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Abstract: A new model of describing the shear lag phenomenon in 
composite thin-walled beams with arbitrary open or closed cross sections is 
defined. This phenomenon is unable to calculate using the classical theory of 
thin-walled beams based on the assumption that shear strains in the middle 
surface can be neglected. Therefore, this paper is based on facts presented in 
the papers of Prokic. He proposed the new warping function valid for both, 
open and closed cross sections and it does not require assumption of 
neglecting shearing strains. The general approach to the solution of the 
problem is based on the finite element method. The principle of virtual 
displacements has been used to give a new linear stiffness matrix.  
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1. Introduction 
 
Thin-walled composite structures are 

widely used  in many fields of aerospace, 
automotive, nautical and other industries. 
Over a past few decades they became 
broadly adopted in civil engineering due to 
many advantages of this material, like 
lightweight feature in relation of 
resistance, corrosion resistance, low 
thermal expansion, good mechanical 
characteristics, etc. 

This significant increase in the use of 
thin-walled composite structures requests 
comprehensive analysis approach and 
many researchers work on this theme but, 
to the author’s knowledge, only few of 
them dealt with the phenomenon known as 
shear lag. Shear lag effect may bring a 
non-uniform distribution of normal stresses 
in the beams, different from that predicted 
by the Bernoulli hypothesis. Ignoring this 
effect in the analysis of the mechanical 

behavior of thin-walled structures can lead 
to overestimated values of capacity, 
unacceptable from the standpoint of 
structural safety. This suggests that the 
effect of shear lag must be paid special 
attention. 

The phenomenon of shear lag has been 
extensively studied in order to develop a 
reliable model for its analysis. The 
classical theory of thin-walled beams [1] is 
based on the assumption that the shear 
strains in the middle surface can be 
neglected. While this results offer a simple 
analytical solution, it is unable to reflect 
phenomenon such as shear lag.  

Reissner [2] developed method based on 
the principle of minimum of potential 
energy to describe shear lag phenomenon. 
Moffat and Dowling [3] used finite 
element method to describe effective 
breadth concept, they first set up design 
rules for steel box girders, based on 
effective breath.  
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Papers dealt with investigation of shear 
lag in composite materials are much less 
represented. Some solutions to this issue 
are presented in the works of Takayanagi 
[4] and Lopez-Anido and GangPao's [5]. 
They examined the influence of shear lag 
on the I beams, and the thin-walled 
prismatic orthotropic composite beams. 
Recent paper was presented by Wu [6], he 
proposed solution of single-cell thin-
walled composite-laminated box beams 
under bending loads with consideration of 
both shear lag and shear deformation. The 
lack of this solution is  limited use. It is 
aplicable only on a symmetric composite 
single-cell box beams. 

In this paper, the finite element 
describing the shear lag phenomenon is 
presented. It is defined on the basis of the 
warping function presented by Prokic 
[7,8]. This warping function is valid for 
open and close cross-sections. The 
assumption of neglecting the shear strain in 
the middle plane is not necessary, shear 
stresses can be directly determined from 
the relevant strains. The distribution of 
normal stresses caused by deplanation is 
not specified by warping function but the 
displacement parameters of nodal points. 
This allows analysis the influence of shear 
lag effect on girders. 

 
2. Basic theory 
 

A straight, thin-walled beam with an 
open or closed cross section is considered. 
The midline of cross-section is idealized 
by a number of straight lines connected by 
discrete points (nodal points of cross-
section) i=1,2,...,n. 

As usual, the two coordinate systems are 
used in the analysis of thin-walled beams. 
Descartes' coordinate system xyz, of the 
right orientation, where the z axis is 
parallel to the axis of the rod, and x and y 
axis lie in the cross section plane, and the 

curvilinear coordinate system esz, also of 
the right orientation, with unit vectors n, t 
and ,  Fig. 1. zi

 

 
Fig. 1. Thin-walled beam of arbitrary 

cross section 
 
The present theory is based on the 

following assumptions: 
1. the cross-section is perfectly rigid in its 
own plane, 
2. the longitudinal displacements caused 
by warping vary linearly between any two 
adjacent nodal points 
3. the relative warping in relation to the 
midline is qualitatively defined with the 
solution of Saint-Venant’s torque. 

