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ABOUT THE OWN FREQUENCY  

OF AN OSCILLATOR 
 

Luciu ALEXANDRESCU1 
 

Abstract: This paper deals with aspects connected to the own frequency. The 
oscillator, to which the own frequency is analysed, is formed of a cylindrical 
and elastic sleeve, having at one its sides a body. When deducing the 
characteristic reaction of the oscillator’s frequency, there were taken into 
account both the mass of the elastic sleeve and the mass of the body. Further 
on, I present the relation of the own frequency to an acoustic resonator 
(Helmoltz). This relation is deduced, taking into consideration both the 
theoretical and practical aspects. The experimental determinations have 
proved the available relation of the oscillator’s own frequency, in which were 
taken into account both the mass of the elastic sleeve and the mass of the body. 
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1. Introduction 
 
This paper deals with aspects connected 

to the own frequency of an oscillator. In the 
first part, I demonstrate that when deducing 
the own frequency of an oscillator, one 
must take into consideration, not only the 
mass of the body, which is a part of the 
oscillator, but also the mass of the spring 
(cylindrical sleeve). In the second part of 
the paper, I present, analysing both the 
theoretical and practical aspects, the way in 
which the own frequency of an acoustic 
resonator, considered as being an oscillator, 
is determined. 

 
2. Theoretical and Practical Aspects 

 
An oscillator [3] can be represented in a 

schematic way, as shown in Figure 1, where: 
l0 - the initial length of the spring; 
x0 - the extension of the whole spring;  
da - an element of length from the spring; 

a - the length of a part/fraction of an 
spring;  

x - the extension that corresponds to the 
“a” part from the spring;  

m - the mass of the spring;  
M - the mass of the body attached to the 

spring. 
 

 
Fig. 1. Oscillator 

 
In accordance with the Hooke’s law: 
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Flx 0

0  ,  (1) 
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ES
Fax  ,  (2) 

 
where:  

E - the longitudinal module of elasticity 
(Young’s module); 

S - the section of the spring (of the 
cylindrical, elastic sleeve);  

F - the force that deforms. 
Taking [5] into account the relations (1) and 

(2), between the extensions x0 and x, there 
is a dependence given by the next relation: 

 

.
0

0 a
l
xx   (3) 

 
The movement of the oscillator is an 

oscillatory movement with the amplitude, 
A, constant, because the resistance forces 
can be neglected, which means that only 
the elastic force (f = –ky) acts on the 
oscillator. 

For the oscillator presented in Figure 1, 
the fundamental principle of dynamics is 
written as it follows: 

 

02

2

 ky
dt

ydM , (4)  

 
where: 

M - the mass of the body attached to the 
spring:  

a
dt

yd 2

2

 - the acceleration of the 

movement;  
y - the elongation of the oscillatory 

movement;  
k - the elastic constancy. 
The solution of the differential equation 

that characterises the oscillator from Figure 
1 is given by the relation: 

 
tAy  sin , (5) 

 
where: 

y - is the elongation of the oscillatory 
movement;  
 - the pulsation; 
t - the time. 
Replacing the relation (4), we get the 

pulsation of oscillation of the oscillator, 
given by the equation: 

  

M
kf

M
k




2
1 , (6) 

 
where f represents the frequency of 
oscillation of the oscillator.  

The speed [6] of the oscillatory movement 
can be acquired by deriving, according to 
time, the elongation of the movement given 
by the relation (5), and we finally get: 

  

.cos tAy
t
yv 



   (7) 

 
The acceleration of this movement is 

given by the relation: 
 

.sin2
2

2

tA
dt

yda   (8) 

 
Due to the fact that the resistance forces 

can be neglected, the total energy of the 
oscillator (the relation 9) is conserved, thus 
it remains constant. 

  
ct.max.max  UTUTV , (9) 

 
where:  

V - the total energy of the oscillator; 
T - the kinetic energy of the oscillator; 
U - the potential energy of the oscillator. 
The total energy V, is given by the relation: 
 

,
2

2kAV    (10) 

 
where: 
k - the elastic constancy;  
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A - the amplitude of the oscillatory 
movement. 

