
Bulletin of the Transilvania University of Braşov
Series I: Engineering Sciences • Vol. 6 (55) No. 2 - 2013

PHYSICAL ROBOTS PROGRAMMING BY

IMITATION USING VIRTUAL ROBOT
PROTOTYPES

A. FRATU1 M. FRATU2

Abstract: This paper deals with the programming through imitation. In this
paper the author give a brief overview of a general programming concept,
describing the primary tasks which a robot control system needs to
implement. Based on original idea the author proposes a new strategy to
robot programming, using virtual robot prototypes. In this paper one use the
virtual robot prototypes and the motion capture systems to obtain the
reference motion data, which typically consist of a set of trajectories in the
Cartesian space. To generate the desired motion sequence for the real robot,
one captures the motions from a virtual robot model and maps these to the
joint settings of the physical robot.

Key words: virtual prototype, behavioral simulation, programming by imitation,
desired path.

1 Dept. of Automatics and Information Technology, Transilvania University of Braşov.
2 Dept. of Installations for Constructions, Transilvania University of Braşov.

1. Introduction

The development of robot programming

concepts is almost as old as the
development of robot manipulators itself.

Creating accurate robot path points for a
robot application is an important
programming task. It requires a robot
programmer to have the knowledge of the
robot’s reference frames, positions,
software operations, and the actual
programming language.

In the conventional “lead-through”
method, the robot programmer uses the
robot teach pendant accessory to position
the robot joints and end-effector and record
the satisfied robot pose as a robot situation.

Although the programmer’s visual
observations can make the taught robot
path points accurate, the required teaching

task has to be conducted with the real robot
online and the taught path points can be
inaccurate if the positions of the robot’s
end-effector and work piece are slightly
changed during the robot operations.

Today’s robot simulation software
provides the robot programmer with the
functions of creating virtual robot path
points in an interactive and virtual 3D
design environment [1].

By the time a robot simulation design is
completed, the simulation robot program is
able to move the virtual robot and end-
effector to all desired virtual robot path
points for performing the specified
operations to the virtual work-piece
without collisions in the simulated work-
cell. However, because of the inevitable
dimensional differences of the components
between the real robot work-cell and the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 2 - 2013

52

simulated robot work-cell, the virtual robot
path points, created in the simulated work-
cell, must be adjusted relative to the actual
position of the components in the real
robot work-cell, before they can be
transferred to the real robot system. This
task involves the techniques of calibrating
the position coordinates of the simulation
device models with respect to the user-
defined real robot path points.

2. Overview of Learning/Programming by

Imitation

Imitation is a learning mechanism in
many intelligent systems including robots.
It is easy to recuperate kinematics
information from virtual robot motion using
for example motion capture. Imitating the
motion with stable robot dynamics is a
challenging research problem [5].

This paper is focused on tracking joint
angle trajectories, although some tasks
may require tracking other quantities such
as end-effectors trajectories which will be
addressed in future work.

A characteristic feature of robot
programming is that usually it is dealing with
two different worlds; the real physical world
to be manipulated, and the abstract models

representing this world in a functional or
descriptive manner by programs and data.

In the simplest case, these models are
pure imagination of the programmers; in
high level programming languages, e.g. it
may consist of CAD data.

The basic idea behind these approaches
is to relieve the programmer from knowing
all specific robot details and free him from
coding every small motion/action.

Rather, he is specifying his application
on a high abstraction level, telling the
robot in an intuitive way what has to be
done and not how this has to be done. This
concept is illustrated in Figure 1.

Automatic programming systems provide
little or no direct control over the program
code the robot will run.

Instead, robot code is generated from
information entered into the system in a
variety of indirect ways. Often a robot
system must be running while automatic
programming is performed, and these
systems have been referred to as ”online”
programming systems. However,
automatic programming may also be
performed on simulated or virtual robots,
for example in industrial robotic CAD
systems. In this case the real robot is
offline but the virtual robot is online.

Fig.1. General robots programming paradigm

Fratu, A., et al.: Physical Robots Programming by Imitation Using Virtual Robot Prototypes 53

In any case, commands based on some
model are causing robots to change the
state of the real model as well as the virtual
model itself. During a sequence of actions
both models have to be kept consistent to
each other.

This implicit programming concept
implies many complex modules leading to
automated robot programming. For example,
there is a need for user-friendly human
interfaces for specifying robot applications;
this may range from graphical
specifications/annotations within a CAD
environment, till to spoken commands or
gestures, interpreted by some speech
understanding or vision system respectively.

These commands have to be converted
automatically into a sequence of
actions/motions by a task planning system.
The proposed approach allows a real robot
to learn move based exclusively on virtual
robot motion capture, without the need for
a detailed physical model of the robot [4].

