
Bulletin of the Transilvania University of Braşov

Series I: Engineering Sciences • Vol. 5 (54) No. 1 - 2012

EVALUATION OF SOFTWARE SERVICE

FRAMEWORKS FOR INDUSTRIAL
APPLICATIONS

A. GÎRBEA1 C. SUCIU1,2 F. ŞIŞAK1

Abstract: During the last decades software (web) services have drawn the

attention of all big corporations mainly due to their flexibility, reusability and

adaptability. The paper evaluates three of the most popular service

frameworks: Apache CXF (SOAP web services), Jersey (REST web services)

and Apache River (or Jini-Java services) using a novel industrial architecture.

Two performance tests have been developed and as a result Apache River

services are more than one order of magnitude faster than both web service

frameworks, which are comparable to each other. Thus Jini Java-based

services should be used whenever possible in industrial applications.

Key words: service, industry, SOAP, REST, Apache River.

1 Dept. of Automatics, Transilvania University of Braşov.
2 Siemens Corporate Technology, Romania.

1. Introduction

Over the last decades, the rate of activity

has greatly increased and many industrial

companies have to adapt their technologies

in order to cope with all these demands.

Therefore the most important aspects which

have drawn the companies’ attention are the

adaptability, flexibility and reusability. The

software (web) services meet all these needs

and they are gradually becoming the key

points of the world where devices [11] are

interconnected in different ways.

Some of the challenges [5] and demands

concerning the device ecosystems which

have been identified in the specialized

literature are the following: devices should

provide universal, interoperable and secure

access interfaces; web standards should be

used whenever possible; devices should be

easy to integrate into complex systems and

the integration should be scalable; every

subsystem should be exposed as a device

capable of being integrated into more

complex systems; any device should be

reusable at any level; any device should

have a high-level management interface,

which facilitates configuration, monitor-

ring, fault diagnosis and maintenance etc.

Over time, the global corporations have

tried to fulfill all the mentioned demands

therefore many projects have been developed

and tested. One important project [1] has

been SIRENA (Service Infrastructure for

Real-time Embedded Networked Devices).

Through this project Schneider Electric has

produced an early Devices Profile for Web

Services (DPWS) implementation targeted

at embedded devices.

Filho, et al. [2] have used web services to

directly communicate with device controllers

(PLCs). They have acknowledged the fact

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

78

that OPC (OLE - Object Linking and

Embedding - for Process Control) is the

main means of allowing access from the

higher levels of the automation pyramid to

the devices, but since classic OPC was

platform and technology dependent, they

have replaced the OPC level and

introduced web services developed using

the Java Native Interface and Apache Axis.

The European Union funded

SOCRADES [10] (Service-Oriented

Cross-Layer Infrastructure for Distributed

Smart Embedded Devices) project is based

on the principle of collaborative

automation. It divides the industrial

enterprises in four layers: device,

composition, middleware, and an

application layer. Then, at the composition

layer, several embedded devices may be

combined in order to offer value added

functionality. This functionality is also

offered as web services using DPWS.

The paper intends to offer a better

understanding of software services and to

evaluate the currently most popular

approaches for creating services: SOAP,

REST and Apache River (Jini) regarding

their applicability in industrial

applications. These three types of services

have been tested on a novel industrial

architecture which was previously

introduced in [6], and whose goal is to

improve manufacturing in factories

through the determination of an optimized

production schedule and then by using the

solutions of this plan to automatically

manufacture the requested products.

The paper is organized as follows. The

second section offers a brief description

regarding SOAP and REST web services

approaches and it also describes the Jini

Java services. In the third section, the

architecture proposed for the evaluation of

the service frameworks is introduced. The

fourth section presents the performance

tests and the obtained results and finally

the last section draws the conclusions.

2. Software Service Frameworks

Choosing a service framework is always

a difficult task. Several open source

frameworks are available, some of the

most widely used ones being: Apache

CXF, Jersey, Apache River (Jini), Apache

Axis, GlassFish, Metro, JBossWS etc.

Each service framework aims to provide

a robust infrastructure so that the developer

can build, deploy and publish services as

simple as possible. Next, three of the most

important service frameworks, which will

be evaluated through the architecture

described in section 3, will be introduced:

Apache CXF (SOAP based WS), Jersey

(REST based WS) and Jini (java based

services).