When calculating the kinetic energy, one 
takes into consideration both the kinetic 
energy of the body of the mass M and the 
kinetic energy that corresponds to the 
spring of the mass m. The kinetic energy, 
T1 that corresponds to the spring of the 
mass m is calculated starting from the 
relation:  

 

,
2
1

2
2
02

0

2

0

2 x
l
ada

l
mxdmdT    (11) 

 
where:  

dm - the elementary mass corresponding 
to the length da; 

dT - the kinetic energy corresponding to 
the element of the mass dm; 

x  - the speed corresponding to the 
extension x; 

0x  - the speed corresponding to the 
extension x0.  

Adding the relation (11), we get:  
  

2
0

0

2
3
0

2
0

1 32
1

2
1 0

xmdaa
l
xmT

l




  . (12) 

 
The kinetic energy, T2 that corresponds 

to the body of the mass M, is given by the 
relation:  

 

,
2

2
0

2
xMT


   (13) 

 
Taking into account the relations (12) 

and (13), the maximum kinetic energy of 
the oscillator is: 

 

232
1 2

0
2
0

max
xMxmT


 . (14) 

 
The maximum speed 0x  is given by the 

relation:  

Ax 0 , (15) 
  

where  is the pulsation of oscillation of 
the oscillator.  

By introducing the relations (13) and (14) 
in the relation (9), we get:  

 

232
1

2

22222 AMAmkA  . (16) 

 
The own pulsation results from the 

relation (15): 
 

3
mM

k


 . (17) 

 
In almost all the specialized books, the 

own pulsation is determined without taking 
into consideration the mass of the spring, 
as in the relation (6). 

In order to demonstrate that relation (1) 
is much closer to the values that we can get 
in an experimental way, further on, I am 
going to determine [4], according to some 
theoretical and practical aspects, the own 
pulsation of an acoustic resonator. 

Resonators absorb [1] a maximum quantity 
of acoustic energy when the frequency of 
the sound wave is equal to the own 
frequency of the resonator, and this 
situation corresponds to the phenomenon 
of resonance. The resonator from Figure 2 
can be considered as an oscillator with a 
single degree of liberty, where the mass of 
the air from the cavity of volume V acts as 
an spring (resort), and the mass m is the 
mass of the air from the neck. The mass of 
the air from the neck of the resonator is 
given by the relation: 

 
Slm 0 , (18) 

 
where: 

ρ0 - the density of the air;  
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l - the length of the neck;  
S - the section of the neck.  
 

 
 

 Fig. 2. The Helmoltz resonator 
 

It is considered [2] that the movement 
takes place in the neck of the resonator and 
the force of returning in the position of 
equilibrium comes completely from the 
difference of pressure of the air from the 
volume V. 

The return force can be calculated with 
the relation: 

  
dpSRdpF  2 ,  (19) 

 
where: 

R - the radius of the neck; 
dp - the pressure variation. 
During the movement [10], the air from 

the cavity V goes through an adiabatic 
process, which leads to the following way 
of writing: 

 
constpV , (20) 

 
where γ is the exponential adiabatic, which 
- for the air - has the value γ = 1, 4. 

Turning the relation (19) into a logarithm 
and then making a difference, we get: 

 
 .lnln constVp

0
00


V
dV

p
dp , (21) 

 
where: 

p0 - the equilibrium pressure;  

V0 - the volume of the air from the cavity 
to the equilibrium;  

dV = S.x - the volume variation; 
x - the change of position towards the 

equilibrium position of the mass m. 
From the relation (20), one obtains the 

pressure variation that is given by the 
relation:  

  

0

0

0

0

V
Sxp

V
dVpdp 




 . (22) 

 
If we replace the relation (21) in the 

relation (17), we get the return force, that 
is an elastic force given by the relation:  

 

,k
0

2
0 x
V

xSpF 


  (23) 

 
where k (the elastic constancy) is the rigidity 
of the oscillator.  

