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Abstract: The Model Reference Adaptive System (MRAS) is used to obtain 
system’s performance specifications in terms of model reference. A model 
reference describes the desired response for a DC electrical drive. In MRAS 
the adjustment mechanism can be obtained by applying two methods: by 
using a gradient method (the MIT rule) or by using a stability theory 
(Lyapunov method). Therefore, to control a DC electrical drive, the paper’s 
authors have been studied both methods. The appropriate design and 
experimental results are all done in Matlab/Simulink. 
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1. Introduction 
 
The Model Reference Adaptive System 

(MRAS) is one of the main approaches to 
adaptive control. 

Adaptive control is a technique that 
provides an automatic adjustment of a 
controller in real time. The automatic 
adjustment is performed in order to maintain 
the controller’s system performances in case 
the parameters of the process are (i) 
unknown or (ii) changing in time [1]. 

Both cases are detailed further on. In 
case (i) of unknown but constant 
parameters, the adaptive control technique 
is designed to provide in the closed loop an 
automatic tuning procedure; this procedure 
will be applied to all the unknown but 
constant parameters. In case (ii) when the 
parameters are changing unpredictably in 
time, to maintain the system performances, 
the control system must use an adaptive 
control [1], [4], [5]. 

The original scheme for MRAS proposed 
by Whitaker in 1958 was introduced for 
the flight control. For the current study, 
MRAS was applied to control a DC 
electrical drive (Figure 1) [1]. 

 

 
Fig. 1. General block diagram of MRAS 
 
Both, the gradient method and the 

Lyapunov method, mentioned above were 
used to design and simulate 2 distinctive 
MRAS systems. 
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2. Model Reference Adaptive Control 
(MRAC) 

 
In case of using a model reference, the 

desired behaviour of a process can be 
described. This is the case of MRAC, and 
the process is represented by a linear time-
invariant (LTI) system driven by the input 
reference and its associated transfer 
function Gm(s). 

MRAS has 2 loops. The first one (inner 
loop) includes the process itself and the 
classical feedback. The second one (outer 
loop) is used to adjust controller parameters. 
As a first step in the designing process of the 
transfer function for the model reference 
(Gm(s)), the reference input signal r(t) shall 
be considered. Further on, the process y(t) 
must follow the output signal ym(t) which 
represents the system’s desired response. 

As a consequence, the error signal e(t) 
represents the difference between the 
system output and the model reference, 
and it has to be very small. A decision on 
how small the error can be is influenced by 
the model reference, the process, and the 
command signal. Only in the case of 
reducing the error signal to 0 (zero) for all 
the command signals, a perfect model is 
achieved [2], [5]. In case of MRAC, the 
parameters can be adjusted in 2 ways: (i) 
by using a gradient method, or (ii) by 
applying a stability theory. 

 
2.1. Design of the MRAS by Using a 

Gradient Method 
 

The gradient method, or MIT rule, was 
developed by the Instrumentation laboratory 
at Massachusetts Institute of Technology 
(MIT). 
 
2.1.1. The MIT rule 
 

It shall be considered that in the closed 
loop system, the controller has one 
adjustable parameter . The parameter e 

represents the error between the output of 
the process (y(t)) and the output of the 
model reference (ym(t)). The goal is to 
adjust parameter θ  in order to minimize 

loss function eJ
2
1)(   [4], [6]. Function  

J has to be small, therefore is reasonable to 
change the parameters in the direction of 
negative gradient for J: 
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where:  is the controller parameter, e is the 
error between the process and the model 

outputs; y is the adaptation gain; 

e  is the 

sensitivity derivative of the system. 
The first equation is called the MIT rule. 

The choice of loss function is arbitrary. If 
the loss function is eJ )θ( , then the 
adjustment rule becomes: 
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where sign is the signum function. 
 
2.1.2. MIT Rule for the First Order System 
 
 The process is described by: 
 

)()(
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t
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where u is the control variable and y is the 
measurement output. 

The model reference is described by: 
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m  .  (4) 

 
A perfect following of the model 

reference is achieved with the controller 
low [3]: 
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)()()( 00 tystrttu  .  (5) 
 

The error of the system is: 
 

)()()( tytyte m . (6) 
 

To apply the MIT rule, Equation (5) is 
introduced in Equation (3) as below: 
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where p is the differential operator. 

So, the error will be: 
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The sensitivity derivatives are obtained 

by taking the partial derivatives of the error 
with respect to the controller parameters: 
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All these equations cannot be used because 

of the unknown process parameters. To 
solve this impediment, the following 
approximation can be done: 

 

mapbsap  0 . (10) 
 
After the approximation is done, the 

adjustment of the controller parameters can 
be obtained: 
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where the parameter b is introduced in the 
adaptation gain . 

