
Bulletin of the Transilvania University of Braşov
Series I: Engineering Sciences • Vol. 6 (55) No. 1 - 2013

GPU ACCELERATED FLUID FLOW

COMPUTATIONS USING THE LATICE
BOLTZMANN METHOD

C. NIŢĂ1 L.M. ITU1 C. SUCIU1

Abstract: We propose a numerical implementation based on a Graphics
Processing Unit (GPU) for the acceleration of the execution time of the Lattice
Boltzmann Method. The performance analysis is based on three three-
dimensional benchmark applications: Poisseuille flow, lid-driven cavity flow
and flow in an elbow shaped domain. Three different, recently released GPU
cards are considered for the parallel implementation. To correctly evaluate the
speed-up potential of the GPUs, both single-core and multi-core CPU based
implementations are used. The results indicate that the GTX 680 GPU card
leads to the best performance, with a speed-up ranging between 6.7 and 14.35
over the multi-core CPU based implementation, depending on the application
and on the grid density.

Key words: Lattice Boltzmann Method, parallel computing, computational
fluid dynamics, GPU, CUDA.

1 Dept. of Automation and Information Technology, Transilvania University of Braşov.

1. Introduction

The classic method for studying fluid

flow is based on the Navier-Stokes (NS)
equations, a system of nonlinear partial
differential equations [8]. The numerical
solution of the Navier-Stokes equations is
one side a difficult task because of the
nonlinear terms, and on the other side it is
computationally very intensive since a
system of algebraic equations, obtained
from the Poisson equation, needs to be
solved at each time step. Considering
additionally the increased accuracy
required for engineering or biomedical
applications, the flow computation can
take several days, even on modern high
performance hardware [7].

During the last decades, an alternative

approach for studying fluid flow has been
proposed: the Lattice Boltzmann Method
(LBM) [6]. Unlike the NS equations this
method consists of treating the fluid as a
system of a large number of particles with
known mass. This approach becomes
practical by using the kinetic theory of
gases, which connects the microscopic
physical quantities of the fluid with the
macroscopic quantities: pressure, velocity
and temperature. The main advantage of
this approach is that each grid node can be
computed separately based on previously
computed values of neighbouring nodes.
This aspect enables the efficient
parallelization of the LBM [9]. A previous
parallel implementation of the LBM
gained a speed-up of about 9x on a
NVIDIA Tesla C1060 card [5].

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 1 - 2013

68

With the increasing computational power
of Graphics Processing Units (GPU),
parallel computing has become available at
a relatively small cost. With the advent of
CUDA (Compute Unified Device
Architecture), several researchers have
identified the potential of GPUs to
accelerate engineering applications in
general, and Computational Fluid Dynamics
(CFD) applications in particular to
unprecedented levels [4]. Modern GPUs are
able to deliver at peak performance over 1
TFLOP, i.e. ten times faster than a
multicore CPU.

In this paper we analyze the speed-up
potential of the numerical solution of the
LBM, using three recently released GPUs,
with different architectures. To correctly
evaluate the speed-up potential, results are
compared against both single-core and
multi-core CPU-based implementations.

The paper is organized as follows. In
section two we first briefly review the
LBM. Then we introduce the numerical
implementation, focusing on its
parallelization on a GPU. Section three
presents detailed results regarding the speed-
up obtained with different GPUs and finally,
in section four, we draw the conclusions.

2. Methods

2.1. The Lattice Boltzmann Method

For studying the parallel implementation
of the LBM, we considered the single
relaxation time version of the equation,
based on the Bhatnagar-Gross-Krook (BGK)
approximation, which assumes that the
macroscopic quantities of the fluid are not
influenced by most of the molecular
collisions (1):

 ,),(),(1

),(),(

tftf

tf
t

tf

i
eq

i

i
i

xx

xcx

 (1)

where: fi represents the probability
distribution function along an axis ci; τ is a
relaxation factor related to the fluid
viscosity; x represents the position and t is
the time. The discretization in space and
time is performed with finite difference
formulas. This is usually done in two steps:

 ,),(),(

),(),(

tftft
tfttf

i
eq

i

ii

xx

xx

and

),(),(ttftttf iii xcx . (2)

The first equation is known as the

collision step, while the second one
represents the streaming step. feq is called
the equilibrium distribution and is given by
the following formula:

,
2
1

2
11),(

2

2

2

2

s

s

k

s

k
i

eq

c

cc
tf

u

ucucx

 (3)

where ωi is a weighting scalar, 3/1sc is
the lattice speed of sound and u is the fluid
velocity. ρ(x,t) is a scalar field, commonly
called density, which is related to the
macroscopic fluid pressure as follows:

3
),(),(ttp xx

 . (4)

Once all fi have been computed, the

macroscopic quantities can be determined:

n

i
ii tf

t
t

0
),(

),(
1),(xc
x

xu , (5)

n

i
i tft

0
),(),(xx . (6)

Niţă, C., et al.: GPU Accelerated Fluid Flow Computations Using the Latice Boltzmann Method 69

The computational domain is similar to a
regular grid used for finite difference
algorithms. For a more detailed description
of the Boltzmann equation and the collision
operator we refer the reader to [6].

