
Bulletin of the Transilvania University of Braşov • Vol. 7 (56) No. 2 - 2014
Series I: Engineering Sciences

ENHANCING FPGA I/O COMMUNICATION

USING WEB SERVICES

O.M. MACHIDON1 F. SANDU1

Abstract: FPGAs (Field Programmable Gate Arrays) are increasingly
being used for both commercial and educational applications that take
advantage of their re-configurability and computational power. The practice
of offloading intensive computations to the FPGA where they can benefit
from the computing parallelism and hardware acceleration is burdened by
the need to overcome I/O bottlenecks generated by the lack of a fast and
easy-to-use interface for transferring data. This paper presents the design
and implementation of a service-based solution for interconnecting a PC and
an FPGA over the Ethernet that offers a flexible, high-speed link for
transferring data using an easy to use web interface.

Key words: FPGA, IP Core, web service, SOA, Ethernet.

1 Dept. of Electronics and Computers, Transilvania University of Braşov.

1. Introduction

FPGA devices have become very

popular solutions for developing digital
embedded systems, being an ideal platform
for both commercial and educational
applications due to their re-configurability,
high flexibility and processing power.
Thus FPGAs are increasingly being used
for deploying compute-intensive tasks and
for prototyping hardware systems.

A general challenge for FPGA designers
is overcoming the I/O bottlenecks
generated by the relatively difficult and
slow communication between the chip and
the external environment - typically a PC
that offloads intensive computational
processes to the device. FPGA chips have
become more and more powerful lately -
gaining in reconfigurable hardware
resources, higher clock frequencies,
optimized power consumption.
Consequently a general trend is currently

underway to use the FPGAs as auxiliary
devices connected to the PC, where
specific computational tasks can be
offloaded. Such tasks can then benefit
from the FPGAs computing parallelism
and hardware acceleration, leading to an
overall speedup of the applications. This
raises the key issue of data transfer to and
from an FPGA device connected to a
general-purpose computer.

There are several interconnect
technologies available for implementing
the communication between and FPGA
and PC: PCI Express, Ethernet, RS232 -
which are available on nearly all recent
FPGA platforms, and other technologies
like Bluetooth, Wi-Fi, Infrared, that are not
so widespread and usually imply
connecting adaptors or extension cards.

PCI Express is without a doubt the fastest
way to transfer data between FPGA and PC,
but also the most expensive and one that
needs dedicated PCI Express driver on the

Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014

90

PC, and an FPGA with PCI Express
capabilities - where a specialized (usually
commercial and expensive) PCI Express IP
Core needs to be instantiated [7].

RS232, while easy-to-use, is outdated
and cannot cope with the performance and
speed requirements of today's digital
applications.

The Ethernet solution remains the most
accessible for interconnecting the two
devices, however it brings on its own
complexity and implementation issues [1].
The majority of existing Ethernet transfer
solutions implement either the UDP/IP or
TCP/IP protocol stack in the FPGA
hardware for communicating with the PC.
These solutions, although viable and with
good performance, are suitable for
complex applications that need extended
network capabilities, and are also quite
difficult to integrate and use in larger
designs.

2. Objectives

This paper presents the design and
implementation of a service-based solution
for interconnecting a PC and an FPGA
over the Ethernet that offers a flexible,
high-speed link for transferring data using
an easy to use web interface.

We have chosen Ethernet as the
underlying technology for our
development since most FPGA platforms
contain an EMAC (Ethernet Media Access
Controller) module that allows direct, data

link level access to the PHY (physical
layer) on-board device.

For successfully implementing this
solution, our efforts have targeted:

- The design and implementation of an
EMAC controller as an HDL IP Core for
Ethernet communication.

- The development of a PC software
application communicating with the
embedded EMAC controller on the FPGA
board over the Ethernet, using a
proprietary protocol over the data-link
layer.

- Abstracting away the complexity of
using the software application by
implementing a web application for
transferring data to/from the FPGA using a
web service and a JSP (Java Server Pages)
web page as an interface to the user.

3. Design and Implementation

The communication solution developed,

illustrated in Figure 1 above, is composed
of two main parts: the embedded hardware
component - running on the FPGA board -
representing the EthController IP Core
(that controls the on-board EMAC
interfacing the ETH PHY) implemented in
Verilog HDL (Hardware Description
Language), and the software component
(RAW socket application - responsible for
the Ethernet communication with the
FPGA, and Web application for exposing
the communication on a web-based
interface using a web service).