The MIT rule can perform well, if the 
adaptation gain is small. Unfortunately, by 
applying the MIT rule, the system is not 
stable in closed loop. 
 
2.2. Design of the MRAS Using the 

Stability Theory 
 

The adjustment rules can also be obtained 
by using stability theory. Even in case the 
adaption gain does not have small values, 
MRAS reaches the mandatory target of 
converging to zero of the error signal (Eq. 
12) [4], [6]:  
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The same MRAS general schema that was 

used for the MIT method is applicable. But 
the emphasis will be on how the adapting 
mechanism is implemented, as this is specific 
for this case. It shall be assumed, further 
on, that the given differential equation is 
characteristic for the closed loop system: 
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where x is the state vector of the system. 

An acceptable supposition is that the 
given Eq. (13) may define the whole 
system dynamics. For a system to be 
stable, a Lyapunov function (noted with V) 
which reacts to all the system parameters 
variations and validates all the conditions 
described in Eq. (14) needs to be found: 
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Thus, the closed loop system is stable only 

in case the V function is positive definite and 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 2 - 2013 
 
36 

the function’s derivative is negative semi-
definite. In conclusion, the problem is in 
finding of such an appropriate function. 

 
2.2.1. Lyapunov Theory for First Order 

System 
 

The process model, model reference, and 
controller low are described by the same 
equations as those used in describing the 
MIT rule ((Eq. (3), (4), (5)). Here, the goal 
is to minimize the error )()()( tytyte m ) 
[2], [3], so: 
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As a next step, Eq. (6) is introduced in 

Eq. (12) as follows: 
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Furthermore, term )(tya mm  is added to 

and subtracted from Eq. (13): 
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The error goes to zero if the parameters 

of the controller are: 
 

b
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To drive the parameters t0 and s0 to their 

desired values, a parameters adjustment 
mechanism needs to be built. In this 
purpose, Lyapunov function will be: 
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This function is zero only when the error 

is zero and the controller parameters have 
correct values. The derivative of V is: 
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If the parameters are updated as: 
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the result is: 
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The adjustment rule obtained from the 

Lyapunov theory is simple because it does 
not require filtering of the signals. This 
rule (Eq. 21) is similar to adjustment law 
obtained with the MIT rule. 



Coman, S., et al.: Model Reference Adaptive Control for a DC Electrical Drive 37 

3. Dynamic Model for DC Electrical Drive 
 
3.1. General Description 
 

All the DC electrical drive parameters 
are unknown. The adaptive control must be 
performed on all the controller parameters 
as it is described in the next step-by-step 
procedure: 5 V reference signal is applied 
to the DC electrical drive input; 
arithmetical average is done for 3 different 
measurements; 4th order Butterworth low 
pass filter is applied to the resulted signal; 
1st order element is selected to match 
recorded data. 

The DC electrical drive model is a 1st 
order element and its transfer function is: 
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A model reference with the below 

depicted transfer function is selected: 
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The resulted DC electrical drive model is 

represented below (Figure 2): 

 
Fig. 2. Representation of the two signals: 
the recorded signal and the DC electrical 

drive signal 
 
3.2. Controller Parameters Adjustment 

by Using the Gradient Method 
 

For the 2 unknown parameters of the 
process, an adaptive law with 2 adjusting 
parameters is selected (Eq. 5). To find proper 
values for the adaptive law’s adjusting 
parameters, the same adjusting mechanism 
that was detailed in paragraph (2.1.1) of the 
current study, is going to be used. 

A step input was applied for a period of 
100 seconds to the simulated system 
represented in Figure 3. 

 

    
Fig. 3. Gradient method. 

The output signals ( )(ty , )(tym ) and adjustment error signal (e)(t)) progression 
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A short analyse of the same figure 
reveals that for an adaption gain equal to 1, 
the progression of the 3 signals (output, 
model reference, and error adjustment for 
the whole system) demonstrates the system’s 
possibility to be adjustable. 
 
3.3. Controller parameters adjustment 

by using the Lyapunov method 
 

To make the process output signal to 
follow the process model reference, a P 
controlling law with two adjustment 
parameters is used (Figure 4). The same 

adjustment mechanism already detailed in 
paragraph (2.2.1) is used to determine the 
controller parameter values. 

 
4. Conclusions 
 

Both methods can be applied on any 
system type. By increasing the adaptation 
gain, the system is adapting faster; in this 
way, system stability is kept. 

The current study, which was performed 
on both adaptive control applications, 
reveals that the Lyapunov method is better 
than the gradient method. 

 

   
Fig. 4. Lyapunov method. 

The output signals ( )(ty , )(tym ) and adjustment error signal (e)(t)) progression 
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