Robot learning by imitation technique is
based on motion-oriented robot
programming languages. The motion-
oriented robot programming languages
nowadays are indispensable in robot
applications; in research they often
constitute the basis of higher level robot
programming concepts [5].

One of the essential ingredients of
modern robot programming languages is
the thorough usage of the frame concept.
Explicitly, all robot’s poses and object
locations as well as motions are expressed
in accordance with human spatial intuition
in terms of Cartesian coordinates.

By using homogeneous coordinates,
translations and rotations can be computed
by multiplying points or coordinate
systems in 3D Euclidian space with one
single (4 x 4) transform matrix.

As a matter of course, languages using
the frame concept should supply
programmers with a multitude of built-in
functions to specify such transforms.

A motion-oriented robot programming
language provides many functions to convert
x, y, z - coordinates and/or Euler angles into
transform matrices and vice versa.

Operator overloading and robotics
specific math-functions allow a simple
notation of transform matrix equations etc.

For the application programmer, who at
least in the industrial world usually is not
an expert of robotics, the details of the
robot hardware have to be hidden behind
well-defined easy-to-use software interfaces.

The robot programming implications of
this, led to the development of the so-
called programming by imitation concept.

Learning by imitation programs, closely
communicate with the users’ applications
and the motion channels of robot control
systems.

Explicitly, the paths of the virtual robot
are reading in specified time intervals. In
dependency of the virtual joints variables
values, the real joint variables are
modified, generating the robots’ paths
“guided motion” [2].

Usually, the virtual model requires from the
robot programmer an in-depth understanding
of the robots’ functionality. Thus, it is very
important to supply programmers with
powerful programming language constructs
to relieve such difficult tasks.

The programmer simply defines “start”
and “goal” positions. After moving the
robot to the “start” position in path imitating
mode, it is moved in Cartesian interpolation
mode to the “goal” position while an
“imitating program” has been activated.

3. Creating Robot Reference Path Points

through Robot Simulation Technique

With the today’s robot simulation
technology a robot programmer may also
utilize the robot simulation software to
program the motions and actions of a real
robot offline, in a virtual and interactive
3D design environment.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 2 - 2013

54

Many robot simulation software
packages provides the robot programmers
with the most comprehensive and generic
simulation functions, robot models, CAD
data translators, and robot program
translators [7].

A robot simulation design starts with
building the 3D robot device models based
on the geometry, joints, kinematics of the
corresponding real devices such as a robot
and its peripheral equipment.

The base frame B[i](x, y, z) of a retrieved
device defines its position in the simulation
work-cell. With all required devices in the
work-cell, the robot programmer is able to
create virtual robot path points, called tag
points and program the desired motions
and actions of the robot device and end-
effector device in robot simulation
language.

The device simulation program allows
the robot programmer to verify the
performance of the robot device in the
work-cell. The robot behavioral simulation
in the virtual environment enables us to
predict the behavior of a given real
manipulator into real environment [8], [9].

After the tag points are adjusted relative
to the position of the corresponding virtual
robot, the robot path planner program will
command the real robot controller for task
execution in the real robot work-cell.

Comparing to the conventional online
robot programming, the true robot offline
programming by imitation provides several
advantages in terms of the improved robot
work-cell performance and reduced robot
downtime [10].

For robot learning by imitation an
intuitive and easy to use software tools are
necessary. The designer engineer must
know to create the virtual robot and virtual
work-cell prototypes.

The Figure 2 shows a programming by
imitation system, with face - to - face
virtual and corresponding real robot
system.

In this framework a physical robot arm
can be a collection of rigid bodies, subject
to the influence of various forces in the
workspace, and restricted by various
motion constraints.

Joint trajectory tracking is enabled by
commanding desired joint accelerations
based on joint angle errors. The resulting
real robot motion clearly preserves the
original behavior of the virtual robot. This
task involves the techniques of calibrating
the position coordinates of the simulation
device models with respect to the user-
defined real robot points, before they can
be transferred to the real robot system.

In these conditions, the controller does not
require intensive pre-processing of motion
capture data, which makes it potentially
applicable to real time applications.

Using imitation strategy, one proposes to
achieve pathway acquisition from virtual
world. First, a motion capture system
transforms Cartesian position of virtual
robot structure to virtual joint angles based
on kinematic model. Then, the joint angles
are converted in binary words and
transferred to real robot joint controllers
via intelligent interface. After this one use
the control closed loops structure to
establish relationships between the virtual
and real robot control systems.

The imitate program will transfer the
virtual joint variables values in the real
world, which are used as reference values
in the individuals closed control loop.
Based on the position error, the control
system compute the actuators’ torques to
continuously modify the real joints values
between “start” and “goal”, such the real
joints pursuit the virtual joints. In similar
ways any functional dependencies of some
motion properties (speed, distance etc.) can
be specified in a textual programming
manner. Unfortunately, up to now there is
a lack of off-line tools supporting robot
programmers to specify robot path
properties comfortably.

