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Abstract: This paper deals with the design of sliding mode controller for a 
robot manipulator. Due to its order reduction property and its low sensitivity 
to disturbances and plant parameter variations, sliding mode control is an 
efficient tool to control complex high-order dynamic plants. The approach is 
based on a method called the reaching law method, which influences the 
dynamic quality of the system during the reaching phase, and providing the 
means for controlling the chattering level. The control scheme is validated 
through a set of simulations on a Matlab/Simulink package, and the 
simulation results confirmed the theoretical conclusions. 
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1. Introduction 
 
The focus of much of the research in the 

area of control systems theory during the 
seventies and eighties has addressed the 
issue of robustness - i.e. designing 
controllers with the ability to maintain 
stability and performance in presence of 
discrepancies between the plant and model. 
One nonlinear approach to robust 
controller design which emerged during 
this period is the variable structure control 
(VSC) systems methodology [9], [10]. 

VSC concepts have been utilised in the 
design of robust regulators, model-
reference systems, adaptive schemes, 
tracking systems and state observers. The 
ideas have successfully been applied to 
problems as diverse as control of electrical 
motors, automatic flight control, 
mechanical systems, chemical processes, 
control of robot manipulators, observers 
and signal reconstruction [2], [4], [11]. 

The term sliding mode control (SMC) 
first appeared in the context of variable 
structure systems. Sliding modes became 
the principal operational mode for this 
class of control systems. Practically all 
design methods for variable structure 
systems are based on deliberate 
introduction of sliding modes. Due to its 
order reduction property and its low 
sensitivity to disturbances and plant 
parameter variations, SMC is an efficient 
tool to control complex high-order 
dynamic plants operating under uncertainty 
conditions which are common for many 
processes of modern technology. 

The major drawback of SMC is the so-
called chattering phenomenon. Such a 
phenomenon consists of the oscillation of 
the control signal, tied to the discontinuous 
nature of the control strategy, at a 
frequency and with an amplitude capable 
of disrupting, damaging or, at least, 
wearing the controlled physical system. 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014 
 
98 

The robustness of SMC is strictly 
connected to the high-frequency 
oscillations of the control signal. Yet, in 
practical applications the oscillation 
frequency and amplitude are obviously 
finite so that a degradation of the 
performances occurs. Two main causes 
have been identified. First, fast dynamics 
in the control loop which were neglected in 
the system model, are often excited by the 
fast switching of sliding mode controllers. 
Second, digital implementations in 
microcontrollers with fixed sampling rates 
may lead to discretization chatter. Several 
solutions have been proposed in the 
research literature to eliminate or reduce 
the chattering [8], [11]. 

Robots are complex mechanical systems 
with highly nonlinear dynamics. Hence 
high-performance operation requires 
nonlinear control designs to fully exploit a 
robot’s capabilities [6-8]. 

This paper is organized as follows. 
Section II describes the dynamic model of 
robot manipulator. Section III mainly 
presents the principle of sliding mode and 
control algorithm. In Section IV, 
application of the above results to a robot 
manipulator is illustrated. 

 
2. Mathematical Model of Robot 

Manipulator 
 

A large number of control problems for 
mechanical systems are based on 
controlling the position or location of a 
mass using a force or a torque as the input 
variable. The typical example is a robotic 
arm or robot manipulator with n links 
connected by n joints with input 
forces/torques which are the outputs of 
actuators, often electrical actuators, with 
their own complex dynamics. These 
actuator dynamics are usually neglected (in 
the first step) in control design for the 
electromechanical system, assuming they 
are stable and considerably faster than the 

inertial dynamics of the masses. Also, 
other dynamics such as structural 
flexibilities are often neglected when 
deriving a basic model for the mechanical 
system. In practice this leads to the 
chattering problem. 

For a large class of holonomic robot 
systems a continuous-time dynamic model 
can be written in configuration space as 
[1], [5]: 

 
 )()(),()( qGqFqqqNqqM  v , (1) 

 
where 1nxRq  denotes the joint 
configuration variables (translational or 
rotational) of the n robot links; 

nxnR)(qM  is the symmetric, positive 
definite inertia mass matrix; 

nxnR),( qqN   comprises Coriolis and 
centripetal forces; vector 1)( nx

v RqF   
describes viscous friction; vector 

1)( nxRqG  contains the gravity terms; 
1nxR  is the control torque vector. 

