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Abstract: This paper presents an approach to handle with elements from 
GF(2n), in hardware implementation with minimum costs of area. The 
method is described by exemplifying with minimum costs of area. The method 
is described by exemplifying the practical implementation of the BCH(n,k,t) 
scheme over GF(2n), where n is large (n > 6), on reconfigurable FPGA 
hardware with minimum costs of area. There are many papers in the open 
literature which presents hardware implementations of algorithms over 
GF(2n) but none of them addresses the problem of hardware resources 
employed. There are many situations in which an area optimized 
implementation is more suitable than a speed optimized implementation. 
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1. Introduction 
 
There are many applications in which a 

BCH (Bose Chaudhuri Hochquenghem) 
hardware implementation is more suitable 
than a software implementation. One 
example it is the case in which we have a 
secret key generated with the help of 
silicon physical unclonable functions based 
on process variations which appear during 
the physical execution of an integrated 
circuit [5]. The method of generating the 
secret key is out of scope in this paper. The 
secret key may be used to uniquely 
identify the integrated circuits using two 
phases: 1) the enrollment phase (Figures 1) 
the authentication phase (Figure 2). 

The phase 1 illustrated in Figure 1, is 
used only once for an integrated circuit. It 
generates the 128-bits length identifier 

based on ring oscillators. From this 128-
bits length sequence a helper data is 
generated, which will be used each time 
for the circuit authentication. This stage 
corresponds to the encoding stage BCH. 

The authentication stage, resumed in 
Figure 2, involves the reconstruction of the 
identification sequence. The 128-bits 
length sequence is regenerated using the 
same ring oscillators as in the enrollment 
phase. The new 128-bits length sequence is 
corrected, in case it contains a number of 
accepted errors (maximum 10), using the 
helper data and the BCH decoding 
algorithm.  

The field GF(2n) is defined by a set of 2n 
unique elements that is closed under both 
addition and multiplication, in which every 
non-zero element has a multiplicative 
inverse and every element has an additive 
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Fig. 1. The enrollement phase 

 

 
Fig. 2. The authentication phase 

 
inverse. As with any field, addition and 
multiplication are associative, distributive 
and commutative [4]. The field GF(2n) is 
defined over an irreducible polynomial of 
degree n with coefficients in GF(2n). The 
primitive polynomial has a root , named 
primitive root where 2n–1 – 1 = 1 and i, 
where i < 2 – 1 generates a different element 
from GF(2n). The Galois field GF(2n) may 
be represented by the set of all 
polynomials of degree at most n-1, with 
binary coefficients, as can be seen in Table 
1. The first step is to consider which 
representation of the elements would be 
used in the implementation: the 
representation as the power of  or the 
representation as the binary vectors.  
 

Table 1 
Examples of Galois Field Elements, n = 8 

Elements Polinomyals Binary 
vectors 

127 6 + 5 + 2 +  01100110 
128 7 + 6 + 3 + 2 11001100 
130 4 + 2 +  + 1 00010111 
131 5 + 3 + 2 + 1 00101110 

In order to analyze this challenge we 
exemplify the addition, substraction, 
multiplication and division in GF(24), 
considering two elements 10 = 0111 and 
11 = 1110. 

Addition is the same as substraction and 
is easily implemented using XOR and 
operands in the form of binary vectors 

1001111001111110  xor ; if we 
search through GF(24) elements we find 

100114  . 
It is obvius that for addition/substraction 

is more convenient to represent the 
elements in the binary vector form. 

 
Multiplication 
May be done using power of  format: 
 

.11001 66

615211110




 (1) 

 
May be done considering binary vector 

form: 
 

.110010011mod101010
10011mod)11100111(




 

 
The multiplication is less expensive when 

we consider the power of  format because 
we can use a dedicated multiplier for 
natural values and a substraction of 24 – 1.  

Division in GF(24) is a multiplication 
between the divident and inverse of the 
divisor. The inverse may be computed 
using the extended euclidian algorithm: 

 

.0010

)( 1651111011
10

11





 

 

 
We believe that an approach which 

combines the usage of the two 
representation form is the most suitable for 
an implementation optimized in terms of 
costs of area. In the case of BCH(128,10) 
or BCH(256, 25) we can store the Galois 
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elements in memories where the address 
represents the power of  and the value at 
the address represents the binary vector. In 
cases where n is larger, such as elliptic 
curve crypotgraphy with n = 163, the 
values are not stored in memories, they are 
generated immediately when they are 
involved in computations. 

 
2. BCH Algorithm 

 
2.1. Coding 

 
- Choose a primitive polynomial of 

degree n, and construct GF(2n); 
- Find the minimal polynomial mi(x) of 

i for i = 1,2,..2*t; 
- Obtain the generator polynomial g(x) 

which is the least common multiple of 
minimal polynomials; 

- Determine the degree of the generator 
polynomial; 

- Translate the q length message that we 
want to encode in a polynomial form of 
degree q. Add in the right part of the 
polynomial form a number of zeros equals 
with the degree of the generator polynomial; 

- The previously obtained polynomial is 
divided by generator polynomial; 

- The remainder of this division;  
- represents the helper data which will be 

used for error correction and detection [1]. 
 