The concept of (web) services implies

three types of roles - a service consumer, a

service provider and a service registry

(optional component). Figure 1 displays

the interactions of three roles.

The service providers supply services

and they respond to the requests of the

service consumer. The service consumer

uses the services offered by the service

provider.

Fig. 1. The roles and types of interactions

inside service frameworks

In 1998 Microsoft has developed an

object access protocol called “Simple

Object Access Protocol” (SOAP) which

was designed to be a platform and

language-neutral alternative to previous

middleware technologies like CORBA and

Gîrbea, A., et al.: Evaluation of Software Service Frameworks for Industrial Applications 79

DCOM. The SOAP specification is

currently maintained by the XML Protocol

Working Group of the World Wide Web

Consortium. For SOAP - based web

services the service provider is responsible

for publishing the service contract (WSDL

file) on the web, from where the consumer

can access it directly or by searching for it

in the web services registry. Usually the

service consumer generates the code of the

web service client starting from the WSDL

file and through the use of the tools offered

by web services frameworks [7].

REST (Representational State Transfer)

is a style of software architecture for

distributed hypermedia systems such as

World Wide Web and it was first

introduced in 2000 by Roy Fielding in his

doctoral dissertation. The REST

architectural style was developed in

parallel with HTTP/1.1, based on the

existing design of HTTP/1.0. For REST -

based web services there is no formal

contract between the provider and the

consumer of the web services. In this case

the consumer has to know the message

format (for example XML) and the

operations supported by the provider. The

service provider exposes its set of

operations through the use of HTTP

methods: GET and POST. The service

consumer will then invoke one of these

methods using the URI (Uniform Resource

Identifier) and the HTTP protocol [9].

The Jini (also called Apache River)

network architecture was introduced by

Sun in 1998 and its goal was to construct

distributed systems in the form of modular

co-operating Java services. Jini is a

service-oriented architecture, it is not a

acronym and does not have a special

meaning. A programming model, which

extends the Java technology, is defined

inside the Jini technology, thus allowing

the creation of distributed, security-

enhanced systems composed of both

services and clients [8].

2.1. SOAP-based APACHE CXF web
services

CXF has been designed by “Apache

Software Foundation” and resulted from

the merger of two open source projects:

Celtix developed of Iona Technologies and

XFire developed by a team hosted at

Codehaus ("CXF" comes from combining

"Celtix" and "XFire"). Apache CXF is

open source and enables the development

of services using different APIs, like JAX-

RS or JAX-WS. The services may be

based on different protocols, like SOAP,

XML/HTTP, RESTful HTTP, or CORBA

and may use different transport protocols,

like HTTP, JMS or JBI. This framework

has been used in order to create SOAP

based web services.

An important feature of CXF is that it

offers tools to facilitate the conversation

between JavaBeans, web services and

WSDL. These tools help developers to

generate web service clients based on Java

and JavaScript starting from WSDL or to

generate a WSDL file starting from a

service implementation. CXF also supports

Maven and Ant integration.

CXF is easy to use because it provides

complete support for integration with the

Spring framework, so that a POJO (Plain

Old Java Object) class exposed as web

service by using the CXF framework can

fully utilize the benefits of the Spring

framework (e.g. transaction capabilities

can be applied declaratively to POJO

classes representing web services through

the Spring infrastructure). Using the Spring

framework, the entire configuration of the

web services is simplified, and the

uploading of the services on the server is

simplified through the use of XML

configuration files

CXF provides a flexible way to develop

and test the services in an independent

environment, and then to upload them on a

server application. The web services

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

80

developed with CXF may be uploaded on

servers like Tomcat or J2EE based

containers such as WebSphere, WebLogic,

JBoss, Geronimo and Jonas. CXF also

provides integration with SCA (Service

Component Architecture) containers such

as Tuscany [7].

2.2. REST-based Jersey web services

Since its appearance in 2000, the REST

approach has gradually gained more and

more attention. More and more companies

like Amazon or Google have switched

from the traditionally SOAP based web

services to the so called REST services.