Define a 2n-dimensional state vector x 
as: 

 




















q
q

x
x

x
2

1 , (2) 

 
then the nonlinear plant in question (1) is 
described as follows: 
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This is the 2nth-order system having n 
input. 
 
3. Design of Sliding Mode Controller for 

Robot Manipulator 
 

VSC systems comprise a collection of 
different, usually quite simple, feedback 
control laws and a decision rule. 
Depending on the status of the system, a 
decision rule, often termed the switching 
function, determines which of the control 
laws is “on-line” at any one time. The 
transient dynamics of a VSC system 
consists of two modes: a “reaching 
mode” (or “nonsliding mode”), followed 
by a “sliding mode”. Therefore the 
design of VSC involves, first, the design 
of an appropriate n-dimensional 
switching function s(x) for a desired 
sliding mode dynamics, and second, the 
design of a control for the reaching mode 
such that a reaching condition is met. 
The desired sliding mode dynamics is 
usually a fast and stable error-free 
response void of overshoot (an 
asymptotic convergence to the final state 
will be achieved in sliding mode). For 
the reaching mode, the desired response 
usually is to reach the switching 
manifold, described by: 

 
0)( T  xcxs , (4) 

 
in finite time with small overshoot with 
respect to the switching manifold. 

For an n-input system, there are n 
switching functions and 12 n  sliding 
manifolds of different dimensions. The 
first m of them are designated as: 
 

nisS iii ,,1},0{ T  xcx , (5) 
 
which may be called basic sliding 
manifolds since each of them is associated 
with a single switching function. 

The dynamical behaviour of the system 
when confined to the surface is described 
as the ideal sliding motion. The advantages 
of obtaining such a motion are twofold: 
firstly there is a reduction in order and 
secondly the sliding motion is insensitive 
to parameter variations implicit in the input 
channels. 

Gao and Hung [3] proposed a new 
approach, based on a new method called 
the reaching law method, for the design of 
VSC of nonlinear systems.  

The method simultaneously takes care 
of ensuring the reaching condition, 
arranging the logic for the free-order 
switching, influencing the dynamic 
quality of the system during the reaching 
phase, and providing the means for 
controlling the chattering level. The 
procedure of using this method is 
straightforward and easy to carry out, 
even for nonlinear systems. 

The reaching law is a differential 
equation which specifies the dynamics of a 
switching function s(x). The differential 
equation of an asymptotically stable s(x) is 
itself a reaching condition. In addition, by 
the choice of the parameters in the 
differential equation, the dynamic quality 
of VSC system in the reaching mode can 
be controlled. A practical general form of 
the reaching law is: 

 
)()( sKhsQs  sgn , (6) 

 
where: 
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Tree practical special cases of (6) are 

given below. 
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1) Constant rate reaching: 
 

)(sQs sgn . (7) 
 
This law forces the switching variable 

s(x) to reach the switching manifolds S at a 
constant rate ii qs  . The merit of this 
reaching law is its simplicity. But, as will 
be shown later, if qi is too small, the 
reaching time will be too long. On the 
other hand, a qi too large will cause severe 
chattering. 

2) Constant plus proportional rate 
reaching: 
 

KssQs  )(sgn . (8) 
 

Clearly, by adding the proportional rate 
term Ks, the state is forced to approach 
the switching manifolds faster when s is 
large. It can shown that the reaching time 
for x to move from an initial state x0 to the 
switching manifold Si is finite, and is given 
by: 
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3) Power rate reaching: 
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This reaching law increases the reaching 

speed when the state is far away from the 
switching manifold, but reduces the rate 
when the state is near the manifold. The 
result is a fast reaching and low chattering 
reaching mode. Integrating (10) from 

0ii ss   to 0is  yields: 
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showing that the reaching time Ti  is finite. 

