
Bulletin of the Transilvania University of Braşov  
CIBv 2014 • Vol. 7 (56) Special Issue No. 1 - 2014 

 
DYNAMIC RESPONSE OF A COMPOSITE 

BEAM 
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Abstract: Bridges and railroads made of composite laminates are affected 
by moving loads. Therefore, it is very important to analyze this effect which 
would find practical applications in engineering designs. This paper explains 
the theoretical formulation that governs the dynamic response of a composite 
beam subjected to a moving load. The Mori-Tanaka method for 
determination of effective material characteristics is used. The governing 
equations for the laminated composites are explained here.  
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1. Introduction 
 

 The rapid growth in the use of composite 
materials in structures has required the 
development of the theory of mechanics of 
composite materials and the analysis of 
structural elements made of composite 
material. Composite materials have higher 
strength-to-weight and stiffness-to-weight 
ratios than metals and find many 
applications such as composite bridge 
decks. Therefore, it is very important to 
understand the response of composite 
bridges to vehicle-induced vibrations. 

 
2. Modelling and analysis of composite 

laminated beam 
 

The analysis of structural elements can 
be performed by analytical and 
semianalytical approaches or by numerical 
methods. The advantage of analytical 
solutions is their generality allowing the 
designer to take into account various 
design parameters. Analytical solutions 
may be either closed form solutions or 

infinite series and may be exact solutions 
of the governing equations or variational 
approaches. 
However, analytical solutions are restricted 
to the analysis of simple structural 
elements. Otherwise numerical methods 
have to be applied more general for 
structural analysis [7].  
We consider composite laminated beam 
under lateral loading.  The elementary or 
classical beam theory assumes that the 
transverse shear strains are negligible and 
plane cross-sections before bending remain 
plane and normal to the axis of the beam 
after bending (Bernoulli-Euler beam 
theory). 
The assumption of neglecting shear strains 
is valid if the thickness h is small relative 
to the length l (h/l <1/20). For thick beams 
(h/l >1/20) the shear deformation theory is 
used. The governing equations of the shear 
deformation theory for composite beams 
are considered. The differential equations 
will be developed in detail for bending 
only, the equations for vibration will be 
described. 
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Laminate beams with simple or double 
symmetric cross-sections are most 
important in engineering applications. The 
derivations are therefore limited to straight 
beams with simple symmetric constant 
cross-sections which are predominantly 
rectangular. The bending moments act in 
a plane of symmetry. Also cross-sections 
consisting of partition walls in and 
orthogonal to the plane of bending. 
The analysis and results of the classical 
laminate theory are sufficiently accurate 
for thin beams. Such beams are often used 
in civil engineering. For moderately thick 
beams we have to take into account the 
shear deformation effects, at least 
approximately. The theory of laminate 
beams corresponds then with the 
Timoshenko's beam theory [1-3].  
However, since Timoshenko's beam theory 
assumed constant shear strains through the 
thickness h a shear correction factor is 
required to correct the shear strain energy. 
In this section we study the influence of 
transverse shear deformation upon the 
bending of laminated beams. When it is 
applied to beams, the first order shear 
deformation theory is known as 
Timoshenko's beam theory.  
Based upon the kinematical assumption of 
the first order shear deformation theory the 
displacements of the beam have the form  
     xzxuzxu ,                  (1) 

   xwzxw ,                                    (2) 
with strains 
      xzκxεzxε xxx ,                    (3) 

    xwxzxxz ´,                     (4) 

where 

 
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                                    (5) 

   
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xκx d
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                              (6) 

When the transverse shear strain is 
neglected it follows with 0xz that the 

relationship is   wx  x´  and that is 
the Bernoulli's kinematics. 
Consider a laminate beam element consists 
with N layers (Fig. 1). The layers are 
symmetrical sequence to the midplane. 
 

  nh 
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Fig. 1. Laminate N-layered element 
 
Constitutive equations are following form 

xx DM 11                                            (7) 

