
Bulletin of the Transilvania University of Braşov

Series I: Engineering Sciences • Vol. 5 (54) No. 1 - 2012

SIMULATION OF ARTICULATED ROBOTS

FOR VIRTUAL PROTOTYPING IN

DYNAMIC 3D ENVIRONMENTS

A. FRATU

1
 M. FRATU

2

Abstract: This paper deals with the simulation of a dynamical system in which

the motion of each rigid robot is subject to the influence of virtual forces induced

by geometric constraints. These constraints may impose joint connectivity and

angle limits for articulated robots, spatial relationships between multiple

collaborative robots, or have a robot follow an estimated path to perform certain

tasks in a cycle. In this paper the authors give a brief overview of a general

simulation framework, describing the primary tasks which a simulator needs to

implement. The robot behavioral simulation in the virtual environment enables us

to predict the behavior of a given real manipulator into real environment.

Key words: virtual environment, virtual prototype, virtual assembly, estimated

path.

1 Dept. of Automatics, Electronics and Computers, Transilvania University of Braşov.
2 Dept. of Installations for Constructions, Transilvania University of Braşov.

1. Introduction

The robot behavioral simulation enables

us to predict the behavior of a given

manipulator under given initial conditions,

applied torques, and applied loads.

The ability of predicting this behaviors is

important for several reasons: for example,

in design the designers want to know

whether with a given selection of actuators,

the manipulator will be able to perform a

certain typical task in a given time frame; in

creating feedback control schemes, where

stability is a major concern, the control

engineer cannot risk a valuable piece of

equipment by exposing it to untested

control strategies. Therefore, a facility

capable of predicting the behavior of a

robotic manipulator, or of a system at

whole, for that matter, becomes imperative.

In this paper, the authors present a new

motion planning algorithm for virtual

prototyping. This algorithmic structure is

inspired by constrained dynamics in

physically-based modeling.

The authors seek to deduce a virtual

geometry of the objects, a 3D geometric

realization of a collection of rigid bodies is

visible in the drawing. The authors

transform the motion planning problem

into a dynamical system simulation by

treating each robot as a rigid body or a

collection of rigid bodies moving under the

influence of all types of constraint forces

in the virtual prototyping environment.

These may include constraints to enforce

joint connectivity and angle limits for

articulated robots, constraints to enforce a

spatial relationship between multiple

collaborative robots, constraints to avoid

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

72

obstacles and self-collision, or constraints

to have the robot follow an estimated path

to perform certain tasks in a cycle.

Proposed constraint-based planning

structure has the following characteristics:

• It can handle both static environments

with complete geometric information or

dynamic scenes with moving obstacles

whose motion is not known a priori.

• It is applicable to both rigid and

articulated robots of arbitrarily high degrees

of freedom, as well as multiple collaborative

agents.

• It allows specification of various

types of geometric constraints.

• It runs in real time for modestly

complex environments.

The authors demonstrate the effectiveness

of this structure for the problem of virtual

assembly prototyping with applications in

assembly line planning.

2. Algorithm for Analytical Simulation

In simulation studies, the authors need to

integrate the system of ordinary differential

equations (ODE) describing the dynamics

of a robotic mechanical system.

The authors use a model relating the

state of the system with its external

generalized forces of the form:

x& = f (x, u), (1)

where x is the state vector, u is the input or

control vector, x0 is the state vector at a

certain time t0, and f (x, u) is a nonlinear

function of x and u, derived from the

dynamics of the system.

The state of a dynamical system is

defined, in turn, as the set of variables that

separate the past from the future of the

system. Thus, if we take t0 as the present

time, we can predict from Eq. (1) the

future states of the system upon integration

of the initial-value problem at hand, even if

we do not know the complete past history

of the system in full detail.

Now, if we regard the vector θ of

independent joint variables and its time-rate

of change, θθθθ& as the vectors of generalized

coordinates and generalized speeds, then

an obvious definition of x is:

[]TTT
θθ= &x . (2)

The n generalized coordinates, θ define

the configuration of the system, while their

time-derivatives determine its generalized

momentum. Hence, knowing θ and θθθθ& can

predict the future values of these variables

with the aid of Eq. (1).

The authors use the mathematical model,

Eq. (1), explicitly, as pertaining to the

serial manipulators, in terms of the

kinematic structure of the system and its

inertial properties, i.e., the mass, mass-

center coordinates, and inertia matrix of

each of its bodies. To this end, the authors

first write the underlying system of

dynamical equations for each link. We

have n+1 links numbered from 0 to n,

which are coupled by n kinematic pairs.

The following step of this derivation

consists in representing the coupling

between every two consecutive links as a

linear homogeneous system of algebraic

equations on the link twists. Moreover, all

kinematic pairs allow a relative one-

degree-of-freedom motion between the

coupled bodies. It can then express the

kinematic constraints of the system in

linear homogeneous form [2], [6].