Fig. 1. Communication system - general overview

Machidon, O.M., et al.: Enhancing FPGA I/O Communication Using Web Services 91

3.1. EthController IP Core

The hardware implementation is based

on a Atlys Spartan-6 FPGA Development
Board that integrates a Xilinx Spartan-6
LX45 FPGA and a Marvell Alaska Tri-
mode Ethernet PHY paired with a Halo
HFJ11-1G01E RJ-45 connector.

The ETH PHY's timing is controlled by
an on-board 25MHz oscillator. The IP
Core was implemented in Verilog HDL, an
architectural view is available in Figure 2
below.

EthReceive Module
This module is responsible with

receiving data or acknowledgement
packets sent by the raw socket software
application running on the PC. It takes the
following input signals from the ETH

PHY: clock, data bus and data validation,
and provides to the EthSend module the
index of the received packet in order to
send back the corresponding
acknowledgement packet.

The internal architecture of the
EthReceive module is basically composed
of a checksum compute module
(CRC32_D8) and internal logic. The logic
contains several counters and registers for
discriminating inside the received packet
flow. The packet inspection is being
performed “real-time” which means that,
as data is being received, it is also
interpreted and actions are being taken
based on it: the packet is validated, the
length is extracted and the actual data is
being grouped on a 16 bit wide bus and
forwarded by an output port to a
synchronization FIFO.

Fig. 2. EthController IP Core internal architecture and interface with the PHY

When the module's logic detects

rx_valid_i signal=High, a packet is about
to be received. The packet structure is
presented in Figure 3. At first, the validity
of the packet is checked - the existence of
the Preamble and SFD (Start of Frame
Delimiter) fields at the beginning of the
incoming data. After confirming that the
packet is valid, the module proceeds to
checking the packet type - either
confirmation packet or one containing user
data - by analysing the first 4 bytes of the
data frame.

Afterwards the remaining data is
interpreted: the following 2 bytes represent
the packet number, and another 2 bytes -
the length of the contained data.

Fig. 3. Diagram of an Ethernet packet

from the communication PC-FPGA

Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014

92

The user data is received as one nibble
per clock and is read into a 16 bit shift
register that once every 16 bit are read, is
outputted together with a validation signal
to be further used in the FPGA logic.

While data is being read from the
received packet, the CRC is computed on-
the-fly in order to validate its integrity.
This is accomplished using the CRC32_D8
module instantiated in the EthReceive
module. Once the packet has been read
completely, if the CRC32_D8 module's
output value is 0, the packet is validated,
and its index number is written in the
synchronization FIFO to be used by the
EthSend module for sending the
acknowledgement packet, otherwise it is
ignored and discarded.

EthSend Module
This module is responsible with sending

packets - either for acknowledgement of
the received ones or containing data - from
the FPGA system to the PC. It reads data
from the FIFO module, when available,
and encapsulates it into a packet that is
sent through the PHY on the Ethernet
interface. It uses several counters and
registers, together with the CRC module
for building the packet “on-the-fly”,
outputting on each clock cycle a nibble on
the data bus.

When acknowledgement information -
the number(s) of the received packets that
need to be confirmed - is available as
output data from the FIFO module, a new
Ethernet frame is sent containing the
specific packet number. The same process
is performed using standard user data read
from the FIFO module.

The sent packet structure is the same as
in Figure 3. The module "builds" the
packet according to the IEEE 802.3
protocol standard [5], starting with the
Preamble and SFD fields and continuing
with the data field. This field has a first
byte indicating the type of packet

(acknowledgement or containing ordinary
data), followed by either the confirmed
packet's number, or the length followed by
the actual data. The data before being sent
is stored in a shift register that is shifted 4
bits every clock period, since the Ethernet
output data bus is 4 bits in width. The
module’s logic ensures the fact that in the
case of shorter packets, an extra padding is
appended (byes having a zero value) in
order to guarantee a minimum length of 64
bytes/packet.

The last field of the packet is the FCS
(Frame Check Sequence), with a length of
4 bytes, containing the 32 bit CRC value
computed on-the-fly based on the packet's
data. The CRC is computed using an
instance of the same CRC32_D8 module.

The Ethernet 802.3 protocol regulates the
standard minimal interval needed to exist
between two consecutive sent packets. For
our current case, an Ethernet 100Mbit/s
transmission, this interval has a value of
960ns, which equals with 24 clock periods.
This is ensured by interrogating a timer
which is counting the clock periods after
every sent packet.

Guaranteeing this interval, together with
the absence of a possible collision on the
Ethernet interface (signalled by the col_i
signal received from the PHY), and
receiving confirmation for the last packet
sent are the three conditions that enable
sending a new packet. If any of them is
false, the module waits until all
requirements are met before sending a new
frame.

