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Abstract: This paper deals with the simulation of a dynamical system in which 

the motion of each rigid robot is subject to the influence of virtual forces induced 

by geometric constraints. These constraints may impose joint connectivity and 

angle limits for articulated robots, spatial relationships between multiple 

collaborative robots, or have a robot follow an estimated path to perform certain 

tasks in a cycle. In this paper the authors give a brief overview of a general 

simulation framework, describing the primary tasks which a simulator needs to 

implement. The robot behavioral simulation in the virtual environment enables us 

to predict the behavior of a given real manipulator into real environment. 
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1. Introduction 
 

The robot behavioral simulation enables 

us to predict the behavior of a given 

manipulator under given initial conditions, 

applied torques, and applied loads.  

The ability of predicting this behaviors is 

important for several reasons: for example, 

in design the designers want to know 

whether with a given selection of actuators, 

the manipulator will be able to perform a 

certain typical task in a given time frame; in 

creating feedback control schemes, where 

stability is a major concern, the control 

engineer cannot risk a valuable piece of 

equipment by exposing it to untested 

control strategies. Therefore, a facility 

capable of predicting the behavior of a 

robotic manipulator, or of a system at 

whole, for that matter, becomes imperative. 

In this paper, the authors present a new 

motion planning algorithm for virtual 

prototyping. This algorithmic structure is 

inspired by constrained dynamics in 

physically-based modeling.  

The authors seek to deduce a virtual 

geometry of the objects, a 3D geometric 

realization of a collection of rigid bodies is 

visible in the drawing. The authors 

transform the motion planning problem 

into a dynamical system simulation by 

treating each robot as a rigid body or a 

collection of rigid bodies moving under the 

influence of all types of constraint forces 

in the virtual prototyping environment.  

These may include constraints to enforce 

joint connectivity and angle limits for 

articulated robots, constraints to enforce a 

spatial relationship between multiple 

collaborative robots, constraints to avoid 
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obstacles and self-collision, or constraints 

to have the robot follow an estimated path 

to perform certain tasks in a cycle. 

Proposed constraint-based planning 

structure has the following characteristics: 

• It can handle both static environments 

with complete geometric information or 

dynamic scenes with moving obstacles 

whose motion is not known a priori. 

• It is applicable to both rigid and 

articulated robots of arbitrarily high degrees 

of freedom, as well as multiple collaborative 

agents.  

• It allows specification of various 

types of geometric constraints. 

• It runs in real time for modestly 

complex environments. 

The authors demonstrate the effectiveness 

of this structure for the problem of virtual 

assembly prototyping with applications in 

assembly line planning. 

  

2. Algorithm for Analytical Simulation  

 

In simulation studies, the authors need to 

integrate the system of ordinary differential 

equations (ODE) describing the dynamics 

of a robotic mechanical system. 

The authors use a model relating the 

state of the system with its external 

generalized forces of the form: 

 

x&  = f (x, u), (1) 

 

where x is the state vector, u is the input or 

control vector, x0 is the state vector at a 

certain time t0, and f (x, u) is a nonlinear 

function of x and u, derived from the 

dynamics of the system.  

The state of a dynamical system is 

defined, in turn, as the set of variables that 

separate the past from the future of the 

system. Thus, if we take t0 as the present 

time, we can predict from Eq. (1) the 

future states of the system upon integration 

of the initial-value problem at hand, even if 

we do not know the complete past history 

of the system in full detail.  

Now, if we regard the vector θ of 

independent joint variables and its time-rate 

of change, θθθθ&  as the vectors of generalized 

coordinates and generalized speeds, then 

an obvious definition of x is: 

 

[ ]TTT
θθ= &x . (2) 

 

The n generalized coordinates, θ define 

the configuration of the system, while their 

time-derivatives determine its generalized 

momentum. Hence, knowing θ and θθθθ&  can 

predict the future values of these variables 

with the aid of Eq. (1). 

The authors use the mathematical model, 

Eq. (1), explicitly, as pertaining to the 

serial manipulators, in terms of the 

kinematic structure of the system and its 

inertial properties, i.e., the mass, mass-

center coordinates, and inertia matrix of 

each of its bodies. To this end, the authors 

first write the underlying system of 

dynamical equations for each link. We 

have n+1 links numbered from 0 to n, 

which are coupled by n kinematic pairs.  