Thus power rate reaching law gives a finite 
reaching time. In addition, because of the 
absence of the )(sQsgn  term on the 
right-hand side of (10), this reaching law 
eliminates the chattering. 

Having selected the reaching law 
equation, the control law can now by 
determined. Compute the time derivative 
of s(x) along the reaching mode trajectory, 
then from (4) and (6): 
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Noting that the matrix )()/( xBxs   is 

nonsingular, this equation is solved for the 
control law, giving: 
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This control law appears independent of 

system perturbation and external 
disturbances, which is not realistic. In fact, 
the control u does depend on perturbation 
and disturbances, and it should include 
their parameters. A final but important 
note is that the control law (13), obtained 
via a reaching law, automatically leads to 
the free-order switching scheme. From the 
practical point of view, this scheme 
appears to be the most efficient. 

The principle of designing SMC law for 
arbitrary-order plants is to force the error 
and derivative of error of a variable to 
zero. The robot arm is to track a desired 
motion qd(t). Define an error vector: 
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and then define an n-dimensional vector 
switching function: 
 

  11
2

)( ee
e
e

ICees 1 







  , (15) 

 
where e  is the tracking speed error and: 
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that determine the bandwidth of the 
system. 

Adopt the reaching law (8), and taking 
the time derivative of (15) gives: 
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and the final control law: 
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4. Design Example 

 
Consider the two-link planar robot arm 

in Figure 1, for which the vector of 
generalized coordinates is ,]θθ[ T

21q  

1θ  and 2θ  are absolute joint angles. Let 

1a , 2a  be arm lengths, and 1l , 2l  the 
distances of the centres of mass of the two 
links from the respective joint axes. Also 
let 1lm , 2lm  be the masses of the two 
links, and finally, 1lI , 2lI  the moments of 
inertia relative to the centres of mass of the 
two links, respectively. The values of these 
parameters are given as: m121  aa ; 

m5.021  ll ; kg201 lm , kg102 lm ; 
2

1 kgm8.0lI , 2
2 kgm2.0lI . 

The arm dynamics is described by (1), 
where the gravitational effect and viscous 

friction are neglected: 
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Fig. 1 Two-link planar robot arm 

 
For the sliding mode controller 

technique, the sliding surface is chosen as: 
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Fig. 1. The simulation scheme 
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,2,1,0λ,λ  iees iiiii   
 

where ie  define joint angle errors: 
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and d
iθ  is the desired position of the ith 

joint angle. Selecting the reaching law (8), 
resulted the switching law equations: 
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From (17), the VSC is: 
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where:  
 

  4.5][3.6,diagλ,λdiag 21  . 
 
To demonstrate the performance of the 

proposed control scheme, a set of 
computer simulation runs is carried out on 
an robot manipulator model. 

The SMC system was simulated in 
Matlab/Simulink (Figure 1). Simulation 
results are shown in Figure 2 which 
contains the responses of errors e1 and e2  
(in radians) of the joint angles 1 and 2, 
respectively, switching functions s1 and s2 
(in radians), and control torques 1 and 2 
(in Newton - meters). All four figures have 
the same time scale in seconds.  

 

 
a) 

 
b) 

 
c)  

d) 
Fig. 2. VSC of robot arm: (a), (b) controls 1 and 2; (c) joint angle errors e1 and e2; 

(d) reaching transients s1 and s2 (q1 = q2 = 6, k1 = k2 = 15) 
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5. Conclusions 
 

The paper presents the main steps to be 
followed in the design process of a sliding 
mode controller for robot manipulator. Even 
if the analytical approach is not completely 
detailed, it contains the major elements 
which need to be discussed. The 
performance of a control system depends on 
the types of controllers used. It was found 
that sliding mode controller gave very good 
performance for robot manipulator control. 
The robot manipulator model equations 
provided the basic for the design. 

The effect of proposed method has been 
proven by simulations results. It is 
concluded that the proposed control 
topology produces better results for both 
dynamic and steady state operation. 

Further research includes the study of 
influence of system perturbations and 
external disturbances and the experimental 
validation of the controller in a real plant. 
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