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Abstract: The main objective of this paper is to set up an adaptive control 
strategy for a closed loop system to control the glucose concentration in 
blood by delivering variable dosage of insulin. Simulations are done using 
the modified Bergman’s minimal model for type 1 diabetes mellitus patients. 
Based on this nonlinear model, an adaptive controller is proposed and tested 
in simulations. Good results confirm the efficiency of adaptive techniques for 
controlling the glycaemia level in diabetic patients, even when unexpected 
disturbance occurs, as having meals with different quantity of carbohydrates. 
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1. Introduction 
 
Some of the latest studies in automatic 

control of blood glucose concentration for 
type 1 diabetes mellitus (T1DM) patients 
are taking experiments to outpatient 
environment and focus on 24 hours 
experiments. Any automatic insulin deliver 
system (“artificial pancreas”, the term is 
described in [13]) is intended to allow a 
routine therapy, which requires studies and 
solutions that prove efficient (and safe) 
long-term results.  

Studies have been carried out at diabetes 
camp [22], under medical supervision, but 
in a more familiar environment. Also, 
experiments at patients' home are currently 
being carried out: Nimri et al. published 
the results of the first home study in 2013 
[17]. Also, tests of closed-loop systems 
outside the protecting environment of the 
hospital are reported in [18] and [8]. 

During several consecutive days there 
are many influences over the biological 
parameters of the glycemic metabolism, 
especially for T1DM patients, as: having 
meals with different quantities of 
carbohydrates (than assumed by the 
patient), doing exercises and occasional 
effort that increase the glucose 
consumption, night changes in metabolism, 
and others.  

One of the major risks of using automatic 
insulin deliver devices would be to run into 
an accidental hypoglycemia state, which 
for T1DM patients can lead to critical 
situations (dizziness, fainting, increased 
heart rate that could be dangerous to 
people with cardiac disorder and others). 
Recently, encouraging results towards the 
reduction of nocturnal hypoglycemia were 
reported in [18]. However, more in silico 
studies and clinical trials are considered 
still necessary [4].  
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In control engineering, the risk of getting a 
hypoglycemia state caused by a wrong 
insulin dose imposes two design conditions:  

a) to avoid large overshoot (or, even 
better, to set it to zero); 

b) to use adaptive control algorithms 
which may increase the efficiency when 
unexpected disturbance or parameters 
variations may appear.  

One important aspect in controlling 
biological processes is the large variability 
of parameters from one patient to another, 
which means that any mathematical model 
has major uncertainties. Even more, for a 
patient, those parameters could vary during 
a longer period of time, making any 
personalized model also uncertain. These 
aspects encourage the use of algorithms 
from adaptive control theory.  

Probably the most used control algorithm 
so far in this subject is the model predictive 
control (please refer to the recent reviews 
in [15], [4], [19], [20]). In this paper, we 
applied the MIT rule (please refer to [1], 
[14], [10] for good introduction in the 
subject) and ran simulations using an 
intensively used model of the insulin-
glucose dynamics.  

 
2. Insuline-Glucose Minimal Model 

  
The models which describe the glucose-

insulin metabolism are usually complex, 
nonlinear models, with many parameters. 
However, in many cases, a simpler model 

with only a few parameters would be 
sufficient to make a good analysis. Such a 
model was introduced in the eighties by 
Bergman et al. [3] to describe the glucose 
dynamics during an intravenous glucose 
tolerance test, and was further adapted to 
describe insulin to glucose dynamics by 
Cobelli et al. [5]. The modified model is 
what today in known as the Bergman 
minimal model. 

The model is described by the following 
three Equations: 
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where: G(t) [mg/dL] is the concentration of 
glucose in blood; X(t) [1/min] is the 
dynamic insulin response; I(t) [mU/L] is 
the concentration of insulin in blood; Gb 
[mg/dL] is the basal level of glucose; m(t) 
[mg/min] is the rate of exogenous glucose 
infusion (which can be the result of a 
meal); p1, p2, p3, , n are the “plant’s” 
parameters, defined in Table 1. Note that 
the parameters vary from patient to patient. 

The last term in the first equation from 
(1) refers to any exogenous source of 
glucose. There are two examples: a) an 
intravenous glucose injection (glucose 
tolerance tests), or b) having a meal. After 
a meal, the glucose concentration raises 
due to the absorption of carbohydrates. 

 
Different values for the parameters of the minimal model        Table 1 

Value Parameter Unit 
in [7] in [6], [2] in [12] 

p1 [min-1] 0.0337 0 0 0 0 
P2 [min-1] 0.0209 0.025 0.02 0.0072 0.0142 
P3 [L/(mU*min2] 7.5×10-6 13×10-6 5.3×10-6 2.16×10-6 9.94×10-6 
 [L-1] 1/12 1 (*) 
N [min-1] 0.214 0.09 0.3 0.2465 0.2814 
Gb [mg/dL] 80 81 70 70 70 

(*) The parameter is a unit conversion factor that can be equal to 1 by proper conventions over the 
other parameters, or can be calculated as  = 1/V, with V  being the total blood volume. 
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To describe the glucose dynamics after a 
meal we considered the model proposed by 
Hovorka et al. [9]. The raise of glucose 
concentration is caused by the time varying 
absorption rate, described by: 
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where Dg [g] is the quantity of carbo-
hydrates in the meal (note that its value 
could be uncertain), Ag = 0.8 is constant in 
the model, tmax = 40 min is the time 
moment when the absorption is at its peak 
value. The shapes of the disturbance 
variable for different quantities of 
carbohydrates are shown in Figure 1. 