The procedure whereby the motion of the

manipulator is determined from initial

conditions and applied torques τ(t) and

loads, is known as simulation.

Since the authors start with a second-

order n-dimensional nonlinear ODE

system in the joint variables of the

manipulator, the authors have to integrate

this system in order to determine the time-

histories of all joint variables grouped in

Fratu, A., et al.: Simulation of Articulated Robots for Virtual Prototyping… 73

the joint variables vector, θ.

With current software available, this task

has become routine work, the user being

freed from the quite demanding task of

writing code for integrating systems of

ODE. The implementation of the simulation-

related algorithms is possible with the

available commercial software packages.

As a rule, simulation code requires that

the user supply a state-variable model of

the form Eq. (1) of the robot dynamic

model, with the state-variable vector, x and

the input or control vector u, defined as:

u (t) = τ (t). (3)

With the above definitions, then the

authors can write the state-variable

equations, in the form of Eq. (1), with f (x, τ)

thereby obtaining a system of 2n first-order

ODE in the state-variable vector.

Various methods are available to solve the

resulting initial-value problem, all of them

being based on a discretization of the time

variable. If the behavior of the system is

desired in the interval t0 ≤ t ≤ tF, then the

software implementing this algorithm

provides approximations {yk}
N
 to the state-

variable vector x(tk) = xk, and the value of

torques τ (tk) at a discrete set of instants {tk}.

The variety of methods available to solve

the underlying initial-value problem can be

classified into two main categories, explicit

methods and implicit methods. The former

provide yk explicitly in terms of previously

computed values. On the contrary, implicit

methods provide yk in terms of previously

computed values and itself.

Commercial software for scientific

computations provides routines for both

implicit and explicit methods, the user

having to decide which method to invoke.

3. Simulation Robots’ Motion

The robots’ motion should be animated

with the highest degree of realism possible

using motion capture data or accurate full-

body simulation, while the multitudes

secondary details to the auxiliary elements

(scene, cameras etc.) can be simulated at

much lower fidelity.

The classic robot motion problem, also

referred to as the Piano Mover’s problem,

can be stated as the following: given a

robot R and a workspace W, find a path

from an initial configuration I to a goal

configuration G, such that R never collides

with any obstacle Oi from a set of obstacles

O along the path P, if such a path exists.

The path P is a continuous sequence of

positions and orientations of R. Continuous

sequences of positions and orientations of

R are assimilated with the robot system

animation on a virtual scene.

Despite the exciting progress in the field,

simulating a dynamical system with many

degrees of freedom remains a

computational challenge. One of the

central components of any control or

simulation system for articulated bodies is

forward dynamics [5].

Forward dynamics computes the

acceleration and the resulting motion of

each link, based on the given set of

external forces and active joint forces. The

known algorithms have a linear-time

dependence of the number of degrees of

freedom. This permits any object in a

scene to behave in a physically-plausible

way: they accelerate, recognize collisions,

and respond to collisions much like one

would expect it to respond.

Several techniques have been proposed

for accelerating various types of dynamic

simulation. Yet, there exists no known

general algorithm for automatic simulation

of articulated body dynamics.

3.1. Plausible motion simulation

In [1] Barzel introduced the idea of

“plausible” motion, i.e. motion that could

happen and look physically plausible to the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

74

viewers. For many visual applications or

real-time interaction, accurately simulating

all the details of the real environment is not

necessary [3].

In fact, it is often sufficient to provide

effective motion to make the scene appear

more realistic, without committing much

computational resources.

In an environment with uncertainty, we

generally expect a constrained problem to

have multiple solutions. It is difficult to

know before what solutions are available.

Hence, it is bad to use a solution strategy

that seeks a single answer; rather, it prefers

a technique that produces many solutions

that reflect the range of possible outcomes.

While for feature animation a user is

expected to choose the one animation they

prefer, other applications benefit directly

from multiple solutions:

• Computer simulator designers can use

different animations each time a simulation

is on stage, making it less predictable and

potentially more entertaining.

• Training environments can present

trainees with multiple physically consistent

scenarios that reflect the physics and

variety of the real world.

The authors generate multiple animations

that satisfy constraints by applying an

original algorithm to trial from a randomized

model [7]. The algorithm needs the model

of the environment, including the sources

of uncertainty and the simulator that will

generate an animation in the virtual

environment. The algorithm described in

this paper generates an arbitrarily sequence

of animations in which “good” animations

are expected to appear.

3.2. Simulation loops

The simulation loops fix robots’

components algorithmically, in order to

generate physically plausible motion. Note

that not all the pieces are put together into

a unified system.

Many related works describes a simulation

core or a simulation loop to achieve this

[4]. The following are the general steps in

a simulation core:

1. Clear the force accumulators: Each

body or its components maintains a total of

all forces on it. At the beginning of each step,

we clear the forces from the previous step.

2. Detect collisions: Loop over all bodies

and determine any contacts or collisions in

the scene and prepare them to be resolved.