                                  (8) xz
s

xz AkV 55
Substituting the constitutive equations for 
Mx, Vxz into the equilibrium equations of 
the moments and transverse force 
resultants results in the following set of 
governing differential equations for a 
laminated composite beam subjected to a 
lateral load p3 and including transverse 
shear deformation 
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where ks is transverse shear deformation 
parameter. 
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A55 is transverse shear stiffness coefficient, 
E11 is coefficient of elastic matrix, 
More often products and structures are 
subjected to vehicular dynamic loads. In 
the linear-elastic range, dynamic effects 
can be divided into two categories: free 
vibrations and forced vibrations, and the 
latter can be further subdivided into one-
time events or receiving loads. 
Mathematically, natural vibration problems 
are called eigenvalue problems. They are 
represented by homogeneous equations, 
for which nontrivial solutions only occur at 
certain characteristic values of a parameter, 
from which the natural frequencies are 
determined. In a natural vibration the 
displacement field comprises a normal 
mode. 
The shear deformation theory can be used 
for modeling and analysis of forced 
vibrations of laminate beams. In the 
general case of forced vibrations the 
displacements w, the rotation   and the 
transverse load p3 are functions of x and t. 
When in-plane loading is not considered 
but in-plane displacements, rotary and 
coupling inertia terms have to take into 
account for unsymmetrical laminate beam.  
The governing equations for the 
calculation of natural frequencies of 
especially orthotropic beams made of 
symmetric layers without coupling effect 
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where 

mρ  is mass density of the laminate 

2I  is rotational inertia term. 
 

3. Transient dynamic analysis 
 

This type of analysis is also known as 
time-history analysis. This method is 
generally used to determine response due 
to time varying loads. Through this 
analysis, we can find the time varying 
stresses, strains, and deflections produced 
when a system responds to the transient 
loads. A transient analysis is more 
complex and time consuming method 
compared to a static analysis, as it requires 
more engineering input data and better 
understanding of the system response. An 
analyst must have a good insight of the 
problem involved in the analysis.  
Solving of force vibration means to solve 
the equations of motion  
 )()()()(. ttttD Fkvvbvm           (16) 
The equations we can solve by numerical 
methods. The program MATLAB serves 
procedure for the solving the differential 
equations of the first order by the Runge-
Kutta-Fehlberg method. Therefore the 
equations of motion are the second order 
we can transform them by the applicable 
substitution to the first order equations. 
From the equation (16) we get 

  Dtttt mkvvbFv /)()()()(         (17) 
After substitution we have 
   tt 1yv   

   tt 2yv   

   tt 2yv                                    (18) 
Than we solve the system of equations the 
first order 
   tt 21 yy   

     vvtftt  ,,2  vy                (19) 
Modeling of a beam made of composite 
materials is a more difficult task. Special 
attention has to be paid in defining the 
material properties, orientations of the 



Bulletin of the Transilvania University of Braşov • Vol. 7 (56) Special Issue No. 1 - 2014 

 
122 

layers and the element coordinate systems. 
Boundary conditions are the constraints 
and loads that can simulate the effect of the 
environment surrounding a body. Loads 
are applied in the form of forces and 
temperatures. Since, improper application 
of boundary conditions can create 
problems such as increased stiffness, rigid 
body motion, and high local stresses. In the 
present paper, the simply supported beam 
is used for analysis. A symmetric cross-ply 
laminated beam, [0/90]

25s
, made of 

boron/epoxy is analyzed as a cross-section 
of the bridge. In this type of analysis a 
discrete beam model is presented. In the 
discrete beam model, the bridge is 
modeled as one lumped mass connected by 
massless beam elements. In this beam 
model, the effects of shear deformation 
and rotary inertia are neglected. The beam 
has a constant cross section and mass per 
unit length with damping. The vehicle is 
assumed to move from one end to the other 
with constant velocity. The model of 
vehicle consists of two masses with 
damping (Fig. 2). 

