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Abstract: This paper deals with the programming through imitation. In this 
paper the author give a brief overview of a general programming concept, 
describing the primary tasks which a robot control system needs to 
implement. Based on original idea the author proposes a new strategy to 
robot programming, using virtual robot prototypes. In this paper one use the 
virtual robot prototypes and the motion capture systems to obtain the 
reference motion data, which typically consist of a set of trajectories in the 
Cartesian space. To generate the desired motion sequence for the real robot, 
one captures the motions from a virtual robot model and maps these to the 
joint settings of the physical robot. 
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1. Introduction 
 
The development of robot programming 

concepts is almost as old as the 
development of robot manipulators itself. 

Creating accurate robot path points for a 
robot application is an important 
programming task. It requires a robot 
programmer to have the knowledge of the 
robot’s reference frames, positions, 
software operations, and the actual 
programming language.  

In the conventional “lead-through” 
method, the robot programmer uses the 
robot teach pendant accessory to position 
the robot joints and end-effector and record 
the satisfied robot pose as a robot situation.  

Although the programmer’s visual 
observations can make the taught robot 
path points accurate, the required teaching 

task has to be conducted with the real robot 
online and the taught path points can be 
inaccurate if the positions of the robot’s 
end-effector and work piece are slightly 
changed during the robot operations. 

Today’s robot simulation software 
provides the robot programmer with the 
functions of creating virtual robot path 
points in an interactive and virtual 3D 
design environment [1]. 

By the time a robot simulation design is 
completed, the simulation robot program is 
able to move the virtual robot and end-
effector to all desired virtual robot path 
points for performing the specified 
operations to the virtual work-piece 
without collisions in the simulated work-
cell. However, because of the inevitable 
dimensional differences of the components 
between the real robot work-cell and the 
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simulated robot work-cell, the virtual robot 
path points, created in the simulated work-
cell, must be adjusted relative to the actual 
position of the components in the real 
robot work-cell, before they can be 
transferred to the real robot system. This 
task involves the techniques of calibrating 
the position coordinates of the simulation 
device models with respect to the user-
defined real robot path points. 

 
2. Overview of Learning/Programming by 

Imitation 
 

Imitation is a learning mechanism in 
many intelligent systems including robots. 
It is easy to recuperate kinematics 
information from virtual robot motion using 
for example motion capture. Imitating the 
motion with stable robot dynamics is a 
challenging research problem [5]. 

This paper is focused on tracking joint 
angle trajectories, although some tasks 
may require tracking other quantities such 
as end-effectors trajectories which will be 
addressed in future work. 

A characteristic feature of robot 
programming is that usually it is dealing with 
two different worlds; the real physical world 
to be manipulated, and the abstract models 

representing this world in a functional or 
descriptive manner by programs and data.  

In the simplest case, these models are 
pure imagination of the programmers; in 
high level programming languages, e.g. it 
may consist of CAD data. 

The basic idea behind these approaches 
is to relieve the programmer from knowing 
all specific robot details and free him from 
coding every small motion/action.  

Rather, he is specifying his application 
on a high abstraction level, telling the 
robot in an intuitive way what has to be 
done and not how this has to be done. This 
concept is illustrated in Figure 1. 

Automatic programming systems provide 
little or no direct control over the program 
code the robot will run. 

Instead, robot code is generated from 
information entered into the system in a 
variety of indirect ways. Often a robot 
system must be running while automatic 
programming is performed, and these 
systems have been referred to as ”online” 
programming systems. However, 
automatic programming may also be 
performed on simulated or virtual robots, 
for example in industrial robotic CAD 
systems. In this case the real robot is 
offline but the virtual robot is online.  

 

 
Fig.1. General robots programming paradigm 
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In any case, commands based on some 
model are causing robots to change the 
state of the real model as well as the virtual 
model itself. During a sequence of actions 
both models have to be kept consistent to 
each other.  

This implicit programming concept 
implies many complex modules leading to 
automated robot programming. For example, 
there is a need for user-friendly human 
interfaces for specifying robot applications; 
this may range from graphical 
specifications/annotations within a CAD 
environment, till to spoken commands or 
gestures, interpreted by some speech 
understanding or vision system respectively.  

These commands have to be converted 
automatically into a sequence of 
actions/motions by a task planning system. 
The proposed approach allows a real robot 
to learn move based exclusively on virtual 
robot motion capture, without the need for 
a detailed physical model of the robot [4]. 