Fratu, A., et al.: Physical Robots Programming by Imitation Using Virtual Robot Prototypes 55

4. Accuracy Improvement of Virtual
Robot Path Points

In robot applications, there are often the

cases in which the robot programmer must
be able to quickly and reliably change the
existing robot points in the robot program
so that they can be accurate to the slight
changes of components in the existing or
identical robot work-cell.

It is obvious that inevitable differences
exist between the real robot work-cell and
the simulated robot work-cell because of
the modeling tolerance and dimension
variation of the corresponding components.

Therefore, it is not feasible to directly
transfer tag path points to the actual robot
controller for execution. Instead, the robot
programmer must apply the prototype
calibration functions to adjust the tag path
points with respect to a number of robot
points imposed from the real robot work-
cell.

Different methods have been developed
for measuring the dimensional difference
of the similar components in the robot
work-cell and using it to convert the robot
points in the existing robot programs.

The robot programmer must “measure”
the positional variations of two similar
points in the real robot work-cell and
compensate the pre-taught robot points
with either the robot system utility function
or the robot program instruction.

However, if the dimensional difference
exists between two identical robots, an
external calibration system must be used
for identifying the robots’ difference so
that the taught robot path points for one
virtual robot system can be transferred to
the real identical one. The process is called
the robot calibration [3].

Prior to the robot calibration, the robot
programmer needs to conduct the
calibration experiment in which a
developed robot calibration program
moves the virtual robot frames to a set of

taught robot calibration points. Depending
on the required accuracy, a set calibration
points is required.

It is also important to select robot
calibration points that are able to move
each robot joint as much as possible in
order to “excite” its calibration parameters.
The dimensional difference of the robot
joint parameters is then determined
through a specific mathematical solution
such as the standard non-linear least
squares optimization.

Theoretically, the existing robot
kinematics model can be modified with the
identified robot parameters.

However, due to the difficulties in
directly modifying the kinematic
parameters of an actual robot controller,
the external calibration system
compensates the corresponding joint
values of all robot points in the existing
robot program by solving the robot’s
inverse kinematics equations with the
identified robot joint parameters.

A robot calibration system must be able
to identify the parameters of robot joint
frames, in two “identical” robot work-
cells, and compensate the existing robot
points so that they can be transferred to the
identical robot system for execution.

With the calibrated prototype frames and
the assumption that the virtual robot
prototype is exactly the same as the real
robot, the positions relative to the robot
base frame R(x, y, z) in the simulation
work-cell is exactly the same as the
corresponding one in the real robot work-
cell.

5. Experimental Configuration for Robot

Programming by Imitation

Figure 2 also displays (left image) the

user interface of a virtual anthropomorphic
robot arm, which has been created by the
motion simulation system.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 2 - 2013

56

Fig. 2. Imitation programming system with corresponding virtual and real robot

(face-to-face)

One transfers via intelligent interface the

joint angles data from a motion capture
system to a kinematic model for an
anthropomorphic robot.

To generate the desired motion sequence
for the real robot, we capture the motions
from a virtual robot model and map these
to the joint settings of the physical robot.

Initially, a set of virtual postures is
created to the virtual robot arm BRV and
the pictures’ positions are recorded for
each posture, during motion [6].

These recorded pictures’ positions
provide a set of Cartesian points in the 3D
capture volume for each posture.

To obtain the final robot posture, the
virtual pictures’ positions are assigned as
positional constraints on the physical
robot. To derive the joint angles one use
standard inverse kinematics (IK) routines.

The IK routine then directly generates
the desired joint angles on the robot for
each posture.

We assume to use the virtual robot
prototypes and the motion capture systems
to obtain the reference motion data, which

typically consist of a set of trajectories in
the Cartesian space.

The data is obtained using a motion
capture channel taking into account the
joint motion range. The symbolic spatial
relations specifying the virtual
environment can be used for the automatic
pursuit of possible virtual path as well as
for planning of appropriate behavior of the
real robot arm BRR, which may guide the
motion process during execution.

The easiest way to generate the spatial
relations explicitly is the interactively
programming of the behavior of the virtual
prototype in his virtual environment in
order to specify suitable positions θv1, θv2,
θv3.

This kind of specification provides an
easy to use interactive graphical tool to
define any kind of robot path; the user has
to deal only with a limited and manageable
amount of spatial information in a very
comfortable manner.

An automatic robot programming system
has to recognize the correct robot task type
and should map it to a sequence of robot

Fratu, A., et al.: Physical Robots Programming by Imitation Using Virtual Robot Prototypes 57

operations [11]. The desired pathways are
automatically transferred and parameterized
in the numerical interface IN, using the
path planner.

The applicable robot tasks are designed
and the desired pathways are programmed
off-line and stored in the functional
modules RT1, RT2, RT3.