 

 
Fig. 1. The “unexpected” disturbance: 

meal glucose absorbtion rate 
 

3. Designing an Adaptive Controller for 
Blood Glucose Concentration  

 
The closed loop control system is 

depicted in Figure 2. The objective is to 
design an adaptive controller to maintain 
the blood glucose at a safe value (between 
70 and 120 mg/dL), even if an unexpected 
disturbance may appear. To achieve this, a 
variable dose of insulin has to be injected 
in the blood. 

For the simulations in this research, 
parameters of the minimal model are 
considered to have different values within 
certain ranges as follows:  

-  
,)0375.0;0(1 p  

,)025.0;02.0(2 p  

.)000013.0;000006.0(3 p  
 

To control such a process, it is necessary 
to select an adaptive control law with three 
adjustable parameters [1], [14], [10], noted 
k1, k2, k3, in:  
 

)(3)(2)(1)( tyktyktrktu  . (3) 
 

To determine the proper values for the 
adjustable parameters in the adaptive law, 
the MIT rule is applied. According to this 
method, a reference model has to be set, 
which in our case should be a first-order 
element (to avoid the overshoot in glucose 
concentration; please refer to [1], [14], [10] 
for detailed introduction in the theory). 
The time constant of the reference model is 
set to 6480 seconds [11], [21], meaning 
that the chosen transfer function for the 
reference model is: 
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which should make the glycaemia level 
return to safe value in less than 3 hours. 
The parameters am = 1/6480 and bm = 1 are 
chosen according to the desired time 
constant. 

The sensitivity derivatives required by 
the adjustment mechanism are obtained 
by taking the partial derivatives of the 
error variable. Finally, the adjustment 
equations for the controller’s parameters 
can be obtained:  
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Fig. 2. The adaptive closed loop system 
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where e(t), y(t), ym(t) and r(t) are the 
standard notations in control engineering 
theory for the error variable, process 
output, reference model output (i.e. the 
system desired response) and reference 
input variable, respectively. The notation p 
is the differential operator and the 
adaptation gain  is set to 0.1 (A good 
theoretical back-ground which supports the 
equation set (5) can be found in [1] and 
[10]. Also, these references stand as some 
of the best introduction textbooks in the 
adaptive control theory). 

Note that the error should asymptotically 
lower to a small value, r even to zero. The 
decision on how small the error can be is 
influenced by the model reference, the 
process, and the command signal.  

Three scenarios were simulated (see 
Figure 1):  

- case 1: the patient has a meal with 
Dg = 10 g carbohydrates; 

- case 2: the patient has a meal with 

Dg = 40 g carbohydrates; 
- case 3: the patient has a meal with 

Dg = 60 g carbohydrates. 
Figure 3 shows the evolution of blood 

glucose concentration for these three cases, 
when the parameters are the first set of 
values defined in Table 1 [7], with the 
adaptation gain value set to  = 0.1.  

As it can be seen in Figure 4, a perfect 
model is achieved [1], [14], [16], by 
reducing the error to zero. 

In all cases the control objective was to 
maintain the blood glucose concentration 
at the value of 80 mg/dL. However, it 
should be mentioned that for T1DM 
patients higher values are accepted.  

 

 
Fig. 3. Glucose concentration in time for 

the simulated cases 
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Fig. 4. The difference between the glucose 
concentration output and reference model 

output 
 
Another important challenge was to 

maintain the error signal to zero, by 
choosing a proper reference model. 

The adaptive system uses two loops: the 
first one, the so called the inner loop 
includes the classical feedback, and the 
second one, the so called the outer loop, 
was used to adjust controller parameters. 

The simulations were done using a 
Matlab-Simulink scheme, and we considered 
one single meal.  

 
4. Conclusions  

 
In this paper, we investigated an 

adaptive control strategy, in order to 
design an efficient controller for blood 
glucose concentration control. The design 
and simulations use the nonlinear 
Bergman minimal model of insulin-
glucose dynamics. The control objective 
is to maintain the blood glucose 
concentration within in normal range 
while an assumed unexpected disturbance 
appears. In our case, disturbances appear 
due to the absorption of different 
quantities of carbohydrates after having 
the meals. 

Based on the simulations’ results, the 
adaptive control strategy meets the 

expectations that were to return the blood 
glucose concentration to the initial value 
from before the unexpected disturbance. 
The stabilization time (settling time) would 
be within 3 hours. 
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