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Abstract: The issue of magnetic field in a media where the magnetic 
permeability is defined as a function of point is not a simple one. In this 
paper is presented a computing method of steady-state magnetic field, in this 
type of media, that using a mathematical model of integral equations on the 
boundary. This model corresponds to a physical equivalent and is using, in 
this sense, fictive repartitions of the density of sources, on the boundary, as 
fictive currents (molecular currents). The physical premises for this kind of 
equivalent are represented by the magnetizing of magnetic bodies introduced 
in an exterior magnetic filed. 
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1. Introduction 
 
For problems of steady-state 

electromagnetic field are used different 
formulations as: differential, integro-
differential and integral one. The integral 
models corresponds to some physics 
equivalents, and are using, in this sense, 
fictive repartition of field sources density 
as magnetic polarization charges or 
molecular currents.  

The physical premises for this 
equivalence are represented by the 
magnetization of magnetic body placed in 
an external magnetic field.  

In this paper is presented a method for 
computing of steady-state magnetic field 
which is using molecular currents as 
secondary sources of magnetic field. 

In the case of linear media, the volume 
density of the molecular currents is zero 

and the magnetization state of the body is 
characterized by an equivalent surface 
distribution of molecular currents. In this 
situation the problem of steady-state 
magnetic field is solved by boundary 
element method (BEM) [1]. The main 
advantage in this case is that only surface 
integrals need to be discretized. 

For nonlinear magnetic bodies, the 
magnetization state is characterized by 
equivalent distribution molecular currents 
repartized with surface density and 
volume density. Therefore, in this case, 
the problem is described by the two field 
integral equations, in where take place the 
volume integral, and thus requires a 
volume meshing of the body. The 
problem is solved by using the boundary 
element method and the method of 
volume integral equations of volume 
(VIEM) [2-4]. 
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2. The Integral Mathematic Model of 
Steady-State Magnetic Field 

 
Let be a ferromagnetic body with 

magnetic permeability )(r , occupying the 
volume vm (bounded) of closed surface Σm. 
We consider a current source with density 
J  which produces a magnetic field with 
magnetic field density sB , which leads to 
magnetising of ferromagnetic body. The 
magnetic field in a point )( PrP  of volume 
vm may be computed as a superposition of 

sB  and the magnetic flux density produced 
by magnetized body mB : 
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In relationship (3), )()( rMrJ m   is 

molecular currents volume density; 
)()()( rnrMrJ m   represent the 

molecular currents body surface density 
and n  is the normal unitary vector of the 
surface Σ. 

Taking into account the relationships: 
 

)()()( 0 rHrrB r ,  (4) 
 

)(]1)([)( rHrrM r  ,  (5) 

the molecular currents volume density 
becomes: 
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Due to the fact that in the inner of the 

body there are no free currents, the 
strength of magnetic field satisfied the 
equation 0)(  rH , from relationship: 

 
)]()([)( 0 rMrHrB  , (7) 

 
it results: 
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By substituting the relationship (8) into 

(6), it is obtained: 
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Due to the next development: 
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the relationship (9) in the point )( PrP  
becomes: 
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Now, by substituting into relationship 

(11) the relationship of resulted magnetic 
flux density )( PrB  described by relationship 
(1), and taking into account the relationship 
(3), it is obtained: 
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On the surface of ferromagnetic body, 

the magnetic permeability has a step 
variation, which leads to vary the gradient 
of magnetic permeability to infinite and, 
thus, the density of molecular current to 
infinite. But, in the same time the density 
of molecular current on the ferromagnetic 
body surface has a finite value. In this 
situation the molecular currents has the 
sense of surface currents. 

We consider two points )(1


rG  and 
)(2


rG  which are situated symmetrical 

along the boundary between vacuum and 
ferromagnetic body, being outside and 
inside of ferromagnetic body, and the point 

)( GrG  situated on the surface of 
ferromagnetic body, thus: 
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where Gn  is the positive normal unitary 
vector on the surface Σ of ferromagnetic body. 

In the point )( GrG  of ferromagnetic 
body surface, the magnetic permeability 
has a value equal with the average one: 
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For the case of 0h , the average 

value of gradient tends to the value of 
surface gradient: 
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By substituting the relationship (15) into 

account the relationship (11), it is obtained: 
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It can be observed that for 0h , results 

)( Gm rJ . But, if we multiplying the 
both member of relationship (16) with h , 
and if we passing to limit 0h , it is 
obtained a finite value: 
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where )( Gm rJ  represents the density of 
surface molecular currents which take into 
account the influence of the interface. 