Robot learning by imitation technique is 
based on motion-oriented robot 
programming languages. The motion-
oriented robot programming languages 
nowadays are indispensable in robot 
applications; in research they often 
constitute the basis of higher level robot 
programming concepts [5]. 

One of the essential ingredients of 
modern robot programming languages is 
the thorough usage of the frame concept. 
Explicitly, all robot’s poses and object 
locations as well as motions are expressed 
in accordance with human spatial intuition 
in terms of Cartesian coordinates. 

By using homogeneous coordinates, 
translations and rotations can be computed 
by multiplying points or coordinate 
systems in 3D Euclidian space with one 
single (4 x 4) transform matrix.  

As a matter of course, languages using 
the frame concept should supply 
programmers with a multitude of built-in 
functions to specify such transforms.  

A motion-oriented robot programming 
language provides many functions to convert 
x, y, z - coordinates and/or Euler angles into 
transform matrices and vice versa.  

Operator overloading and robotics 
specific math-functions allow a simple 
notation of transform matrix equations etc. 

For the application programmer, who at 
least in the industrial world usually is not 
an expert of robotics, the details of the 
robot hardware have to be hidden behind 
well-defined easy-to-use software interfaces. 

The robot programming implications of 
this, led to the development of the so-
called programming by imitation concept.  

Learning by imitation programs, closely 
communicate with the users’ applications 
and the motion channels of robot control 
systems.  

Explicitly, the paths of the virtual robot 
are reading in specified time intervals. In 
dependency of the virtual joints variables 
values, the real joint variables are 
modified, generating the robots’ paths 
“guided motion” [2]. 

Usually, the virtual model requires from the 
robot programmer an in-depth understanding 
of the robots’ functionality. Thus, it is very 
important to supply programmers with 
powerful programming language constructs 
to relieve such difficult tasks. 

The programmer simply defines “start” 
and “goal” positions. After moving the 
robot to the “start” position in path imitating 
mode, it is moved in Cartesian interpolation 
mode to the “goal” position while an 
“imitating program” has been activated.  

 
3. Creating Robot Reference Path Points 

through Robot Simulation Technique 
 

With the today’s robot simulation 
technology a robot programmer may also 
utilize the robot simulation software to 
program the motions and actions of a real 
robot offline, in a virtual and interactive 
3D design environment.  
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Many robot simulation software 
packages provides the robot programmers 
with the most comprehensive and generic 
simulation functions, robot models, CAD 
data translators, and robot program 
translators [7]. 

A robot simulation design starts with 
building the 3D robot device models based 
on the geometry, joints, kinematics of the 
corresponding real devices such as a robot 
and its peripheral equipment.  

The base frame B[i](x, y, z) of a retrieved 
device defines its position in the simulation 
work-cell. With all required devices in the 
work-cell, the robot programmer is able to 
create virtual robot path points, called tag 
points and program the desired motions 
and actions of the robot device and end-
effector device in robot simulation 
language.  

The device simulation program allows 
the robot programmer to verify the 
performance of the robot device in the 
work-cell. The robot behavioral simulation 
in the virtual environment enables us to 
predict the behavior of a given real 
manipulator into real environment [8], [9]. 

After the tag points are adjusted relative 
to the position of the corresponding virtual 
robot, the robot path planner program will 
command the real robot controller for task 
execution in the real robot work-cell. 

Comparing to the conventional online 
robot programming, the true robot offline 
programming by imitation provides several 
advantages in terms of the improved robot 
work-cell performance and reduced robot 
downtime [10]. 

For robot learning by imitation an 
intuitive and easy to use software tools are 
necessary. The designer engineer must 
know to create the virtual robot and virtual 
work-cell prototypes.  

The Figure 2 shows a programming by 
imitation system, with face - to - face 
virtual and corresponding real robot 
system.  

In this framework a physical robot arm 
can be a collection of rigid bodies, subject 
to the influence of various forces in the 
workspace, and restricted by various 
motion constraints. 

Joint trajectory tracking is enabled by 
commanding desired joint accelerations 
based on joint angle errors. The resulting 
real robot motion clearly preserves the 
original behavior of the virtual robot. This 
task involves the techniques of calibrating 
the position coordinates of the simulation 
device models with respect to the user-
defined real robot points, before they can 
be transferred to the real robot system. 