2.2. Decoding 
 
There are many algorithms for decoding 

BCH codes. The most ones follow this 
general outline: 

- Calculate the syndromes mj for the 
received vector; 

- Determine the number of errors t and the 
error locator polynomial from the syndromes; 

- Calculate the roots of the error location 
polynomial to find the error locations; 

- Calculate the error values at those error 
locations; 

- Correct the errors [1]. 

3. Generating the Elements of Galois Field 
 
The first step is to generate the elements 

of Galois Group using the chosen primitive 
polynomial. Binary representation of the 
elements are stored in the memory. It is 
easy to generate these elements in 
hardware. The multiplication of  element 
represents a shifting operation of the 
previous value. If the MSB bit is shifted to 
the n+1 position, the primitive polynomial 
will be subtracted from the result.  

Generally, a large n in the case of BCH 
code is 7 or 8 which means that there are 
27 or 28 elements in Galois Field that can 
be stored in block memories from 
reconfigurable hardware.  

In cases of larger n such as n = 163, used 
in elliptic curve cryptosystems we can 
generate this elements immediately, when 
we needed in computations. This it will 
take some clock cycles, but we still have a 
highest frequency of design due to the 
simplicity of operations. 

 
4. Computing Galois Field Minimal 

Polynomials  
 
In the entire algorithm we consider the 

use of a small restricted area for the FPGA 
hardware resources. In order to obtain this, 
we used BRAM memories to store the 
polynomial coefficients and the sequentiality 
of some parts of the implemented 
algorithm.  

The algorithm presented below uses only 
one polynomial multiplier circuit and 2 
BRAM memories for storing intermediate 
results. The size of each memory is n * 2n. 
The i address memory will store the 
coefficient of xi. The xi coefficient is a sum 
of powers of  root, e.q 

1387177  . These coefficients are 
stored in memories as a 2n bits length 
binary sequence, where the position in that 
value of 1 appears represents the power of . 

 After the coefficients are stored, the sum 
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of these terms will be realized using the 
rules of the Galois Field. The algorithm for 
computing the i minimal polynomial, 
suitable for a hardware implementation 
with minimum cost of area is presented in 
Figure 3.  

Exemplification is made using GF(24) 
generated by the primitive polynomial 

14  xx . The minimal polynomial for 3 
is computed using the formula: 

.)()(

)()()(
4333

233
3





xx

xxxm
  (2) 

 

The maximum power of  is 16, so we 
consider memories of size 8x16. 

Phase 1 (Figures 4 and 5): the 
initialization of memories that will store 
the intermediate results. The mem_ 
minimal_polynomai_nx2n_inst1 contains the 
coefficients of the polynom x + 3. 

 

 
Fig. 3. Algorithm for minimal polynomials 

 

 
Fig. 4. Phase 1: mem_minimal_ 

polynomial_nx2n_inst 

 

 
Fig. 5. Phase 1: mem_minimal_ 

polynomial_nx2n_inst2 
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Phase 2 (Figures 6 and 7): the content of 
the first memory is multiplied with the 
polynomial 6x . The result is 

9632 *)(  xx . It may be 
observed that the polynom 6x  has two 
coefficients: 1 and 6 . In order to obtain 
the coefficients of the polynomial result we 
proceed as following: 

- Read the coefficient at the address i. 
The new value of this coefficient may be 
modified in two situations: 1) by the free 
term 2) by getting a new term as a result of 
the multiplication between the current 
coefficient and the coefficient of another 
term with a lower degree For these 
changes we do the following: 
o we go through the coefficient values 

and modify the position which are set in 1. 
The new values of 1 will be on the position 
equivalent with the old position + power of 
. 

- If the i address is higher than 0, the 
sum obtained previously it will be added 
with the 1 value of the coefficient term 
with one degree lower;  

 

 
Fig. 6. Phase 2: mem_minimal_ 

polynomial_nx2n_inst1 
 

 
Fig. 7. Phase 2 mem_minimal_ 

polynomial_nx2n_inst2 

- For example computing the coefficient 
of the term with degree 1: 
o We read the value from the address 1 - 

000000000000001.  
o The coefficient i = 1, it will be multiply 

with 9. The new value is: 
0000001000000000.  
o We read the coefficient from the 

addres 0 - 0000000000001000. This will 
be added at the previously computed value, 
obtaining 0000001000001000, which is 
equivalent with 93  . 

- The other coefficients are computed 
similar, the results are stored in the second 
instance of the memory. 