These changes happened due to the fact

that REST web services are lightweight,

easy to use and declarative. They are

lightweight because the REST approach

manages the business data and

functionality as identified resources. The

service answer is the resource

representation and it doesn’t need

additional encapsulation such as a SOAP

envelope. Furthermore the REST

architectural style is considered a

communication technique which uses only

HTTP and XML. Therefore the REST

services are directly using the HTTP

protocol and they offer a uniform user

interface through the use of the same set of

methods. These types of services are easy

to use because there is a standard set of

HTTP status codes which are used in order

to understand the response of the

invocation. Moreover, the REST web

services are focusing on their own data and

resources, hence they are known as self-

declarative.

For the development of the REST-based

web services, the Jersey framework has

been used. It is maintained by an open

source community which builds an

implementation of JSR-311: JAX-RS (Java

API for RESTful Web Services). Thus the

RESTful web services are easy to build

using the support for the annotations which

are defined in JSR-311. Further, the JSR

suit can be extended through the use of the

additional API provided by Jersey (which

is not specified by JSR-311) [9].

2.3. Jini-based Java services

Jini has appeared due to the work put in

the development of Java, the main aim

being to simplify the distributed

computation. Therefore the Jini system is a

distributed system based on the idea of

federating groups of users and the

resources required by those users. The goal

is to turn the network into a flexible and

easy administrated tool where the resources

can be easily found by the clients.

Resources could be understood either as

hardware devices, software programs or

even a combination of the two.

We have to emphasize that the Jini

technology infrastructure is a Java

technology. The Jini architecture gains

much of its simplicity from assuming that

the Java programming language is the

implementation language for components.

Many features of the Jini technology focus

on the ability to dynamically download and

run code. However, the Java technology-

centered nature of the Jini architecture is

stronger related to the Java application

environment than to the Java programming

language. The Jini system supports any

programming language if a proper

compiler is provided which is able to

generate the corresponding bytecodes for

the Java programming language.

The Jini services are found and resolved

by a lookup service, which represents the

interface between the system and its users.

Its role is to map interfaces, which provide

the functionality of the service, to

instances which implement the service.

Through descriptive attributes, which can

be associated to a service, the selection of

services is simplified and leads to better

Gîrbea, A., et al.: Evaluation of Software Service Frameworks for Industrial Applications 81

choices. The heart of a Jini system is

represented by the following protocols:

discovery, join and lookup. The pair of

protocols - discovery and join - occurs

when a device is plugged in. Discovery

occurs when the service is looking for a

lookup service with which to register. Join

occurs when a service has located a lookup

service and wishes to join it. Lookup

occurs when a client or user needs to locate

and invoke a service described by its

interface type and possibly other attributes.

In conclusion a Jini system represents a

collection of clients and services which are

communicating through the Jini protocols.

The most used approach applied for the

communication between Java applications

is based on the Java Remote Method

Invocation mechanism [8]. One of its main

advantages is that it enables the passing of

full objects, including code, from one

instance to another (this advantage is fully

exploited by the Jini system).

3. A Service-Oriented Architecture for the
Optimization of Industrial Applications

In the following an architecture built

around the corner poles of SOA (Service

Oriented Architecture) is introduced. Figure

2 displays the architecture, which is

composed of three main levels, and the

interactions between these three levels. The

lowest level of the architecture is

represented by an OPC UA server (OLE for

Process Control Unified Architecture)

which models the data from the device level

so that every important piece of information

becomes easily accessible in a unified way.

In [6] a detailed description regarding the

OPC Unified Architecture can be found,

standard which was introduced as a real

replacement for the COM existing

specifications without losing the features or

performance. The second level of the

architecture is represented by the services

which are organized in two sublevels.

Fig. 2. Main components of the

architecture

The idea of developing SOA in junction

with an OPC UA server seems natural

because the OPC UA server has been built

around the corner poles of SOA.

The first level is composed of basic

services which perform operations like

reading, writing etc. and which can be

integrated in any scenario (a total of eight

basic services have been implemented and

provide an additional abstraction of the

artifacts lying at lower levels). The second

level is composed of complex services.

Concrete examples of such complex

services may be: “packing”, “dyeing”,

“milling” etc. Usually these complex

services interact with the basic services to

perform the necessary tasks. The goal of

the services developed at this level is to

allow an easy communication between the

highest level of the architecture and the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

82

OPC UA server. Therefore they are used in

order to transport the solutions offered by

the CSP models, lying at the top level, to

the UA server and thus to facilitate the

automated manufacturing of the products.