The packet acknowledgement mechanism
was implemented in order to avoid
congestions and to be able to guarantee the
integrity of the transmitted data. The same
counter mentioned above is used in the
EthSend module to count 25000 clock
periods (the equivalent of 1ms), an interval
in which an acknowledgement for the last
sent packet is expected. If not received, the
same packet is re-transmitted - the data

Machidon, O.M., et al.: Enhancing FPGA I/O Communication Using Web Services 93

being read from ResendFIFO, a structure
that stores the content of the last sent
packet.

3.2 Software Applications

The software applications designed to

run on a PC with a Linux operating system
are:

- a C network application that implements
the actual Ethernet communication with
the FPGA board;

- a Web Application composed of a web
service, a Java servlet, and a JSP web
page; it represents a service-based
middleware that abstracts away the
complexity and functional details of the C
application and communication flow with
the FPGA by exposing it on an easy-to-use
web-based interface.

C network application
This application implements the

communication between the Atlys FPGA
development board and the PC over the
Ethernet using RAW sockets. The program
opens two RAW sockets: one for sending
packets and another for receiving them.
Thus, a bidirectional data exchange flow is
supported: packets containing user data
and the corresponding acknowledgements
are being sent to/from the FPGA board.

Since we have implemented our own
proprietary protocol, the communication
had to be implemented at the data-link
layer (level 2 from the OSI stack), so the
software application is working with RAW
sockets that allow receiving the entire
Ethernet frame [2]. This is a key feature of
our application, only such an approach
allowing the application running on the PC
to receive packets with customized
protocols.

The communication domain of the
socket opened for sending/receiving
packets is set to PF_PACKET - which
allows working with RAW packets at the

data-link layer. The socket's type is
SOCK_RAW and the specified protocol,
ETH_P_ALL, which enables packet traffic
regardless of protocol [3].

In order to guarantee the integrity of the
data and to manage possible congestions,
specific measures were implemented in the
application, which work together with the
ones developed in the EthController IP
Core.

When sending data to the FPGA system,
after each sent packet the application waits
for an acknowledgement a certain interval,
and tries to re-send the same packet three
times. If the acknowledgement has still not
been received, the application terminates.
A diagram illustrating the functionality of
the application - when sending data to the
FPGA - is shown in Figure 4.

Fig. 4. C network application functionality

When receiving data from the FPGA the
flow is simpler, since the incoming data is
stored in a file until and EOF (end of file)
character is received in a packet’s data and
each packet is confirmed when received.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014

94

Web applications
The web application has three

components: the web service that acts like
a middleware between the user and the
underlying network application, a JSP web

page representing a friendly, easy to use
web-based user interface, and a Java
servlet which is an intermediate entity
between the two, facilitating the data flow
amongst them.

Fig. 5. Screen capture showing JSP page web user interface for transferring data

The servlet uses SOA (Simple Object

Access Protocol) for communicating
between the service and the JSP page [4].
It acts like an extension to the service by
enhancing its functionality [6]; the HTML
data and files from the JSP page are
encapsulated by the servlet into a SOAP
message that is sent to the service in order
for it to be sent further away to the FPGA
system. Any data received from the system
follows a similar path: it is sent inside
SOAP messages by the service to the
servlet, and then it becomes available to
the user on the JSP page.

The web service was implemented in
Java and runs on a Glassfish 4.0 Server
instance. It contains a method that
interfaces the RAW socket network
application by automatically creating and
configuring a script-enabled working
environment for executing the C
application. Through this application it is
managing the incoming/outgoing data

flow, in order to send and receive data
from the FPGA board.

4. Validation and Results

The testing and validation of the
communication solution started by
simulating the hardware design: the
EthController IP Core. Individual
simulations were performed targeting each
modules (EthSend, EthReceive,
SendFIFO), and also an overall simulation
of the entire design (Figure 6).

A test bench module was developed for
generating input signals (emulating the
PHY): transmit and receive clocks
(25MHz each, asynchronous), active-high
reset, input data (4 bit bus) and data
validation signal. Thus, the test bench
generates packets received by EthReceive
and verifies that the corresponding
acknowledgements are being sent back by
EthSend.

Machidon, O.M., et al.: Enhancing FPGA I/O Communication Using Web Services 95

Also, this simulation environment allows
an in-depth visual verification of the
Ethernet frames sent by EthSend (valid
structure - according to the 802.3 standard's
specifications, correct CRC etc.).

Fig. 6. EthController simulation test

environment

Besides simulation, the hardware design
was also tested while running on the FPGA
board. The insertion of specific faults was
implemented using the switches and buttons
available on the board in order to test the
behaviour of the design in critical situations
that may happen during run-time:

- the possibility to turn off the sending of
acknowledgement packets by the FPGA
using an on-board switch for testing if the
resending operation is working properly.