The pursuit controllers compute the
estimate output of the comparative
modules CN1, CN2, CN3 the future state
of the virtual robot prototype and the
measured state of the physical robot.

While motion execution is in progress,
the real robot joints ARR1, ARR2, ARR3
are activates into the real environment.
Each time, a skill primitive is executed by
the robot control system SC; it changes the
robot joints state. As no time limit for the
motion is specified, the real robot imitates
the behavior of the virtual robot.

In our laboratory currently we are
developing Cartesian control architecture
able to interpret the physical robot
commands in the above given form. The
basis of our implementation is a flexible
and modular system for robot
programming by imitation.

In our experimental configuration in
order to prove the correctness of the robot
programming by imitation we have chosen
an anthropomorphic robot arm, with 3
DOF equipped with electrical actuators,
mounted on the real robot’s joints.

The robot’s control unit is connected via
TCP/IP to a PC equipped with the interface
card; the PC is running the simulation and
control process. The robot control system
receives and executes each 16 ms, an
elementary move operation.

6. Conclusion

In this paper the author has reformulated
the motion planning problem into a
behavioral simulation problem associated
with behavioral imitating techniques;

where the virtual robot path guides the real
robot, from its starting configuration to its
target.

Users interact with the simulation
environment through the visualization.
This includes, but is not limited to,
computer screen. The visualization
provides an interface to develop alternative
implementations.

Programming real robots, especially to
perform the behavior of the virtual robots
is accomplished by imitation, using virtual
robots motion data capture.

The actions for virtual robot are
transferred, with a central coordination to
corresponding physical robot which must
imitate her virtual homonym.

The virtual robot path points, created in
the simulated work-cell, must be adjusted
because of the dimensional differences
components between the physical robot
and virtual robot.

In this paper one assume that our
strategy is able to deduce the exact shape,
position and velocity of the virtual robots
and of the virtual obstacles, in the virtual
environment. One transfers the behavior of
the virtual robots, in the real world to the
physical robots.

This paper is focused on the
programming by imitation, transferring of
the motion mapping from virtual space in
3-D dimensional real space.

The author expect fully automated robot
programming by imitation, using robust
enough system to be applied in industrial
applications, will not become true before
the end of this decade.

References

1. Asfour, T., Azad, P, Gyarfas, F.,

Dillmann, R.: Imitation learning of
dual-arm manipulation tasks. In:
International Journal of Humanoid
Robotics 5 (2008) No. 2, p. 183-202.

2. Barzel, R., et al.: Plausible motion

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 2 - 2013

58

simulation for computer graphics
animation. In: Proceedings of the
Eurographics Workshop on Computer
Animation and Simulation, New York,
December 1996, Springer-Verlag
Publisher, p. 183-197.

3. Cheng, F.S.: The Method of Recovering
TCP Positions in Industrial Robot
Production Programs. In: Proceedings
of 2007 IEEE International Conference
on Mechatronics and Automation,
August 2007, p. 805-810.

4. Cheng, F.S.: Programming Vision-
Guided Industrial Robot Operations.
In: Journal of Engineering Technology
26 (2009) No. 1, p. 10-15.

5. Connolly, C.: Artificial Intelligence
and Robotic Hand-Eye Coordination.
In: International Journal of Industrial
Robots 35 (2008) No. 6, p. 496-503.

6. Fratu, A.: Method and installation for
joints trajectory planning of a physical
robot arm. In: (proposal patent)
unpublished.

7. Sugihara, T., Nakamura, Y.: A Fast
Online Gait Planning with Boundary
Condition Relaxation for Humanoid
Robots. In: Proceedings of IEEE
International Conference on Robotics

and Automation, Barcelona, Spain,
April 18-22, 2005, p. 305-310.

8. Venture, G., Ripert, P.J. Khalil, W.,
Gautier, M., Bodson, P.: Modeling and
identification of passenger car
dynamics using robotics formalism. In:
Journal IEEE Trans. on Intelligent
Transportation Systems 7 (2006) No.
3, p. 349-359.

9. Weinstein, R., Teran, J., Fedkiw, R.:
Dynamic simulation of articulated
rigid bodies with contact and collision.
In: Journal IEEE Transactions on
Visualization and Computer Graphics
12 (2005) No. 3, p. 365-374.

10. Yamane, K., Nakamura, Y.: Natural
motion animation through constraining
and de-constraining at will. In: Journal
IEEE Transactions on Visualization
and Computer Graphics 9 (2003) No.
3, p. 352-360.

11. Zhang, L., Young, J., Kim, Y.J.,
Manocha, D: A hybrid approach for
complete motion planning. In:
Proceedings of IEEE International
Conference on Intelligent Robots and
Systems, San Diego, California,
October 29 - Nov. 2, 2007, p. 7-14.