In these conditions, the controller does not 
require intensive pre-processing of motion 
capture data, which makes it potentially 
applicable to real time applications. 

Using imitation strategy, one proposes to 
achieve pathway acquisition from virtual 
world. First, a motion capture system 
transforms Cartesian position of virtual 
robot structure to virtual joint angles based 
on kinematic model. Then, the joint angles 
are converted in binary words and 
transferred to real robot joint controllers 
via intelligent interface. After this one use 
the control closed loops structure to 
establish relationships between the virtual 
and real robot control systems.  

The imitate program will transfer the 
virtual joint variables values in the real 
world, which are used as reference values 
in the individuals closed control loop. 
Based on the position error, the control 
system compute the actuators’ torques to 
continuously modify the real joints values 
between “start” and “goal”, such the real 
joints pursuit the virtual joints. In similar 
ways any functional dependencies of some 
motion properties (speed, distance etc.) can 
be specified in a textual programming 
manner. Unfortunately, up to now there is 
a lack of off-line tools supporting robot 
programmers to specify robot path 
properties comfortably. 
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4. Accuracy Improvement of Virtual 
Robot Path Points 

 
In robot applications, there are often the 

cases in which the robot programmer must 
be able to quickly and reliably change the 
existing robot points in the robot program 
so that they can be accurate to the slight 
changes of components in the existing or 
identical robot work-cell.  

It is obvious that inevitable differences 
exist between the real robot work-cell and 
the simulated robot work-cell because of 
the modeling tolerance and dimension 
variation of the corresponding components.  

Therefore, it is not feasible to directly 
transfer tag path points to the actual robot 
controller for execution. Instead, the robot 
programmer must apply the prototype 
calibration functions to adjust the tag path 
points with respect to a number of robot 
points imposed from the real robot work-
cell. 

Different methods have been developed 
for measuring the dimensional difference 
of the similar components in the robot 
work-cell and using it to convert the robot 
points in the existing robot programs.  

The robot programmer must “measure” 
the positional variations of two similar 
points in the real robot work-cell and 
compensate the pre-taught robot points 
with either the robot system utility function 
or the robot program instruction. 

However, if the dimensional difference 
exists between two identical robots, an 
external calibration system must be used 
for identifying the robots’ difference so 
that the taught robot path points for one 
virtual robot system can be transferred to 
the real identical one. The process is called 
the robot calibration [3]. 

Prior to the robot calibration, the robot 
programmer needs to conduct the 
calibration experiment in which a 
developed robot calibration program 
moves the virtual robot frames to a set of 

taught robot calibration points. Depending 
on the required accuracy, a set calibration 
points is required. 

It is also important to select robot 
calibration points that are able to move 
each robot joint as much as possible in 
order to “excite” its calibration parameters. 
The dimensional difference of the robot 
joint parameters is then determined 
through a specific mathematical solution 
such as the standard non-linear least 
squares optimization. 

Theoretically, the existing robot 
kinematics model can be modified with the 
identified robot parameters.  

However, due to the difficulties in 
directly modifying the kinematic 
parameters of an actual robot controller, 
the external calibration system 
compensates the corresponding joint 
values of all robot points in the existing 
robot program by solving the robot’s 
inverse kinematics equations with the 
identified robot joint parameters.  

A robot calibration system must be able 
to identify the parameters of robot joint 
frames, in two “identical” robot work-
cells, and compensate the existing robot 
points so that they can be transferred to the 
identical robot system for execution. 

With the calibrated prototype frames and 
the assumption that the virtual robot 
prototype is exactly the same as the real 
robot, the positions relative to the robot 
base frame R(x, y, z) in the simulation 
work-cell is exactly the same as the 
corresponding one in the real robot work-
cell. 
 
5. Experimental Configuration for Robot 

Programming by Imitation 
 
Figure 2 also displays (left image) the 

user interface of a virtual anthropomorphic 
robot arm, which has been created by the 
motion simulation system.  
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Fig. 2. Imitation programming system with corresponding virtual and real robot  

(face-to-face) 
 
One transfers via intelligent interface the 

joint angles data from a motion capture 
system to a kinematic model for an 
anthropomorphic robot.  

To generate the desired motion sequence 
for the real robot, we capture the motions 
from a virtual robot model and map these 
to the joint settings of the physical robot. 