The current study focuses on three-
dimensional flow domains, hence we used
the D3Q15 lattice structure, displayed in
Figure 1 for a single grid node. A vector

ic and a scalar weight iw are defined for
each lattice link:

14,...,71,1,1
6,..1)1,0,0(),0,1,0(),0,0,1(

0)0,0,0(

i
i

i

ic

and the weighting factors are:

14,13,...,8,772/1
6,5,...,2,172/8

072/16

i
i

i
wi . (8)

The boundary conditions (inlet, outlet and

wall) are crucial for any fluid flow
computation. For the LBM, the macroscopic
quantities (flow rate/pressure) can not be
directly imposed at inlet and outlet.

Fig. 1. The D3Q15 lattice structure, first
number in the notation is the space

dimension, while the second one is the
lattice links number

Instead, the known values of the
macroscopic quantities are used for
computing the unknown distribution
functions near the boundary. For the inlet
and outlet of the domain we used Zou-He
[3], [10] boundary conditions with known
velocity. The outlet velocity value is set so
as to obtain a zero gradient along the
boundary normal vector. For the solid
walls we used bounce-back boundary
conditions based on interpolations, for
improving the accuracy when dealing with
complex geometries [1]. The solid walls
are defined as an isosurface of a scalar
field, commonly known as the level-set
function. Each point in the field is the
signed distance between the grid node and
the boundary, therefore the solid wall is
located where the scalars are zero.

2.2. GPU based parallel implementation

of the Lattice Boltzmann Method

In the following we focus on the
parallelization of the LBM, based on a
GPU device. The GPU is viewed as a
compute device which is able to run a very
high number of threads in parallel inside a
kernel (a function, written in C language,
which is executed on the GPU and
launched by the CPU). The GPU contains
several streaming multiprocessors, each of
them containing several cores. The GPU
(usually also called device) contains a
certain amount of global memory to/from
which the CPU or host thread can
write/read, and which is accessible by all
multiprocessors. Furthermore, each
multiprocessor also contains shared memory
and registers which are split between the
thread blocks and the threads, which run
on the multiprocessor, respectively.

The GPU based implementation of the
LBM is performed based on the formulation
described in section 2.1. The computations
for a single grid node require only the
values of the neighbouring nodes from the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 1 - 2013

70

previous time step. As a result, each node
can be computed at each time step
independently from other nodes, and one
CUDA thread is used for each grid node.
The main difference between the CPU and
the GPU implementation of the LBM is the
memory arrangement. Regularly, on the
CPU, a data structure containing all the
required floating-point values for a grid
node is defined, and then an array of this
data structure is created (the Array Of
Structure approach - AOS). This approach
is not a viable solution on the GPU because
the global memory accesses would not be
coalesced and would drastically decrease the
performance [11], [12]. Instead of AOS, the
Structure Of Arrays (SOA) approach has
been considered. E.g. for the fluid velocity,
instead of storing all the vector components
in one array, three different arrays are used
(one for each component). The memory
access patterns are described in Figure 2.

Fig. 2. Memory access patterns:

AOS (top), SOA (bottom)

The LBM requires a total of 33 arrays,
15 for the density functions, another 15 for
swapping the new density functions with
the old ones after the streaming step, three
for the velocity, one for the density and
another one for the level-set function used
for the solid boundaries. Note that we used
double precision floating-point numbers

since single precision does not meet the
accuracy requirements. Double precision
floating-point operations are only available
on GPU devices with compute capability
1.3 or greater. Furthermore, all arrays are
one-dimensional. Mapping the three-
dimensional coordinates to a global index
inside the array is performed as follows:

kNjNNii zzyg . (9)

And the other way around:

,

,

,

zzyg

z

zyg

zy

g

NjNNiik
N

NNii
j

NN
i

i

 (10)

where: i, j and k are the node coordinates
in the three-dimensional grid. Note that
these values are approximated with the
floor function, Nx, Ny and Nz are the grid
sizes in each direction and ig is the global
index of the node in the one-dimensional
array. Both (9) and (10) are used at the
streaming step for finding the global index
of the neighbouring nodes.

The workflow of the GPU based LBM
implementation is displayed in Figure 3.
The computations required for a time step
are entirely performed on the GPU.
Therefore, host-device memory copy
operations are only required when storing
intermediate results (e.g. for observing
transient or unsteady flows).