- sending packets that do not comply
with the proprietary protocol's specifications
to see if it causes malfunctions in the RAW
socket application.

A benchmarking of the communication
solution was made in order to evaluate the
performance in terms of data transfer speed
and also to stress the software and
hardware components by emulating high
traffic load scenarios. This was
accomplished by sending a continuous data

flow and monitoring the communication
link using the IPTraf Linux utility. The
results are shown in Table 1 below.

Table 1

IPTraf utility statistics of a data transfer
from PC to FPGA

Metric Value
Incoming packets 328655
Incoming bytes 248463 K
Outgoing packets 328655
Outgoing bytes 331256 K
Total packets 657310
Total bytes 579719 K

2935.6 packets/s Incoming rates
17754.5 Kbits/s
2935.4 packets/s Outgoing rates
23670.0 Kbits/s
5871.0 packets/s Total rates
41424.5 Kbits/s

The figures above show that during a

data transfer from the PC to the FPGA, the
speed achieved was approx. 2.9 MB/s,
while the acknowledgement packets were
sent back to the FPGA system at a rate of
2.2 MB/s. This transfer speed can be
improved, since it is limited by the
acknowledgement mechanism that was
implemented, that is waiting for an
individual confirmation for each sent
packet before sending the next one. We are
considering as a future development to
substitute this mechanism with a sliding-
window type that would result in a
potential speed-up.

In Table 2 a summary of the FPGA
utilization is presented, showing that the
EthController IP Core occupies less than
2% of the resources available in terms of
slices (the Xilinx technology basic unit
composed of LUTs and FFs), and only 8%
of the IOBs (Input/Output Buffers - the
effective number of FPGA pins used).
These results, indicating a very low area

Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014

96

and IO usage, show that EthController IP
Core can easily be integrated into a larger
design since it does not need many
resources and provides an important
enhancement regarding I/O
communication of the FPGA.

Table 2
Spartan 6 Device Utilization Summary

Slice Logic Utilization
 Nr. %

Number of Slice Registers 349 1
Number of Slice LUTs 378 1
Number of occupied
Slices

145 2

Number of MUXCYs
used

108 1

Number of bonded IOBs 19 8
Number of
RAMB16BWERs

1 1

Number of
BUFG/BUFGMUXs

3 18

The low resource usage is an advantage

over the existing IP protocol based solutions
[1], which makes our development ideal for
FPGA hardware applications needing a basic
connectivity with a PC for data transfer.

5. Conclusions

In this paper we have presented a new
solution that implements an efficient
communication interface between a PC
and an FPGA over the Ethernet. The
resource utilization is low - the IP Core
running on the FPGA needs less than 2%
of the available resources - and the
transmission rates are around 3MB/s.

This communication is further enhanced
by the integration of a web service and a
JSP page acting as a user interface that
abstracts the complexity, lower-level
implementation and architectural details of
the RAW socket application that operates
on the data-link layer.

Future work will focus on improving the
transfer speed by implementing an
improved acknowledgement mechanism.
Also, we are planning to enhance the
EthController IP Core by implementing the
TCP/IP stack, thus extending its
application range.

Acknowledgement

This paper is supported by the Sectoral

Operational Programme Human Resources
Development (SOP HRD), ID134378
financed from the European Social Fund
and by the Romanian Government.

References

1. Alachiotis, N., et al.: Efficient PC-

FPGA Communication over Gigabit
Ethernet. In: IEEE 10th International
Conference on Computer and IT (CIT),
Bradford, UK, 2010, p. 1727-1734.

2. Donahoo, M., Calvert, K.: TCP/IP
Sockets in C: Practical Guide for
Programmers. San Francisco, CA.
Morgan Kaufmann, 2009.

3. Hall, B.B.: Beej’s Guide to Network
Programming: Using Internet Sockets.
Riverside, CA. Jorgensen Publishing,
2011.

4. Hansen, M.: SOA Using Java Web
Services. Upper Saddle River, NJ.
Pearson Education, 2007.

5. IEEE 802.3™-2012: IEEE Standard for
Ethernet. Available at: http://standards.
ieee.org/about/get/802/802.3.html.
Accessed: 10.08.2014.

6. Perry, B.: Java Servlet & JSP
Cookbook. O'Reilly Media, Inc., 2004.

7. Xilinx: Bus Master DMA Performance
Demonstration Reference Design for
the Xilinx Endpoint PCI Express
Solutions. Available at: http://www.
xilinx.com/support/documentation/app
lication_notes/xapp1052.pdf.
Accessed: 28.08.2014.