3. Compute external forces: Loop over

all external forces, including contact or

collision resolution forces, and add them to

the force accumulators.

4. Compute constraint forces: At this

point, each body or component knows the

total force acting upon it (it’s in force

accumulator). To process the constraints,

first add any soft constraints to the

accumulators. Finally, compute and apply

the hard constraint forces.

5. Compute derivatives: Gather derivatives

as needed to prepare to update the system.

6. Integrate and update the state of the

simulation: Use a numerical integration

method to update the state of the system by

some small time increment.

4. Application to Prototyping

 Below the authors discuss a few issues

pertaining to the implementation of the

simulation-related algorithms available in

commercial software packages.

4.1. Implementation

Our system was implemented with

DELPHI object-oriented programming

language. The authors used in-house

library ANIMATION-VIEW for collision

detection by generating of the distance

fields for surface repulsion constraints.

Platform’ toolbox offers the Delphi

functions for the implementation of the

virtual system prototypes.

Fratu, A., et al.: Simulation of Articulated Robots for Virtual Prototyping… 75

For discrete set {tk} of instants, Delphi

system generates an images sequence of

the virtual robot system.

4.2. System demonstration

The authors have tested the proposed

motion planning system in the following

virtual prototyping application: Assembly

Line Planning. An animation generated

from this type of scenario is shown in

Figure 1.

The robot arms avoid the moving object

to reach a moving part passing on the

conveyer belt. In this scenario the aim is to

animate all actors to realize the assembly

of the automobile. In this example, shown

in Figure 1, the robot arms from scene

must access a part moving and past it on a

conveyer belt. The factory floor contains a

transfer structure that is moving over the

conveyer belt in the opposite direction to

the part’s movement. The moving

obstruction causes the robots to reactively

modify its path to avoid collision.

In this example, constraints can be

defined for any aspect of the object’s 3D

state at any point in time. Initial conditions

for the object are specified by constraining

its state at the start of the simulation.

Fig. 1. Assembly Line Planning Scene

The simulator, used in this example,

simulates all objects at a time to manage

the large number of control points required

for a specific scene.

5. Conclusions

The authors have presented a novel

framework for motion planning in virtual

prototyping applications. Thy have

reformulate the motion planning problem

into a virtual simulation problem where

constraints on the robot’s motion guide it

from its starting configuration to its target,

on the virtual scene. These constraints

can’t impose penetration constraints

among objects, the angle limits and

connectivity of articulated robot joints. The

avoidance of collision, the following of

estimated paths, and many other possible

Bulletin of the Transilvania University of Braşov • Series I • Vol. 5 (54) No. 1 - 2012

76

relationships between the cooperative robots

and objects on the scene, are feasible in the

virtual environment.

The models proposed by authors arise

naturally in the virtual environment and

provide a means of verifying the

plausibility of the motion in the real

environment. With further work it should

be possible to experimentally obtain more

accurate robot dynamically models who

require finding good animation.

References

1. Barzel, R., et al.: Plausible Motion

Simulation for Computer Graphics

Animation. In: Proceedings of the

Eurographics Workshop on Computer

Animation and Simulation, December

1996, New York. Springer-Verlag

Publisher, p. 183-197.

2. Sugihara, T., Nakamura, Y.: A Fast

Online Gait Planning with Boundary

Condition Relaxation for Humanoid

Robots. In: Proceedings of IEEE

International Conference on Robotics

and Automation, Barcelona, Spain,

April 18-22, 2005, p. 305-310.

3. Varley, P.A.C., Martin, R.R.:

Estimating Depth from Line Drawing.

In: Proceedings of the seventh ACM

Symposium on Solid Modeling and

Applications, Saarbrucken, Germany,

June 17-21, 2002, p. 180-191.

4. Venture, G., Ripert, P.J., Khalil, W.,

Gautier, M., Bodson, P.: Modeling and

Identification of Passenger Car

Dynamics Using Robotics Formalism.

In: Journal IEEE Transaction on

Intelligent Transportation Systems 7

(2006) No. 3, p. 349-359.

5. Weinstein, R., Teran, J., Fedkiw, R.:

Dynamic Simulation of Articulated

Rigid Bodies with Contact and Collision.

In: Journal IEEE Transactions on

Visualization and Computer Graphics

12 (2005) No. 3, p. 365-374.

6. Yamane, K., Nakamura, Y.: Natural

Motion Animation through Constraining

and Deconstraining at Will. In: Journal

IEEE Transactions on Visualization

and Computer Graphics 9 (2003) No.

3, p. 352-360.

7. Zhang, L., Young, J., Kim, Y.J.,

Manocha, D: A Hybrid Approach for

Complete Motion Planning. In:

Proceedings of IEEE International

Conference on Intelligent Robots and

Systems, San Diego, California,

October 29 - Nov. 02, 2007, p. 7-14.