Now, by substituting the relationship 
(17) into relationship (1) and into account 
the relationship (3), it is obtained, behind 
the first Equation (12), the second Equation 
described by: 
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where the points )( GrG  and )( GrN  apart 
to surface Σ of ferromagnetic body. 

The field problem consist on solving of 
both coupled Equations (12) and (18), the 
unknown being the current densities )(rJ m  
and )(rJ m of molecular currents. Knowing 
the molecular currents densities, it is 
determinate, with the help of the (3), based 
on relation (1) by superposition method, the 
resultant magnetic flux density.  

On the discontinuity surface of magnetic 
body, must be fulfilled the continuity 
conditions of normal components of 
magnetic flux density:  
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and of the tangential components of 
magnetic strength of field is expressed by:  
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where: 
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By using the Equation (21), it can be 

observed that the condition (19) is 

automated satisfied. If it is substituted the 
relationship (21) into condition (20), it is 
obtained the relationship (16) of molecular 
currents densities. Thus, the continuity 
conditions are satisfied. 

 
3. Numerical Simulation 

 
In the order to prove the theoretical 

background developed in the above section, 
in the current section it is considerate, as an 
application, a DC electromagnet with 
culisant armature with open magnetic circuit. 
The geometric dimensions of the cylindrical 
armature has the radius r = 21 mm, the 
length z = 128 mm and the cylindrical coil 
has the same length as the magnetic core. 

Due to the fact that the problem is 2D, 
the Equations (12) and (18) are simplified 
and the volume integral becomes a surface 
one, and the surface integral becomes on 
the line.  

In the current operation of such devices it 
is considerated the non-saturated state, which 
means that the magnetic permeability to be 
constant .)( ctr  , and it results 0)(  r , 
which implies a zero value of molecular 
currents volume density. In this situation the 
problem is reduced to a one Equation: 
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In the Equation (22), by N and Q has 

been denoted the arbitrary points apart to 
contour Γ of the magnetic circuit cross 
section, respectively to section Sj of 
excitation winding, and we have: 
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In angular points where the direction of 

external normal vector is not univocal 
definite, it is associated to the angular 
point, two discretization nodes, geometrical 
decalated, corresponding to both values of 
normal surface in the angular points. In 
this case, we have: 
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The field domain has been 

discretizated on the contour of 
ferromagnetic core in 60 of elements. In 
simulation have been considerate two 
different values of relative magnetic 
permeability and armature position. 

In Figures 1a-4a are represented the 
variations of molecular density currents 
along the contour for the above 
mentionedconditions as armature position 
and relative magnetic permeability values. 

From Figures 1b-4b, where was 
represented the lines of B = ct. of 0.05 T, it 
can observed. Note that the magnetic flux 
is practically constant in successive cross 
sections of ferromagnetic core, which may 
provide the elements of equivalent scheme 
in terms of permeances, inductances and 
force developed. 

Calculating the normal component of 
magnetic induction Bn and the tangential 
one of the magnetic field Ht on the surface 
of ferromagnetic core, we can determine 
the density of surface force that is acting 
on the core by: 
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and r 01 , 02  , and 12n  is the 
external normal vector on armature surface. 

In Figures 1c-4c has represented the 
vector of force. 

 

   
a) b) c) 

Fig. 1. Simulations for μr = 1000 and zc = 113 mm: a) molecular current density;  
b) Contour of B = ct.; c) Magnetic force 

 

   
a) b) c) 

Fig. 2. Simulations for μr = 10000 and zc = 113 mm: a) molecular current density; 
b) Contour of B = ct.; c) Magnetic force 
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a) b) c) 

Fig. 3. Simulations for μr = 1000 and zc = 128 mm: a) molecular current density; 
b) Contour of B = ct.; c) Magnetic force 

 

   
a) b) d) 

Fig. 4. Simulations for μr = 10000 and zc = 128 mm: a) molecular current density; 
b) Contour of B = ct.; c) Magnetic force 

 
4. Conclusion  

 
The presented method for computing of 

steady state magnetic field allows the 
determination of resulted steady state 
magnetic field produced by field primary 
source (conduction current density from coil) 
and by primary filed source (molecular 
current density from ferromagnetic core). 
The method may be extended for more 
complex magnetic systems, with multiple 
primary filed sources.  

The advantage of method is given by the 
fact that the computing of magnetic field is 
done only in the interest points, not in all 
the space as in the case of classical 
methods of finite elements as for finite 
elements method.  
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