Phase 3: This phase is similar with the 
previous phase except that now we will 
read the coefficients from the second 
instance of memory and we will store the 
results in the first instance of memory. 
During these phases we alternate the two 
memories for reading and writing. 

 

 
Fig. 8. Phase4: 

mem_minimal_polynomial_nx2n_inst2 
 
The coefficients of the minimal 

polynomial are stored as a sum of power of 
:  

 

)( 3691234  xx   
+ 1)1( 3362  xx .  

 
The next step is to apply arithmetic 

Galois rules in order to obtain the minimal 
polynomial for the 3 term: 

1234  xxxx .  



Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 1 - 2015 
 
104 

5. Generator Polynomial  
 
The generator polynomial is computed 

with the formula: 
 

)}.(),...(
),({....)(

123

1

xmxm
xmcmmmcxg

t


 (3) 

 
The maximum degree is t*n, where t is 

the number of independent error which 
may appear and must be corrected and n 
give the order of GF(2n). The minimal 
polynomials are co prime.  

In our hardware implementation was 
used only one instance of multiply module. 
One of the operands is the previous result 
and the other is a minimal polynomial. The 
multiply operation is repeated until all the 
minimal polynomial were multiplied.  

 
6. Computing the Syndrome Polynomial 

 
If the number of maximum error which 

may be corrected is t we calculate 2*t 
syndrome polynomials. The syndrome 
polynomials are computed as a remainder 
from division between the message and the 
minimal polynomials. In Galois Fields 
there are different elements with the same 
minimal polynomials so the number of 
syndrome polynomials is less than 2*t, 
where t is the maximum number of error 
that may be detected and corrected.  

For example we consider: 
- The message without errors: 

10100110111; 
- The message with errors: 10001110111; 
- Consider that this code may correct 

maximum 2 errors, so we have 4 minimal 
polynomial: 
 

1)( 4
1  xxxm , 

1)( 4
2  xxxm ,  

1)( 234
3  xxxxxm , 

1)( 4
4  xxxm . 

(4) 

- We have three identical minimal 
polynomials so we will do only two division;  

- We obtain the following syndrome 
polynomial: 
  

1)( 3
1  xxS , 

1)( 3
2  xxS , 

xxxS  3
3 )( , 

1)( 3
4  xxS . 

(5) 

 
7. Reducing Syndrome Polynomial as a 

Power of α Element 
 
We need to calculate the syndrome 

polynomial in a point equivalent with a 
power of : 

 
143

1 1)( S , 

,1

11)(
1323

2462
2



S
 

.

)1)(1(

)(

33

3

344393
3





S

 

 
Multiplication and division were 

implemented in hardware using classical 
algorithms presented in [2] and [3]. 

 
8. Implementation Results and 

Conclusions 
 
We optimized the process of 

implementation of the BCH(n,k,t) 
algorithm by: the choice of the algorithm 
with minimum costs in term of hardware 
resource usage, the use of BRAM 
memories for storing the polynomial 
coefficient powers and the sequentiality 
of some parts of the implemented 
algorithm.  

A summary of the usage area, which was 
obtained after the synthesis, is presented 
in Figures 10 and 11.  
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Fig. 9. Reducing syndrome polynomial 

 
Selected Device:  

Virtex 4, 4vsx35ff668-10 

Number of Slices:  

 
Number of Slice Flip 
Flops: 

Number of 4 input 
LUTs:  

Number of IOs:  

Number of bonded 
IOBs:  

Number of 
FIFO16/RAMB16s:  

Number used as 
RAMB16s:  

Number of GCLKs:  

Number of 
DCM_ADVs:  

4404 out of 15360 
28%  

4210 out of 30720 
13%  

8266 out of 30720 
26%  

224 

19 out of 448 4%  

 
18 out of 192 9%  

 
18 

 
3 out of 32 9%  

1 out of 8 12% 

Fig. 10. Authentication method 
 

The test results of the BCH(n,k,t) were 
realized on a device from family VIRTEX 
4 FPGA-XC4VSX35 and on a device from 
family Spartan 3E-XC3S500E device. The 
authentication method uses 78% of the 
resources on a low FPGA chip as 
XC3S500E, which makes it impossible to 
be used on such low-FPGAs. Instead good 
results are obtained for Virtex 4 family 
FPGA. 

Selected Device:  
Virtex 4, 4vsx35ff668-10 

Number of Slices:  

 
Number of Slice Flip 
Flops: 

Number of 4 input 
LUTs:  

Number of IOs:  

Number of bonded 
IOBs:  

Number of 
FIFO16/RAMB16s:  

Number used as 
RAMB16s:  

Number of GCLKs:  

Number of 
DCM_ADVs:  

4587 out of 15360 
29%  

4320 out of 30720 
14%  

8551 out of 30720 
27%  

224 

7 out of 448 1%  

 
12 out of 192 6%  

 
12 

 
3 out of 32 9%  

1 out of 8 12% 

Fig. 11. Enrollment method 
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