas, it was seen in Figure 3. 
This expressive dissipation was given for all 
types of grids by using these two schemes. 

 

   
hexa 100 pt./m 

Quick 
hexa 100 pt./m 
Second-order 

hexa 100 pt./m 
Third-order Muscl 

Fig. 6. Temperature region, influence choosing of computational scheme on exactness of 

computing 
   

  
polyhedra 100 pt./m 

Second-order 
polyhedra 100 pt./m 
Third-order Muscl 

Fig. 7. Temperature region, influence choosing of computational scheme on exactness of 

computing 
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Tetra and polyhedra grids showed better 
results of computing scheme Second-order, 
as Third-order Muscl, it is evident from 
Figure 7. The lower number of cells with 
values outside the required region of thermal 
region, against hexa cells, in Figure 6 was 
compensated negative the higher value of 
divergence, as was illustrated in Chap. 3.4. 
 
3.4. Influence of choosing computational 

method of solving gradient of 
transport parameter 

 
Solution’s method of gradient of transport 

parameter has decided influence at a 
creation of values outside the region of 
input parameters, as well as choice of 

computational’s scheme. The calculations 
with hexa and tetra cells was solved by 
using of recommended Green-Gauss Cell-
Based and Green-Gauss Node-Based 
methods, whereby better results were given 
by hexa by using Cell-Based method cells 
and better results were given by tetra cells 
by using Node-Based method, Figure 8. 

The regions with polyhedra cells were 
computed by using Least Sguares Cell- bass 
method, which is recommended for this type 
cells in manual Fluent. This method achieved 
the worst results, mainly the highness of 
values of divergence from required 
parameters, there are seen in Figure 9. The 
result was compared for all variants of 
computing, where divergences were given.  

 

   
tetra 40 pt./m 

Cell-Based 
tetra cells 40 pt./m 

Node-Based 
polyhedra 40 pt./m 

Least Sguares 

Fig. 8. Temperature region, influence choosing of computational Method of gradient 

transport parameter (computational schema Second-order) 
 

 
Fig. 9. Influence of type and density of grid, computational schema and Method 

calculation of gradient on value temperature region outsider amplitude input parameter 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012 

 

 

106 

 

4. Conclusions 
 
At application First-order and Power- law 

scheme wasn’t given any temperature 
region outside the region of input 
conditions, but the large numerical diffusion 
reduces markedly exactness of computation. 

The best results were obtained by using 
Hexa grid and computational scheme 
Quick upwind. The Method of computing 
of gradient has negligible influence on 
existence of values outside the region 
„good” temperature. The smaller diffusion 
was given by denser grid. 

It is interesting knowledge’s by both 
schema (Second-order a Third-order), that 
for hexa cells is explicit more accurate 
Node-Based Method, but for hexa cells is 
more accurate Cell-Based Method. 

The negative knowledge’s are relatively 
high levels values of divergence of transport 
parameters outside the temperature region 
at there necessary time of computing. The 
current offer possibility of calculation can’t 
allow computation with appeased physical 
exactness. 
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