According to the first assumption the 
cross-sectional behavior can be described 
by only three displacement components, 
two translations u and v and an angle of 
twist   of center of gravity (Fig. 2). From 
geometric considerations, normal and 
tangential displacements of an arbitrary 
point S with coordinates x and y on the 
contour, where the angle of twist is 
sufficiently small, are 
 

*

*
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      

      
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                    where 

(1) 

 
  denotes the angle between the x 

and n axes,  represents the  nh
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



Fig.2. Displacement component
  

perpendicular distance from normal at 
point S to the point C given by 
 

sin cos  nh x y

                
and h represents the perpendicular distance 
from tangent at point S to the point C given 
by 

(2)
 

 
cos sinh x y  

                                 n  and h are positive when normal n and 
tangent t respectively are rotating 
counterclockwise about the center of  

(3)
 
h

 
gravity, when observed from positive z 
direction. 

Displacement of cross-section at z 
direction can be described in the following 
form: 
 

* x y warw w y x w      p

5) 

here 

s e
warp warp warpw w w                                 (

 
w
 

   ,s i
warp i

i

z x w w y

                    

(6) 

 
presents warping along the midline of 

he

re
cross-section.  Unknown parameters iw  
are displacements of arbitrary points on t  
midline. Those points are nodes of the 
section and their number determines the 
number of unknown parameters of 
displacements. 

Function i  depends on the mode of 
d t cisplacemen hange between the nodes of  
polygonal cross-section. If this change is 
linear, according to the second assumption, 
which is in conformity with the classical 
theory of thin-walled beams, then the 

function i  has a simple geometrical 
meaning, as shown in Fig. 3. The function 

i  exists only along parts between the 
nt i, where it takes the value 1, and 

adjacent nodes, where it takes the value 0.  

(4) 

               
 The last term of (4) defines warping of 
the cross-section as suggested by Prokic 
[7,8]. 

 

poi
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Fig. 3. Warping function 

 
The second term on the right side of (5) 

determines the relative warping in relation 
to the midline of the cross-section, and, 
according to the third assumption, is equal 
to: 
 

   ,e
dw x y    z

                  

(7) 

 
where 
 

 , nx y h  e

                     
Now, for the total longitudinal 

displacement we obtain: 

(8)

 

 

*
i

x y i
i

w w y x w        

    

(9) 

 
3. Finite element 

 
A typical thin-walled element is shown 

in Fig.4. The element has  6+n degrees of 
freedom at each end node 

 1 2, , , , , , , , ... ,i i i i i i i i niu v w v u w w w  
Equation (1) and (9) can be converted to 

matrix form 
 
 

 
Fig.4. Finite element 
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Let us denote the vector of generalized 

nodal displacement (Fig. 4) in the 
following way 
 

1
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i n
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Where Hermitt polinomials are adopted as 
a interpolation functions for displacements 
u and v, and a linear displacements 
function is adopted for  1, , , ... , nw w w  
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Then, we can write 
 

1,2,....,
i

u u

v v

w

i w

u N q

v N q

Nq

w Nq

w Nq i n
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
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(14)

      

 

Substituting (14) into (10) displacement 
of an arbitrary point of cross-section could 
be obtained in terms of nodal parameters        
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 where 
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4. Stiffness matrix 
   

Considering assumptions, strain 
components different from zero are: 
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(17) 

     

  
where    
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Substituting  (16) into (18) we obtain 

 
B q                                 (19)
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Where 
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We denote matrix of reduced stiffnesses 

with D   
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Linear stiffness matrix may be 
represented in the following form 
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5. Numerical example 
 

To test the accuracy of the proposed 
method a numerical example was analysed. 
A simply supported girder of cross-section 
shown in Fig.5 was subjected to a moment 
of torsion. Displacements of the centroid 
and shear center are shown in Table 1. 
Results show there is no need for leading 
in the shear centre because the 
displacements are close to zero. 

 

 
 

Fig.4. Cros- section 
  

Table 1 

Displacements of the centroid and shear 
center 
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Displacement 
in x direction 

Displacement 
in y direction 

centroid 2.778 1.523 

Shear 
center D 

-0.115  0  -0.071   0 