The equation that characterises the 
movement of the oscillatory system from 
the Figure 2 is as it follows: 

 

0k2

2

0  x
dt

xdSl .  (24) 

 
The solution of this equation can be 

written in the form: 
 

tAx  sin .  (25) 
 
If we replace [4] the solution given by the 

relation (24) in the Equation (23), we get: 
   

0

2
02

0 k
V

Sp
Sl


 .  (26) 

 
Due to the fact [8] that the gas from the 

cavity goes through the adiabatic process, 
the propagation speed of the sound (the 
sound wave) is given by the relation: 

 

0

0





pc , (27) 
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in which:  
p0 - the air pressure in normal conditions  

(p0  105 N/m2); 
0 - the air density in normal conditions 

(0  1.3 kg/m3); 
c - the propagation speed of the sound in 

the air in normal conditions (c  340 m/s). 
From the relation (21), one obtains the 

oscillation frequency, whose formula is:  
 

lV
Sc
0


lV

Scf
02

 . (28) 

 
If we replace in the relation (27), the 

relations (17) and (25), we get the relation 
(6), that, as it is known when determining 
the own frequency, the mass of the spring 
will be neglected. 

In order to get accurate results, Hemholtz 
proposed a practical relation of calculation, 
in the form: 

 

)6.1(2 0 RlV
Scf


 . (29) 

 
If one makes a comparison between the 

relation (27) and the relation (28) it will be 
noticed that the length l is replaced with 
the „effective” (equivalent) length of the 
neck, which is equal to the real length plus 
1.6 multiplied with the radius of the neck. 

Helmholtz made this correction, because 
of the fact that in the oscillatory movement 
there is involved, besides the air from the 
neck of the resonator, a mass of air from 
the cavity of the resonator also. 

The resonator [7] from Figure 2 is 
characterized by the following values: V0 = 
104 m3; l = 5.102 m; R = 2.102 m.  

Replacing in the relation (23) and the 
relation (24) the values that are 
characteristic to the resonator, we will get 
two values of the resonance frequency. 

The value got from the relation (27) is 
ft = 860 Hz, and the one got from the 

relation (28) is fp = 670 Hz. The real value 
of the resonance frequency is fp.  

Practically, the absorption of the resonator 
is made possible only by means of a narrow 
waveband of frequencies, situated around the 
resonance frequency (Figure 3). 
 

 
Fig. 3. The graphics of variation of the 

absorption coefficient function of 
frequency 

 
In Figure 3 there is represented the 

graphics of variation of the absorption 
coefficient function of frequency, graphics 
that is rendered by means of the values that 
were obtained in an experimental way. 

From the graphics [9], one can notice 
that the maximum value of the absorption 
coefficient corresponds to the frequency 
that has a value of approximately fp = 670 
Hz. It can be observed that this value is the 
same as the value obtained in the relation 
(28), as far as the size order is concerned. 

Taking into [4] account the relations 
(17), (25), (26), then the relation (28) can 
be written also: 

  

)6,12
1

00 RSSl
kf


 .  (30) 

 
As it can be noticed the first term from 

the denominator represents the mass of the 
air m from the neck of the resonator. 

Replacing the values of the sizes from the 
second term, we get kg10.56.1 5

0
 RS .  

Knowing the value of the cavity volume 
and the air density, we get the mass of the air 

kg103.1 4M  from the cavity of the 
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resonator. Making a comparison between the 
two values, it can be observed that the second 
term from the relation (29) is approximately 
equal to a third from the mass of the air from 
the resonator cavity. Thus, the relation (29) is 
identical to the relation (6). 

 
3. Conclusions 

 
As it can be noticed, this paper’s aim was 

to prove an aspect - that the theoretical 
models characterise the systems only in a 
general way. Applying these theoretical 
models to some concrete, practical models 
leads to the negligence or the addition of 
some terms in order to make the theoretical 
values of some sizes to be as close to the 
practical values that were obtained for the 
respective sizes.  

In our case, in order to make the 
theoretical values of the own frequency of 
the acoustic resonator, considered as being 
an oscillator, to coincide with the 
experimental values of the own frequency, 
both the mass of the body attached to the 
spring (the mass of the air from the neck of 
the resonator) and the mass of the spring 
(the mass of the air from the resonator 
cavity), had to be taken into consideration. 
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