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Abstract: We propose a numerical implementation based on a Graphics 
Processing Unit (GPU) for the acceleration of the execution time of the Lattice 
Boltzmann Method. The performance analysis is based on three three-
dimensional benchmark applications: Poisseuille flow, lid-driven cavity flow 
and flow in an elbow shaped domain. Three different, recently released GPU 
cards are considered for the parallel implementation. To correctly evaluate the 
speed-up potential of the GPUs, both single-core and multi-core CPU based 
implementations are used. The results indicate that the GTX 680 GPU card 
leads to the best performance, with a speed-up ranging between 6.7 and 14.35 
over the multi-core CPU based implementation, depending on the application 
and on the grid density. 
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1. Introduction 
 
The classic method for studying fluid 

flow is based on the Navier-Stokes (NS) 
equations, a system of nonlinear partial 
differential equations [8]. The numerical 
solution of the Navier-Stokes equations is 
one side a difficult task because of the 
nonlinear terms, and on the other side it is 
computationally very intensive since a 
system of algebraic equations, obtained 
from the Poisson equation, needs to be 
solved at each time step. Considering 
additionally the increased accuracy 
required for engineering or biomedical 
applications, the flow computation can 
take several days, even on modern high 
performance hardware [7]. 

During the last decades, an alternative 

approach for studying fluid flow has been 
proposed: the Lattice Boltzmann Method 
(LBM) [6]. Unlike the NS equations this 
method consists of treating the fluid as a 
system of a large number of particles with 
known mass. This approach becomes 
practical by using the kinetic theory of 
gases, which connects the microscopic 
physical quantities of the fluid with the 
macroscopic quantities: pressure, velocity 
and temperature. The main advantage of 
this approach is that each grid node can be 
computed separately based on previously 
computed values of neighbouring nodes. 
This aspect enables the efficient 
parallelization of the LBM [9]. A previous 
parallel implementation of the LBM 
gained a speed-up of about 9x on a 
NVIDIA Tesla C1060 card [5].  
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With the increasing computational power 
of Graphics Processing Units (GPU), 
parallel computing has become available at 
a relatively small cost. With the advent of 
CUDA (Compute Unified Device 
Architecture), several researchers have 
identified the potential of GPUs to 
accelerate engineering applications in 
general, and Computational Fluid Dynamics 
(CFD) applications in particular to 
unprecedented levels [4]. Modern GPUs are 
able to deliver at peak performance over 1 
TFLOP, i.e. ten times faster than a 
multicore CPU.  

In this paper we analyze the speed-up 
potential of the numerical solution of the 
LBM, using three recently released GPUs, 
with different architectures. To correctly 
evaluate the speed-up potential, results are 
compared against both single-core and 
multi-core CPU-based implementations. 

The paper is organized as follows. In 
section two we first briefly review the 
LBM. Then we introduce the numerical 
implementation, focusing on its 
parallelization on a GPU. Section three 
presents detailed results regarding the speed-
up obtained with different GPUs and finally, 
in section four, we draw the conclusions. 
 
2. Methods 
 
2.1. The Lattice Boltzmann Method 
 

For studying the parallel implementation 
of the LBM, we considered the single 
relaxation time version of the equation, 
based on the Bhatnagar-Gross-Krook (BGK) 
approximation, which assumes that the 
macroscopic quantities of the fluid are not 
influenced by most of the molecular 
collisions (1):  
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where: fi represents the probability 
distribution function along an axis ci; τ is a 
relaxation factor related to the fluid 
viscosity; x represents the position and t is 
the time. The discretization in space and 
time is performed with finite difference 
formulas. This is usually done in two steps: 
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The first equation is known as the 

collision step, while the second one 
represents the streaming step. feq is called 
the equilibrium distribution and is given by 
the following formula: 
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where ωi is a weighting scalar, 3/1sc  is 
the lattice speed of sound and u is the fluid 
velocity. ρ(x,t) is a scalar field, commonly 
called density, which is related to the 
macroscopic fluid pressure as follows: 
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Once all fi have been computed, the 

macroscopic quantities can be determined: 
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The computational domain is similar to a 
regular grid used for finite difference 
algorithms. For a more detailed description 
of the Boltzmann equation and the collision 
operator we refer the reader to [6]. 

The current study focuses on three-
dimensional flow domains, hence we used 
the D3Q15 lattice structure, displayed in 
Figure 1 for a single grid node. A vector 

ic  and a scalar weight iw  are defined for 
each lattice link: 
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and the weighting factors are: 
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The boundary conditions (inlet, outlet and 

wall) are crucial for any fluid flow 
computation. For the LBM, the macroscopic 
quantities (flow rate/pressure) can not be 
directly imposed at inlet and outlet. 
 

 
 

Fig. 1. The D3Q15 lattice structure, first 
number in the notation is the space 

dimension, while the second one is the 
lattice links number 

Instead, the known values of the 
macroscopic quantities are used for 
computing the unknown distribution 
functions near the boundary. For the inlet 
and outlet of the domain we used Zou-He 
[3], [10] boundary conditions with known 
velocity. The outlet velocity value is set so 
as to obtain a zero gradient along the 
boundary normal vector. For the solid 
walls we used bounce-back boundary 
conditions based on interpolations, for 
improving the accuracy when dealing with 
complex geometries [1]. The solid walls 
are defined as an isosurface of a scalar 
field, commonly known as the level-set 
function. Each point in the field is the 
signed distance between the grid node and 
the boundary, therefore the solid wall is 
located where the scalars are zero. 
 