The following step of this derivation 

consists in representing the coupling 

between every two consecutive links as a 

linear homogeneous system of algebraic 

equations on the link twists. Moreover, all 

kinematic pairs allow a relative one-

degree-of-freedom motion between the 

coupled bodies. It can then express the 

kinematic constraints of the system in 

linear homogeneous form [2], [6]. 

The procedure whereby the motion of the 

manipulator is determined from initial 

conditions and applied torques τ(t) and 

loads, is known as simulation. 

Since the authors start with a second-

order n-dimensional nonlinear ODE 

system in the joint variables of the 

manipulator, the authors have to integrate 

this system in order to determine the time-

histories of all joint variables grouped in 
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the joint variables vector, θ.  

With current software available, this task 

has become routine work, the user being 

freed from the quite demanding task of 

writing code for integrating systems of 

ODE. The implementation of the simulation- 

related algorithms is possible with the 

available commercial software packages. 

As a rule, simulation code requires that 

the user supply a state-variable model of 

the form Eq. (1) of the robot dynamic 

model, with the state-variable vector, x and 

the input or control vector u, defined as: 

 

u (t) = τ (t).  (3) 

 

With the above definitions, then the 

authors can write the state-variable 

equations, in the form of Eq. (1), with f (x, τ) 

thereby obtaining a system of 2n first-order 

ODE in the state-variable vector.  

Various methods are available to solve the 

resulting initial-value problem, all of them 

being based on a discretization of the time 

variable. If the behavior of the system is 

desired in the interval t0 ≤ t ≤ tF, then the 

software implementing this algorithm 

provides approximations {yk}
N
 to the state-

variable vector x(tk) = xk, and the value of 

torques τ (tk) at a discrete set of instants {tk}.  

The variety of methods available to solve 

the underlying initial-value problem can be 

classified into two main categories, explicit 

methods and implicit methods. The former 

provide yk explicitly in terms of previously 

computed values. On the contrary, implicit 

methods provide yk in terms of previously 

computed values and itself.  

Commercial software for scientific 

computations provides routines for both 

implicit and explicit methods, the user 

having to decide which method to invoke.  

 

3. Simulation Robots’ Motion  

 

The robots’ motion should be animated 

with the highest degree of realism possible 

using motion capture data or accurate full-

body simulation, while the multitudes 

secondary details to the auxiliary elements 

(scene, cameras etc.) can be simulated at 

much lower fidelity.  

The classic robot motion problem, also 

referred to as the Piano Mover’s problem, 

can be stated as the following: given a 

robot R and a workspace W, find a path 

from an initial configuration I to a goal 

configuration G, such that R never collides 

with any obstacle Oi from a set of obstacles 

O along the path P, if such a path exists.  

The path P is a continuous sequence of 

positions and orientations of R. Continuous 

sequences of positions and orientations of 

R are assimilated with the robot system 

animation on a virtual scene. 

Despite the exciting progress in the field, 

simulating a dynamical system with many 

degrees of freedom remains a 

computational challenge. One of the 

central components of any control or 

simulation system for articulated bodies is 

forward dynamics [5].  

Forward dynamics computes the 

acceleration and the resulting motion of 

each link, based on the given set of 

external forces and active joint forces. The 

known algorithms have a linear-time 

dependence of the number of degrees of 

freedom. This permits any object in a 

scene to behave in a physically-plausible 

way: they accelerate, recognize collisions, 

and respond to collisions much like one 

would expect it to respond.  

Several techniques have been proposed 

for accelerating various types of dynamic 

simulation. Yet, there exists no known 

general algorithm for automatic simulation 

of articulated body dynamics. 

 

3.1. Plausible motion simulation 

 

In [1] Barzel introduced the idea of 

“plausible” motion, i.e. motion that could 

happen and look physically plausible to the 
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viewers. For many visual applications or 

real-time interaction, accurately simulating 

all the details of the real environment is not 

necessary [3]. 

In fact, it is often sufficient to provide 

effective motion to make the scene appear 

more realistic, without committing much 

computational resources.  

In an environment with uncertainty, we 

generally expect a constrained problem to 

have multiple solutions. It is difficult to 

know before what solutions are available.  

Hence, it is bad to use a solution strategy 

that seeks a single answer; rather, it prefers 

a technique that produces many solutions 

that reflect the range of possible outcomes. 