Initially, a set of virtual postures is 
created to the virtual robot arm BRV and 
the pictures’ positions are recorded for 
each posture, during motion [6].  

These recorded pictures’ positions 
provide a set of Cartesian points in the 3D 
capture volume for each posture.  

To obtain the final robot posture, the 
virtual pictures’ positions are assigned as 
positional constraints on the physical 
robot. To derive the joint angles one use 
standard inverse kinematics (IK) routines. 

The IK routine then directly generates 
the desired joint angles on the robot for 
each posture.  

We assume to use the virtual robot 
prototypes and the motion capture systems 
to obtain the reference motion data, which 

typically consist of a set of trajectories in 
the Cartesian space. 

The data is obtained using a motion 
capture channel taking into account the 
joint motion range. The symbolic spatial 
relations specifying the virtual 
environment can be used for the automatic 
pursuit of possible virtual path as well as 
for planning of appropriate behavior of the 
real robot arm BRR, which may guide the 
motion process during execution. 

The easiest way to generate the spatial 
relations explicitly is the interactively 
programming of the behavior of the virtual 
prototype in his virtual environment in 
order to specify suitable positions θv1, θv2, 
θv3. 

This kind of specification provides an 
easy to use interactive graphical tool to 
define any kind of robot path; the user has 
to deal only with a limited and manageable 
amount of spatial information in a very 
comfortable manner. 

An automatic robot programming system 
has to recognize the correct robot task type 
and should map it to a sequence of robot 



Fratu, A., et al.: Physical Robots Programming by Imitation Using Virtual Robot Prototypes 57 

operations [11]. The desired pathways are 
automatically transferred and parameterized 
in the numerical interface IN, using the 
path planner. 

The applicable robot tasks are designed 
and the desired pathways are programmed 
off-line and stored in the functional 
modules RT1, RT2, RT3. 

The pursuit controllers compute the 
estimate output of the comparative 
modules CN1, CN2, CN3 the future state 
of the virtual robot prototype and the 
measured state of the physical robot.  

While motion execution is in progress, 
the real robot joints ARR1, ARR2, ARR3 
are activates into the real environment. 
Each time, a skill primitive is executed by 
the robot control system SC; it changes the 
robot joints state. As no time limit for the 
motion is specified, the real robot imitates 
the behavior of the virtual robot. 

In our laboratory currently we are 
developing Cartesian control architecture 
able to interpret the physical robot 
commands in the above given form. The 
basis of our implementation is a flexible 
and modular system for robot 
programming by imitation.  

In our experimental configuration in 
order to prove the correctness of the robot 
programming by imitation we have chosen 
an anthropomorphic robot arm, with 3 
DOF equipped with electrical actuators, 
mounted on the real robot’s joints. 

The robot’s control unit is connected via 
TCP/IP to a PC equipped with the interface 
card; the PC is running the simulation and 
control process. The robot control system 
receives and executes each 16 ms, an 
elementary move operation. 
 
6. Conclusion 
 

In this paper the author has reformulated 
the motion planning problem into a 
behavioral simulation problem associated 
with behavioral imitating techniques; 

where the virtual robot path guides the real 
robot, from its starting configuration to its 
target. 

Users interact with the simulation 
environment through the visualization. 
This includes, but is not limited to, 
computer screen. The visualization 
provides an interface to develop alternative 
implementations. 

Programming real robots, especially to 
perform the behavior of the virtual robots 
is accomplished by imitation, using virtual 
robots motion data capture.  

The actions for virtual robot are 
transferred, with a central coordination to 
corresponding physical robot which must 
imitate her virtual homonym.  

The virtual robot path points, created in 
the simulated work-cell, must be adjusted 
because of the dimensional differences 
components between the physical robot 
and virtual robot. 

In this paper one assume that our 
strategy is able to deduce the exact shape, 
position and velocity of the virtual robots 
and of the virtual obstacles, in the virtual 
environment. One transfers the behavior of 
the virtual robots, in the real world to the 
physical robots. 

This paper is focused on the 
programming by imitation, transferring of 
the motion mapping from virtual space in 
3-D dimensional real space. 

The author expect fully automated robot 
programming by imitation, using robust 
enough system to be applied in industrial 
applications, will not become true before 
the end of this decade. 
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