2.2. GPU based parallel implementation 

of the Lattice Boltzmann Method 
 

In the following we focus on the 
parallelization of the LBM, based on a 
GPU device. The GPU is viewed as a 
compute device which is able to run a very 
high number of threads in parallel inside a 
kernel (a function, written in C language, 
which is executed on the GPU and 
launched by the CPU). The GPU contains 
several streaming multiprocessors, each of 
them containing several cores. The GPU 
(usually also called device) contains a 
certain amount of global memory to/from 
which the CPU or host thread can 
write/read, and which is accessible by all 
multiprocessors. Furthermore, each 
multiprocessor also contains shared memory 
and registers which are split between the 
thread blocks and the threads, which run 
on the multiprocessor, respectively. 

The GPU based implementation of the 
LBM is performed based on the formulation 
described in section 2.1. The computations 
for a single grid node require only the 
values of the neighbouring nodes from the 
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previous time step. As a result, each node 
can be computed at each time step 
independently from other nodes, and one 
CUDA thread is used for each grid node. 
The main difference between the CPU and 
the GPU implementation of the LBM is the 
memory arrangement. Regularly, on the 
CPU, a data structure containing all the 
required floating-point values for a grid 
node is defined, and then an array of this 
data structure is created (the Array Of 
Structure approach - AOS). This approach 
is not a viable solution on the GPU because 
the global memory accesses would not be 
coalesced and would drastically decrease the 
performance [11], [12]. Instead of AOS, the 
Structure Of Arrays (SOA) approach has 
been considered. E.g. for the fluid velocity, 
instead of storing all the vector components 
in one array, three different arrays are used 
(one for each component). The memory 
access patterns are described in Figure 2. 
 

 
Fig. 2. Memory access patterns: 

AOS (top), SOA (bottom) 
 

The LBM requires a total of 33 arrays, 
15 for the density functions, another 15 for 
swapping the new density functions with 
the old ones after the streaming step, three 
for the velocity, one for the density and 
another one for the level-set function used 
for the solid boundaries. Note that we used 
double precision floating-point numbers 

since single precision does not meet the 
accuracy requirements. Double precision 
floating-point operations are only available 
on GPU devices with compute capability 
1.3 or greater. Furthermore, all arrays are 
one-dimensional. Mapping the three-
dimensional coordinates to a global index 
inside the array is performed as follows: 
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where: i, j and k are the node coordinates 
in the three-dimensional grid. Note that 
these values are approximated with the 
floor function, Nx, Ny and Nz are the grid 
sizes in each direction and ig is the global 
index of the node in the one-dimensional 
array. Both (9) and (10) are used at the 
streaming step for finding the global index 
of the neighbouring nodes. 

The workflow of the GPU based LBM 
implementation is displayed in Figure 3. 
The computations required for a time step 
are entirely performed on the GPU. 
Therefore, host-device memory copy 
operations are only required when storing 
intermediate results (e.g. for observing 
transient or unsteady flows). 

A total of four kernels are called at each 
iteration. The kernel which computes the 
macroscopic quantities (velocity and 
density) iterates through the 15 probability 
distribution functions, and applies (5) and 
(6). All computations are performed only 
for the fluid nodes. The results are stored 
in the global memory. The computations 
for the collision step are performed similarly: 
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Fig. 3. Computation workflow 

 
first the equilibrium distribution function is 
computed using (3) and then the new 
probability distribution functions are 
determined based on (2). Since the grid 
nodes located at the boundary require a 
different treatment than the other nodes, 
the streaming step is more complex. This 
leads to different code execution paths and 
therefore to reduced parallelism. However, 
since very few grid nodes reside next to the 
boundary, this aspect is not crucial for the 
overall performance. The workflow of the 
streaming step is described in Figure 4.  
 
3. Results and Discussion 
 

To compare the performance of the CPU 
based implementation of the LBM with the 
GPU based implementation, we considered 
three different NVIDIA GPU cards: GeForce  

 
Fig. 4. The workflow of the streaming step 

 
GTX 460, GeForce GTX 650 and GeForce 
GTX 680 (the first one is based on the 
Fermi architecture, while the other two are 
based on the Kepler architecture). The CPU 
based implementation was run on an eight-
core i7 processor using both single and 
multi-threaded code. Parallelisation of the 
CPU code was performed using OpenMP.  