 
 

Fig. 2. The model of vehicle made of two 
masses with damping 

 
The equations of vehicle motion have the 
form 
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                                                        (19) 
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                                                              (20) 
The equation of bridge motion has the 
form 

      tFtkytymtym b    2         (21) 

The equations of the road profile are 
assumed 
           thtytthtytv xxx   (22) 

           thtytthtytv xxx
   (23) 

The shape function of the deflection curve 
is 

  t
l

ct
tx  sinsin 






                (24) 

where c is speed of the vehicle in [m/s]. 
There will be avoided the next substitution 
   tystr 11      tystr 21   

   tystr 32      tystr 42   

   tysty 5     tysty 6            (25) 

Then we can solve six differential 
equations of the first order 

   tystsy 21      trtsy 12    
   tystsy 43      trtsy 24     

   tystsy 65      tytsy  6        (26) 

 
4. Solution, Discussion and Results 

 
A symmetric cross-ply laminated beam, 

[(0/90)
25

]
s
, made of boron/epoxy is 

analyzed next. The thickness of the 
laminate bridge deck is 120 mm. The 
geometric and material properties of this 
model are listed in Table 1. The simply 
supported beam is used for analysis (Fig. 
3). 
Parameters of the vehicle T148:  
m1= 18000 kg, k1= 3145762 N/m,  
b1= 260197 kg/s,  
m2= 2120 kg, k2= 9600000 N/m,  
b2= 10987.2 kg/s,  
g= 9.81 m/s2,  
V= 20, 40, 60, 80, 100, 120 km/h. 
Parameters of the bridge:  
m= 6442 kg/m, I= 0.231099 m4,  
E= 1.15.1011 Pa, L= 37 m,  
ωb= 0.23321 rad/s. 
Boundary conditions: 
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t=0, r1(0)= 0.02 m, r2(0)= 0.0033 m, 
y(0)=0.0 m, r 1(0)= 0.0 m/s. 

 
 

 

 
 

Fig. 3. Model of bridge [4] 
 

Material properties of composite laminate               Table 1 
 

Property  Value  
Mass density of the composite, ρ  2100 kg/m

3

 
Longitudinal modulus, E

1
 214 GPa  

Transverse modulus, E
2
 18.7 GPa 

Longitudinal shear modulus, G
12

 4 GPa  

Major in-plane Poisson’s ratio, ν
12

 0.27  

Fiber volume fraction,   0.55 

Effective moduli of laminate [(0/90)
25

]
s ,    

E
x
 = E

y
 115 GPa 

Effective shear modulus of laminate [(0/90)
25

]
s, G xy

 4.8 GPa 

Effective in-plane Poisson’s ratio of laminate, ν
xy

 0.035 

The natural frequencies of the vehicle 1.819 Hz, 12.386 Hz 
The first natural frequency of the bridge 2.334 Hz 

 
Dynamic magnification factors for moving load on composite beam    Table 2 

 
Velocity 
(km/h)  

tmax. 
(s) 

t 
(s) 

Dynamic  
deflection (m) 

Dynamic 
magnification factor 

20  3.3419 6.66 0.00782 1.00057 
40  1.6985 3.33 0.00796 1.01846 
60  0.8144 2.22 0.00816 1.04167 
80  0.7973 1.665 0.00907 1.16115 

100  0.7731 1.33 0.009 1.15153 
120 0.3671 1.11 0.00895 1.14478 
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5. Conclusion 
 
The use of composite materials in the 
modern engineering applications has been 
increasing rapidly. Bridges, aerospace 
structures are few examples of their 
application. Steel bridges are replaced by 
composite materials due to their superior 
qualities like higher strength-to-weight 
ratio. Bridge structures are constantly 
being exposed to various types of loads. 
The major loads that influence the life of a 
bridge is dynamic moving loads.  
Effective material characteristics were 
established using the program HELP [8-
10]. This program works under Mori-
Tanaka method. 
The modal analysis and forced vibration 
analysis of laminated composite beams 
under the effect of moving loads using the 
program MATLAB [4-6] was investigated. 
The program MATLAB serves procedures 
for the solving the differential equations of 
the first order by the Runge-Kutta-
Fehlberg methods.  
The dynamic magnification factors of 
composite beams were calculated (Table 
2). The maximum dynamic magnification 
factor occurs at the velocity of 80km/h. 
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