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Abstract: The mathematical modelling of the mobility at the human ankle 
joint level is essential for prosthetics and orthotic design. In the present 
paper, the kinematic modelling of the ankle-foot joint is approached, 
intending to determine the motion functions of the structures that model the 
ankle by gear mechanisms. The proposed mechanical models are composed 
by two bodies that materialize the foot and leg pair, and they can successfully 
replace the traditional universal and spherical joints (which are frequently 
used in the field). 
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1. Human Ankle and Gear Mechanisms 
 
It is well known that the ankle joint 

allows the foot to perform three 
movements: flexion - extension around the 
transversal axis (y), pronation - supination 
around an axis that is tilted in the 
longitudinal direction (x), and pivoting 
around the vertical axis (z) (Figure 1) [1]. 

 

 

Fig. 1. The motion axes in the ankle joint 
 
A modelling of all existing motions in the 

ankle joint involves a triple pivot 
connection, around Y (flexion), X 

(pronation) and Z (pivoting) (Figure 2) [1]. 
 The equivalent spherical joint is not 

applicable as motor joint due to the 
difficulties involved by the driving through 
rotary motors. 

 

 
 

Fig. 2. Constructive solution - front view 
and side view 
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The pivoting rotation is a combination of 
the possible movements in knee and ankle, 
and in the following this rotation is 
denoted by α and symbolized by the pair 
K-A (knee-ankle). The flexion-extension 
rotation is denoted by β and symbolized by 
T-T (tibia-talus), while the pronation - 
supination rotation is denoted by γ and 
symbolized by T-C (talus-calcaneus).  

Under these terms, the purpose of the 
paper is to synthesize and develop several 
structures with gear mechanisms, which 
are able to realize (total or partial) the three 
necessary rotations. 
 
2. Motion Functions for the Bimobil 

Model with Gear Mechanism 
 
The motion functions of the gear 

mechanisms that model the ankle joint will 
be defined by the transmission rates 
expressions in the kinematic loops for the 
rotations α, β and γ [2].  

Thus, for the combination α-β 
(pivoting-flexion), in accordance with 
Figures 3 and 4, the following 
relationships are obtained: 
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In Figure 3, z3 = z1, z4 = z2, ωα and ω1 are 

inputs, while ωβ = ωh is output (symmetric 
differential). Obviously, the rotation angles 
φi = ωi ∙ t depend on the actuation time. 

In Figure 4, ω1 and ω3 are inputs, z3 = z1, 
ωα = ωh, ωβ = ω2, thus resulting: 
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where: β = ωβ ∙ t, t - actuation time. 

 

 
Fig. 3. Kinematic scheme with 
symmetrical differential for the 

angles  - β (variant 1) 
 

 
Fig. 4. Kinematic scheme with 
symmetrical differential for the 

angles  - β (variant 2) 
 

The relationships for the combination 
α-γ (pivoting-pronation) are obtained in 
accordance with Figures 5, 6, and 7. Thus, 
in Figure 5, ω1 and ω4 are inputs, z3 = z1, 
ωα = ω3, ωγ = ω5, resulting: 
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the independent parameter being γ = ωγ ∙ t, 
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Fig. 5. The kinematic scheme with planetary 
bevel gears for the angles  - γ (1st variant) 
 
In Figure 6, ω1 and ω5 are inputs, ωγ = ω6, 

while ωα = ω4 are outputs, resulting: 
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- for independent actuation, 
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- for coupled actuations. 

In Figure 7, ω1 and ω5 are inputs, z7 = z3, 
ωγ = ωh, ωα = ω4 - outputs, resulting: 
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Fig. 6. The kinematic scheme with planetary 
bevel gears for the angles  - γ (2nd variant) 
 

 
Fig. 7. The kinematic scheme with planetary 
bevel gears for the angles  - γ (3rd variant) 
 
The relationships for the combination β-

γ (flexion-pronation) are obtained in 
accordance with Figure 8 [3], where ω1 and 
ωh are inputs, ωγ = ωh - outputs, and ωβ = 
ω2, resulting: 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014 
 
28 

1

2

2

1

z
z

h

h 



,  











2

1

2

1
12 1

z
z

z
z

h , (11) 

 

for 0h , 
2

1
1 z

z
 , 01  , 

 











2

11
z
z

h . (12) 

 

  
 a) b) 

 

  
 c) d) 

Fig. 8. The kinematic scheme with bevel 
gear mechanism for the angles  - γ 

 
In Figure 8b, z3 = z1, ω1 and ω4 are inputs, 

ωγ = ω3 – outputs, and ωβ = ωh, resulting: 
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In Figure 8c, ω1 and ω5 are inputs, ω4 = 

ωγ – outputs, and ω6 = ωh = ωβ, resulting: 
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In Figure 8d, ω1 and ω5 are inputs, ωγ = 

ω4 - outputs, z7 = z3, and ωβ = ωh, thus 
resulting: 
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3. Motion Functions for the Trimobil 
Model with Gear Mechanism 

 
For the general combination α-β-γ, 

(pivoting-flexion-pronation), the specific 
relationships are obtained in accordance 
with Figures 9, 10 and 11. Thus, in Figure 
9 [5], ωh, ω1 and ω4 are inputs, ωα, ωβ = ωh 
= ω5 and ωγ = ω3 are outputs, and z3 = z1, 
resulting: 
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Fig. 9. The kinematic scheme for the 

angles pair  - β - γ (1st variant) 
 

In Figure 10, ωα, ω7 and ω1 are inputs, 
ωγ = ω6, and ωβ = ωh = ω10 - outputs, 
resulting: 
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Fig. 10. The kinematic scheme for the 

angles pair  - β - γ (2nd variant) 
 
In Figure 11, z9 = z4, ωα, ω1 and ω6 are 

inputs, ωβ = ωh and ωγ = ω5 - outputs, 
resulting: 
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For the positioning angles of the leg, 

which are obtained by gearing the wheels, 
there are simple relationships, as follows 
[4]: 
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 = ω ∙ t + 0, β = ωβ ∙ t + β0,  
γ = ωγ ∙ t + γ0. (26) 
 
For a constant transmission ratio i = ωi / 

ωe, the motion functions (26) are linear 
(depending on time). The slope of this line 
is given by the transmission ratio value. 

 

 
Fig. 11. The kinematic scheme for the 

angles pair  - β - γ (3rd variant) 
 

 
4. Conclusions 
 

The modelling of the lower limbs joints 
is a particular challenge for researchers due 
to the complexity of this system. The 
objective of this study was to develop an 
innovative model of the ankle-foot 
articulation, which is defined by functional 
performance and bio-fidelity.  

The geometrical parameters that define 
the system (the number of teeth), the input 
kinematical parameters (the angular 
displacements or velocities), and the output 
parameters (the transmission ratios) have 
been presented, the kinematic functions 
being expressed by specific methods from 

the mechanisms theory. 
Considering the main movements, the 

combinations of flexion - pronation (β - γ) 
are recommended. These structures are 
relatively simple, so easier to adopt. The 
results show that the proposed model 
offers an accurate characterization of the 
ankle joint, and it can be used for the 
simulation of the joint movements, as well 
as for the control design and development. 
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