While for feature animation a user is 

expected to choose the one animation they 

prefer, other applications benefit directly 

from multiple solutions: 

• Computer simulator designers can use 

different animations each time a simulation 

is on stage, making it less predictable and 

potentially more entertaining. 

• Training environments can present 

trainees with multiple physically consistent 

scenarios that reflect the physics and 

variety of the real world. 

The authors generate multiple animations 

that satisfy constraints by applying an 

original algorithm to trial from a randomized 

model [7]. The algorithm needs the model 

of the environment, including the sources 

of uncertainty and the simulator that will 

generate an animation in the virtual 

environment. The algorithm described in 

this paper generates an arbitrarily sequence 

of animations in which “good” animations 

are expected to appear. 

 

3.2. Simulation loops 
 

The simulation loops fix robots’ 

components algorithmically, in order to 

generate physically plausible motion. Note 

that not all the pieces are put together into 

a unified system. 

Many related works describes a simulation 

core or a simulation loop to achieve this 

[4]. The following are the general steps in 

a simulation core: 

1. Clear the force accumulators: Each 

body or its components maintains a total of 

all forces on it. At the beginning of each step, 

we clear the forces from the previous step. 

2. Detect collisions: Loop over all bodies 

and determine any contacts or collisions in 

the scene and prepare them to be resolved.  

3. Compute external forces: Loop over 

all external forces, including contact or 

collision resolution forces, and add them to 

the force accumulators. 

4. Compute constraint forces: At this 

point, each body or component knows the 

total force acting upon it (it’s in force 

accumulator). To process the constraints, 

first add any soft constraints to the 

accumulators. Finally, compute and apply 

the hard constraint forces. 

5. Compute derivatives: Gather derivatives 

as needed to prepare to update the system. 

6. Integrate and update the state of the 

simulation: Use a numerical integration 

method to update the state of the system by 

some small time increment. 

 

4. Application to Prototyping 
 

 Below the authors discuss a few issues 

pertaining to the implementation of the 

simulation-related algorithms available in 

commercial software packages.  

 

4.1. Implementation 

 
Our system was implemented with 

DELPHI object-oriented programming 

language. The authors used in-house 

library ANIMATION-VIEW for collision 

detection by generating of the distance 

fields for surface repulsion constraints.  

Platform’ toolbox offers the Delphi 

functions for the implementation of the 

virtual system prototypes.  
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For discrete set {tk} of instants, Delphi 

system generates an images sequence of 

the virtual robot system.  

 

4.2. System demonstration 
 

The authors have tested the proposed 

motion planning system in the following 

virtual prototyping application: Assembly 

Line Planning. An animation generated 

from this type of scenario is shown in 

Figure 1. 

The robot arms avoid the moving object 

to reach a moving part passing on the 

conveyer belt. In this scenario the aim is to 

animate all actors to realize the assembly 

of the automobile. In this example, shown 

in Figure 1, the robot arms from scene 

must access a part moving and past it on a 

conveyer belt. The factory floor contains a 

transfer structure that is moving over the 

conveyer belt in the opposite direction to 

the part’s movement. The moving 

obstruction causes the robots to reactively 

modify its path to avoid collision. 

In this example, constraints can be 

defined for any aspect of the object’s 3D 

state at any point in time. Initial conditions 

for the object are specified by constraining 

its state at the start of the simulation.  

 

 

Fig. 1. Assembly Line Planning Scene 

 

The simulator, used in this example, 

simulates all objects at a time to manage 

the large number of control points required 

for a specific scene. 

 

5. Conclusions 

 

The authors have presented a novel 

framework for motion planning in virtual 

prototyping applications. Thy have 

reformulate the motion planning problem 

into a virtual simulation problem where 

constraints on the robot’s motion guide it 

from its starting configuration to its target, 

on the virtual scene. These constraints 

can’t impose penetration constraints 

among objects, the angle limits and 

connectivity of articulated robot joints. The 

avoidance of collision, the following of 

estimated paths, and many other possible 
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relationships between the cooperative robots 

and objects on the scene, are feasible in the 

virtual environment.  

The models proposed by authors arise 

naturally in the virtual environment and 

provide a means of verifying the 

plausibility of the motion in the real 

environment. With further work it should 

be possible to experimentally obtain more 

accurate robot dynamically models who 

require finding good animation.  
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