Besides that, before determining the

optimized solutions, the CSP model calls

the services in order to determine the

current state of the physical devices and if

it is necessary to reconfigure the model

(e.g. if maintenance activities are

performed for certain stations).

On the other side, the services can be

used in order to determine the values of

key performance indicators (KPI) for the

enterprise level of the company. Due to the

introduction of the services at the second

level, the whole architecture becomes more

flexible and smaller reaction times are

assured when there is need for changes.

The third level is represented by the CSP

models. The constraint programming

paradigm is used in order to solve

combinatorial optimization problems. A

CSP instance, usually called model, is

described by a set of variables, a set of

possible values for each variable and a set

of constraints between variables.

Constraints are used not only to test the

validity of solutions but also to reduce the

computational effort needed to solve

combinatorial problems. This process is

called constraint propagation. The second

component of the CSP solvers is the

heuristic search with backtracking strategy

adopted. Most of the problems modeled

through the CSP approach are planning

and scheduling problems, whose goals are

to allocate scarce resources to different

activities. A detailed description of the

implementation of the architecture is

available in [3].

4. Performance Tests and Results

The architecture described in section 3

has been used to test the performance of

the three service frameworks, Apache

CXF, Jersey and Apache River/Jini. The

services developed through the three

different frameworks, were implemented

using the Java language, Eclipse IDE and

the Tomcat server.

4.1. Single service execution times

The first test evaluates the execution

times of the basic services and Table 1

displays the average execution times

together with the standard deviations. The

functionalities performed by the services

specified in Table 1 are described in detail

in [4]. The time specified in parentheses

represents the execution time of the first

call, while the average execution times

have been determined only for the

subsequent calls. Only the first four

services are time critical, while the last

four ones are related to historical data and

are used in order to determine KPI values.

As is displayed in Table 1, there is an

important difference between the fist call

Basic service execution times Table 1

Basic service Apache CXF [ms] Jersey REST [ms] Apache River (Jini) [ms]
WriteVariable 280.9 ± 10.5 (1102.8) 309.7 ± 7.59 (907.7) 10.1 ± 0.94 (1097.3)

ReadVariable 244.2 ± 2.83 (1259.3) 233.0 ± 3.36 (1312.1) 6.2 ± 0.41 (1142.8)

CallMethod 451.3 ± 32.7 (1167.6) 468.5 ± 23.9 (1078.3) 13.4 ± 0.56 (1112.5)

ReadAlarmState 245.4 ± 2.56 (1243.7) 235.9 ± 2.78 (1308.2) 6.6 ± 0.32 (1245.9)

ReadAlarmEvent 389.8 ± 15.8 (1197.5) 377.4 ± 12.3 (1296.2) 7.6 ± 0.48 (1215.3)

ReadRawData 425.6 ± 6.84 (1223.8) 418.5 ± 10.6 (1287.4) 8.2 ± 0.71 (1267.0)

ReadProcessed 518.8 ± 13.7 (1217.1) 517.6 ± 12.2 (1278.8) 8.3 ± 0.62 (1208.1)

ReadAtTime 278.3 ± 11.9 (1145.0) 272.2 ± 8.11 (1285.3) 7.9 ± 0.69 (1207.3)

Gîrbea, A., et al.: Evaluation of Software Service Frameworks for Industrial Applications 83

of a service made by a user and all

subsequent calls. This difference is due to

the fact that during the first call performed

by each service client, a connection to the

UA server has to be established.

The obtained results demonstrate that

Apache River services are considerably

faster (more than one order of magnitude)

than both web service frameworks, which

are comparable to each other. In terms of

web services, the write operations are

performed faster with CXF web services

and read operations are faster with Jersey

services.

Regarding the first service call, all three

frameworks perform similarly because

most of the execution time is given by the

time needed to connect to the UA server.

On the other hand, REST services are

easier to develop and are more lightweight

than the other two. There is no need for

WSDL files (as for Apache CXF) or

development of several supportive classes

(as for Jini).

4.2. Reading and writing of Boolean

variables

The second service specific test has been

performed in order to evaluate the

performance of the read and write services

for boolean variables which are most often

used in industrial applications. All boolean

variables are stored in groups of 16 inside

Int16 variables. Thus several boolean

variables can be written simultaneously

and the time required to write a high

number of such variables is significantly

reduced.