A total of four kernels are called at each
iteration. The kernel which computes the
macroscopic quantities (velocity and
density) iterates through the 15 probability
distribution functions, and applies (5) and
(6). All computations are performed only
for the fluid nodes. The results are stored
in the global memory. The computations
for the collision step are performed similarly:

Niţă, C., et al.: GPU Accelerated Fluid Flow Computations Using the Latice Boltzmann Method 71

Fig. 3. Computation workflow

first the equilibrium distribution function is
computed using (3) and then the new
probability distribution functions are
determined based on (2). Since the grid
nodes located at the boundary require a
different treatment than the other nodes,
the streaming step is more complex. This
leads to different code execution paths and
therefore to reduced parallelism. However,
since very few grid nodes reside next to the
boundary, this aspect is not crucial for the
overall performance. The workflow of the
streaming step is described in Figure 4.

3. Results and Discussion

To compare the performance of the CPU
based implementation of the LBM with the
GPU based implementation, we considered
three different NVIDIA GPU cards: GeForce

Fig. 4. The workflow of the streaming step

GTX 460, GeForce GTX 650 and GeForce
GTX 680 (the first one is based on the
Fermi architecture, while the other two are
based on the Kepler architecture). The CPU
based implementation was run on an eight-
core i7 processor using both single and
multi-threaded code. Parallelisation of the
CPU code was performed using OpenMP.

Three different benchmark applications
were considered for performance comparison:
Poisseuille flow, lid-driven cavity flow and
flow in an elbow shaped domain (Figures 5
and 6). Different grid resolutions were

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 1 - 2013

72

Fig. 5. Flow through an elbow shaped

domain

considered, leading to grids with 0.25 to 4
million nodes. The grid configuration is
different for each of these cases hence the
execution time and GPU-CPU speed-up is
also different. Table 1 displays the
execution times for all test cases. The
computations on the grid with 4 million
nodes could only be run on the GTX 680
card, the other two having not enough
memory. Note that these execution times
correspond to only one computation step.
The total number of computation steps to
obtain convergence strongly depends on
the grid resolution, i.e. the time needed by
the pressure wave to propagate from one
end to the other which is given by the
lattice speed of sound. For the Poisseuille
flow computations on the 50x50x200 grid,
5000 steps were required for reaching
steady state and twice as much for the

100x100x400 grid. A similar number of
steps is required for the computations in
the elbow shaped domain.

However, for the lid driven cavity flow
steady state is reached after a much higher
number of steps. In this case the fluid
movement is not given by the pressure drop
but by the moving lid which causes the fluid
to move along with it because of the shear
stress. Velocity propagation due to shear
stress is much slower than in a pressure-
driven flow, hence a much larger number of
time steps are required (50000 steps).
Figure 6 top displays the streamlines of a
lid-driven cavity flow.

The performance improvements are
significant and demonstrate that a GPU
based implementation of the LBM is
superior to a multi-core CPU based
implementation. The best performance has
been obtained for the GTX 680, as the
results displayed in bold in Table 1 show.
For grids with more than 0.5 million nodes,
the speed-up is around 14x on the GTX 680
and higher than 10x for smaller grids. For
the elbow case, since about 83% of the grid
nodes are solid nodes and don’t require any
computation, the speed-up is of only 7x for
a grid with 0.5 million nodes and 10x for 2
million nodes. Figure 7 displays a
comparison of the execution times for all
three employed GPUs and the multi-
threaded CPU code. Note that the
performance of the GTX 650 card is around
2x lower than the GTX 460, an aspect

Fig. 6. Lid-driven cavity flow at Re = 1000
(left) and Poisseuille flow (top)

Niţă, C., et al.: GPU Accelerated Fluid Flow Computations Using the Latice Boltzmann Method 73

Measurements of the execution times for one computation step Table 1
GeForce GTX

680
GeForce GTX

650
GeForce GTX

460 Bench-
mark
case

Grid
resolution

Single-
threaded

CPU
code
[ms]

Multi-
threaded

CPU
code
[ms]

Time
[ms]

Speed-
Up

Time
[ms]

Speed-
Up

Time
[ms]

Speed-
Up

100x100x400 3924.8 608.38 42.4 14.35 - - - -
50x50x200 484.3 81.39 5.7 14.28 17.5 4.65 9.6 8.48 Poisseuille

flow 25x25x100 61.01 11.24 1 11.24 3 3.75 1.7 6.61
100x100x100 977.94 152.48 11 13.86 34.2 4.46 18.8 8.11

50x50x50 120.81 20.34 1.8 11.30 5 4.07 2.9 7.01
Lid-driven

cavity
flow 25x25x25 15.09 3.35 0.5 6.70 1.1 3.05 0.9 3.72

200x200x50 1956.12 91.02 0.5 10.71 1.1 3.13 0.9 5.03 Elbow 100x100x50 242.46 12.0 8.5 7.06 29.1 2.61 18.1 4.14

Fig. 7. Comparison of the execution times

which confirms the concerns raised for the
first GPUs of the Kepler architecture,
which stated that the performance is in fact
lower than for the previously released
cards of the 400 and 500 GeForce series.
According to NVIDIA, the focus was
directed towards lower power consumption
for the GPUs from the GeForce 600 series.