Three different benchmark applications 
were considered for performance comparison: 
Poisseuille flow, lid-driven cavity flow and 
flow in an elbow shaped domain (Figures 5 
and  6).  Different  grid  resolutions  were 
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Fig. 5. Flow through an elbow shaped 

domain 
 

considered, leading to grids with 0.25 to 4 
million nodes. The grid configuration is 
different for each of these cases hence the 
execution time and GPU-CPU speed-up is 
also different. Table 1 displays the 
execution times for all test cases. The 
computations on the grid with 4 million 
nodes could only be run on the GTX 680 
card, the other two having not enough 
memory. Note that these execution times 
correspond to only one computation step. 
The total number of computation steps to 
obtain convergence strongly depends on 
the grid resolution, i.e. the time needed by 
the pressure wave to propagate from one 
end to the other which is given by the 
lattice speed of sound. For the Poisseuille 
flow computations on the 50x50x200 grid, 
5000 steps were required for reaching 
steady  state  and  twice  as  much  for  the 

100x100x400 grid. A similar number of 
steps is required for the computations in 
the elbow shaped domain. 

However, for the lid driven cavity flow 
steady state is reached after a much higher 
number of steps. In this case the fluid 
movement is not given by the pressure drop 
but by the moving lid which causes the fluid 
to move along with it because of the shear 
stress. Velocity propagation due to shear 
stress is much slower than in a pressure-
driven flow, hence a much larger number of 
time steps are required (50000 steps). 
Figure 6 top displays the streamlines of a 
lid-driven cavity flow. 

The performance improvements are 
significant and demonstrate that a GPU 
based implementation of the LBM is 
superior to a multi-core CPU based 
implementation. The best performance has 
been obtained for the GTX 680, as the 
results displayed in bold in Table 1 show. 
For grids with more than 0.5 million nodes, 
the speed-up is around 14x on the GTX 680 
and higher than 10x for smaller grids. For 
the elbow case, since about 83% of the grid 
nodes are solid nodes and don’t require any 
computation, the speed-up is of only 7x for 
a grid with 0.5 million nodes and 10x for 2 
million nodes. Figure 7 displays a 
comparison of the execution times for all 
three employed GPUs and the multi-
threaded CPU code. Note that the 
performance of the GTX 650 card is around 
2x  lower  than  the  GTX  460,  an  aspect  

 

 

 
 
 

Fig. 6. Lid-driven cavity flow at Re = 1000 
(left) and Poisseuille flow (top) 
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Measurements of the execution times for one computation step      Table 1 
GeForce GTX 

680 
GeForce GTX 

650 
GeForce GTX 

460 Bench-
mark 
case 

Grid 
resolution 

Single- 
threaded  

CPU 
code  
[ms] 

Multi- 
threaded  

CPU 
code  
[ms] 

Time 
[ms] 

Speed-
Up 

Time 
[ms] 

Speed-
Up 

Time 
[ms] 

Speed-
Up 

100x100x400 3924.8 608.38 42.4 14.35 - - - - 
50x50x200 484.3 81.39 5.7 14.28 17.5 4.65 9.6 8.48 Poisseuille 

flow 25x25x100 61.01 11.24 1 11.24 3 3.75 1.7 6.61 
100x100x100 977.94 152.48 11 13.86 34.2 4.46 18.8 8.11 

50x50x50 120.81 20.34 1.8 11.30 5 4.07 2.9 7.01 
Lid-driven 

cavity 
flow 25x25x25 15.09 3.35 0.5 6.70 1.1 3.05 0.9 3.72 

200x200x50 1956.12 91.02 0.5 10.71 1.1 3.13 0.9 5.03 Elbow 100x100x50 242.46 12.0 8.5 7.06 29.1 2.61 18.1 4.14 
 

 
Fig. 7. Comparison of the execution times 

 
which confirms the concerns raised for the 
first GPUs of the Kepler architecture, 
which stated that the performance is in fact 
lower than for the previously released 
cards of the 400 and 500 GeForce series. 
According to NVIDIA, the focus was 
directed towards lower power consumption 
for the GPUs from the GeForce 600 series. 

Although the parallel implementation of 
LBM leads to a significant performance 
increase, the algorithm does not fully benefit 
from the GPU power mainly because of the 
global memory accesses, which is a 
commonly encountered bottleneck of GPU 
based computational workflows. This 
drawback is prominent at the streaming step 

where the majority of global memory 
accesses are required. The streaming step 
occupies around 50% of the execution time 
of a computation step. Another limiting 
factor is given by the boundary nodes, which 
require a special treatment.  
 
4. Conclusions 
 

In this paper, we introduced a GPU 
based parallel implementation of the 
Lattice Boltzmann Method. We focused on 
optimizing the global memory access by 
using the SOA approach instead of the 
AOS approach and 1-D arrays. Although 
the GPU is not used at its full capacity the 
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performance improvement was significant, 
the GTX680 leading to a speed-up of over 
14x for grids with more than 0.5 million 
nodes and of 10x for smaller grids, 
compared to a multi-core CPU-based 
implementation.  

The acceleration of the execution time of 
the LBM is an important aspect, especially 
since the LBM has been used increasingly 
for blood flow computations [2]. When 
blood flow is modelled in patient-specific 
geometries in a clinical setting, results are 
required in a timely manner not only to 
potentially treat the patient faster, but also 
to perform computations for more patients 
in a certain amount of time.  

Future work will be directed towards 
further optimization of the global memory 
accesses. Moreover, a multi-GPU based 
implementation will be considered to 
further increase the parallelism. 
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