Table 2 displays the results for the three

frameworks. As expected, Apache River

services are again much faster than the

web service frameworks. Regarding the

web services, again the write operations

are performed faster with CXF web

services and read operations are faster with

Jersey services.

Table 2

Reading and writing of Boolean variables

Basic web
service

Apache
CXF
[ms]

Jersey
REST
[ms]

Apache
River (Jini)

[ms]
Read 100

Boolean

variables

1059 ± 34 918 ± 32 37.8 ± 2.1

Write 100

Boolean

ariables

1217 ± 28 1340 ± 57 59.3 ± 3.2

Having performed these two tests the

decision has been taken to use Apache

River services inside the architecture

described in section 3 in order to assure

shorter communication and reaction times.

Although the execution times when using

Apache River services are low, one has to

keep in mind that all time-critical

operations are performed on the controller

devices and the correctness of the sequence

of operations does not depend on the

response times displayed in the two tables.

5. Conclusions

The goal of this paper has been to

determine the most suited service

framework (SOAP, REST or Jini) for

industrial applications. Therefore two

performance tests have been developed, for

all these three approaches, and they have

been applied for the architecture described

in section 3.

Jini Services' object-oriented engineering

approach produces software that is

modular, structured, well documented, and

easy to maintain. Jini services have

achieved an exceptional reputation in the

industry for developing software

applications which are efficient, accurate,

and reliable in use. For all these reasons

and because the performed tests have

proved that they are considerable faster

than web services, we have chosen to use

Apache River (Jini) framework for our

future work.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

84

Regarding the web services there are no

big differences between the performances

of the Apache CXF (SOAP) and Jersey

(REST) web service frameworks. The

choice between SOAP and REST depends

on application requirements. The REST

approach is preferable when the

application task is to transmit and receive

simple XML messages. The SOAP

approach is used when the application task

consists of numerous contracts to be

defined and negotiated between producers

and consumers by using WSDL and when

there are requirements regarding the

adherence to various WS specifications

such as those related to security (which are

essential for global corporations).

Acknowledgements

This paper is supported by the Sectoral

Operational Programme Human Resources

Development (SOP HRD), financed from

the European Social Fund and by the

Romanian Government under the contract

number POSDRU/88/1.5/S/59321.

References

1. Bohn, H., Bobek, A., Golatowski, F.:

SIRENA - Service Infrastructure for

Real-time Embedded Networked

Devices: A Service Oriented Framework

for Different Domains. In: Proceedings

of the International Conference on

Networking, International Conference

on Systems, and International

Conference on Mobile Communications

and Learning Technologies, Morne,

23-29 April, 2006, p. 43-47.

2. Filho, F.Sd.L., da Fonseca, A.L.T.B.,

et al.: Industrial Processes Supervision

Using Service Oriented Architecture.

In: 32nd IEEE Conference Industrial

Electronics, Paris, 6-10 November,

2006, p. 4552-56.

3. Gîrbea, A., Suciu, C., Sisak, F.: An

Innovative and Flexible Architecture

for Industrial Automation. In:

Proceedings of the 13th International

Conference on Optimization of

Electrical and Electronic Equipment,

Braşov, 24-26 May, 2012, in press.

4. Girbea, A., Suciu, C., Sisak, F.: Remote

Monitoring and Control of a Flexible

Manufacturing System through a Service

Oriented Architecture. In: Proceedings

of the 10
th
 IEEE RoEduNet Conference,

Iaşi, 23-25 June, 2011, p. 1-6.

5. Jammes, F., Smit, H.: Service Oriented

Paradigms in Industrial Automation.

In: IEEE Transaction on Industrial

Informatics 1 (2005) No. 1, p. 62-70.

6. Mahnke, W., Leitner, S.H., Damm,

M.: OPC Unified Architecture. Berlin.

Springer Press, 2009.

7. Apache CXF. Available at: http://cxf.

apache.org/. Accessed: 20.10.2011.

8. Apache River SDK. Available at: http://

river.apache.org/. Accessed: 06.11.2011.

9. Jersey REST SDK. Available at: http://

jersey.java.net/. Accessed: 16.11.2011.

10. Service-Oriented Cross-Layer Infra-

structure for Distributed Smart

Embedded Devices (SOCRADES).

Available at: http://www.socrades.eu/.

Accessed: 20.04.2011.

11. Web services for devices. Available at:

http://www.ws4d.org. Accessed:

25.04.2011.