Although the parallel implementation of
LBM leads to a significant performance
increase, the algorithm does not fully benefit
from the GPU power mainly because of the
global memory accesses, which is a
commonly encountered bottleneck of GPU
based computational workflows. This
drawback is prominent at the streaming step

where the majority of global memory
accesses are required. The streaming step
occupies around 50% of the execution time
of a computation step. Another limiting
factor is given by the boundary nodes, which
require a special treatment.

4. Conclusions

In this paper, we introduced a GPU
based parallel implementation of the
Lattice Boltzmann Method. We focused on
optimizing the global memory access by
using the SOA approach instead of the
AOS approach and 1-D arrays. Although
the GPU is not used at its full capacity the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 6 (55) No. 1 - 2013

74

performance improvement was significant,
the GTX680 leading to a speed-up of over
14x for grids with more than 0.5 million
nodes and of 10x for smaller grids,
compared to a multi-core CPU-based
implementation.

The acceleration of the execution time of
the LBM is an important aspect, especially
since the LBM has been used increasingly
for blood flow computations [2]. When
blood flow is modelled in patient-specific
geometries in a clinical setting, results are
required in a timely manner not only to
potentially treat the patient faster, but also
to perform computations for more patients
in a certain amount of time.

Future work will be directed towards
further optimization of the global memory
accesses. Moreover, a multi-GPU based
implementation will be considered to
further increase the parallelism.

Acknowledgements

This work is supported by the program
Partnerships in Priority Domains (PN II),
financed by ANCS, CNDI - UEFISCDI,
under the project nr. 130/2012.

References

1. Bouzidi, M., Firdaouss, M.,

Lallemand, P.: Momentum Transfer of
a Boltzmann-Lattice Fluid with
Boundaries. In: Physics of Fluids 13
(2001) No. 11, p. 452-3459.

2. Golbert, D.R., Blanco, P.J., Clausse,
A., Feijóo, R.A.: Tuning a Lattice-
Boltzmann Model for Applications in
Computational Hemodynamics. In:
Medical Engineering & Physics 34
(2012) No. 3, p. 339-349.

3. Ho, C.H., Chang, C., Lin, K.H., Lin,
C.A: Consistent Boundary Conditions
for 2D and 3D Lattice Boltzmann

Simulations. In: Computer Modeling in
Engineering and Sciences 44 (2009)
No. 2, p. 137-155.

4. Kirk, D., Hwu, W.M.: Programming
Massively Parallel Processors: A
Hands-on Approach. London.
Elsevier, 2010.

5. Riegel, E., Indinger, T, Adams, N.A.:
Implementation of a Lattice-Boltzmann
Method for Numerical Fluid
Mechanics using the nVIDIA CUDA
Technology. In: Computer Science-
Research and Development 23 (2009)
No. 3, p. 241-247.

6. Succi, S.: The Lattice Boltzmann
Equation - For Fluid Dynamics and
Beyond. New York. Oxford University
Press, 2001.

7. Taylor, C.A., Steinman, D.A.: Image-
based Modeling of Blood Flow and
Vessel Wall Dynamics: Applications,
Methods and Future Directions. In:
Annals of Biomedical Engineering 38
(2010) No. 3, p. 1188-1203.

8. Temam, R.: Navier-Stokes Equations -
Theory and Numerical Analysis.
Amsterdam. North Holland Publishing,
1977.

9. Tölke, J.: Implementation of a Lattice
Boltzmann Kernel using the Compute
Unified Device Architecture developed
by nVIDIA. In: Computing and
Visualization in Science 13 (2010) No.
1, p. 29-39.

10. Zou, Q., He, X.: On Pressure and
Velocity Boundary Conditions for the
Lattice Boltzmann BGK Model. In:
Physics of Fluids 9 (1997) No. 6, p.
1591-1598.

11. NVIDIA Corporation: CUDA,
Compute Unified Device Architecture
Programming Guide v5.0 (2013).

12. NVIDIA Corporation: CUDA,
Compute Unified Device Architecture
Best Practices Guide v5.0 (2013).

