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Abstract: In the paper was presented the influence of fiber orientation on
torsional vibrations of thin-walled composite beams with open cross-section.
Equations of motion are derived using the principle of virtual displacements.
For a case of arbitrary cross-section and arbitrary stacking sequence
differential equations are coupled. Closed form solution was derived for I
cross section with arbitrary fiber orientation in laminate.
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1. Introduction

Thin-walled composite structures are
widely used in many fields of aerospace,
automotive, nautical and other industries.
Over a past few decades they became
broadly adopted in civil engineering due to
many advantages of this material, like
lightweight feature in relation of
resistance, corrosion resistance, low
thermal expansion, good mechanical
characteristics, etc.

The theory of thin walled beams was
first investigated Vlasov [1]. Until now,
research of stability and dynamic
characteristics of these materials took a lot
of attention and carried out intensively.

Wu and Sun [2] developed a simplified
theory based on the Vlasov-our theory. It
includes seven differential equations,
which relate to the axial, horizontal and
vertical displacement, torsion, derivatives
of vertical and horizontal movement and

rotation of the axis. Later these seven
equations based on four coupled
differential equations.

Lee [3] analyzed the free vibrations of
thin-walled composite beams and cross-
section with an arbitrary stacking
sequence. To solve the problem, the finite
element method was used and all the tones
were included in the analysis.

Kim [4] represents the exact stiffness
matrix that can be applied to the free
vibration analysis of thin-walled and
composite beams with symmetrical and
arbitrary stacking sequence with respect to
the center line. This work represents the
first attempt to work with the exact
frequencies of thin-walled composite
beams with arbitrary stacking sequence.

Equations of motion are derived for a
case of arbitrary cross-section and arbitrary
stacking sequence, it is shown how
suitable choice of cross-section affects on
equations of motion. For a specific case, a
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closed-form solution for the natural
frequences of free harmonic vibrations was
derived. Results for the example are
obtained numerically and using the
commercial software Ansys, they verify
the accuracy of the derived solutions.

2. Equations of Motion

A thin-walled beam of an arbitrary open
cross-section is considered (Fig.1). Based
on Vlasov`s theory [1], the displacements
of an arbitrary point S of cross-section can
be described by four components, three
translations ,,p pu v w and rotation  about

the arbitrarily taken pole P.

Fig. 1. Arbitrary open
cross section

* ( )p pu u y y   

* ( )p pv v x x    (1)

* p p pw w u x v y       

- where p represents warping function

with respect to the pole P.
Based on the assumptions adopted in the

theory of thin-walled beams, strain values
that are different from zero are strain and
shear.
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where e is the distance of the observed
point from the middle surface measured
along the normal n.

Reducing the normal stresses on the
center of gravity and shear stresses on the
pole P, for stress resultants the following
expressions are obtained [2]:
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In Eqs. (3), N represents the axial force,
Mx and My the bending moments with
respect to the x and y-axis, Vx and Vy the
shear forces in the x and y directions, PT
the torsion moment, TS the Saint Venant
torque, MwP the bimoment.

Equations of motion are derived using
the principle of virtual displacements. A
small element subjected to external loads p
per unit area is considered (Fig. 2.).
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Fig. 2. A small element

Stress vector is defined by:
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(4)

The vector of virtual displacements is
adopted in the same form as a vector of
real displacements:
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Virtual displacements parameters are
arbitrary functions of coordinates and do
not depend upon external loads.

The virtual work expression is:

0W U    (6)

where W is the virtual work of external
loads and inertia forces through virtual
displacements u and U the virtual
work of actual stresses realized through
virtual strains.

The virtual work of external loads and
inertia forces per unit length of the element
is:
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where  is the density, and u is the
acceleration vector given by:
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Substituting (4), (5) and (8) into (7) we
get following equation for W :
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The virtual work of internal load due to
the corresponding variation of
deformation, per unit length of element, is:
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F
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Using expressions (2) for virtual strains we get:
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By suitable rearrangement of equations
(9) and (11) in accordance with virtual

displacement parameters, the principle of
virtual work may be expresses as:
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Since the virtual displacement
parameters can have arbitrary values,
equation (12) will be satisfied if the
expressions in great brackets vanish.

Using the expressions for stress
resultants (3) one obtains:
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The forces , ,x y pV V T can be eliminated

from equation (13) in order to obtained
four equations:
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The stress resultants can be expressed
directly in terms of the displacements. The
equations are written in matrix form:
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Selecting appropriate position and
orientation of coordinate axis, and also
appropriate position of the pole P and the
point zero 1O we can write:
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Taking into account the conditions (16)
and (17) we get simplified expressions for
the cross section forces and substituting
into (14) we get equations that represent
equations of motion of thin-walled beam
with arbitrary open cross-section:
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Analyzing this system of equations we
can conclude that the differential equations
of motion cannot be separated, meaning

that the equations describing the axial,
transverse and torsional vibrations must be
solved simultaneously.
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3. I Cross Section

If we observe the beams symmetrical
around two axes with antisymmetric
orientations of the laminas in relation to
geometrical axis, elements of the matrix
equal to zero are:

, , , 0
Dxe com ye com e comI I I   (19)

As the main central axis of the composite
cross-section overlap with the axis of
homogenius cross-section we can write:
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For double symmetry center of gravity
overlaps with shear center, meaning
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4. Solution for I Cross Section

The solution of equation (18) with
assumptions (19) and (20) may be
expressed in the form:
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Substituting Eq (22) into (18) yields:
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In the case of a beam with simply
supported ends the end conditions are:
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   

   

       
         

     
        

           
      

(26)

Setting the determinant of the above
system equal to zero:

2 2 2
,

0
2 4 2 2 2 2

, , ,

F p F Sn com n e com

S I I p I p In e com n com n ee com n DD D D D

  


         

(27)
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yields the following algebraic frequency
equation

4 2 0a p b p c     (28)

with the coefficients:

2 2 2

4 4 2 2
, ,

6 4 4 2
, , ,

D D

D D D D

D D

n D

n com n com n D com n ee com

n com com n com ee com n e com

a FI I F

b F I FI I F FI

c F I F I S

 

   

 

  

   

  
(29)

5. Numerical Example

Torsional frequences for the simply
supported I-beam with arbitrary lamination
in relation to the midline are evaluated. We
consider I-beam that has a flange width
50cm and the height 60cm. Total

thicknesses of the web and flanges are
3cm. It is assumed to have eight layers in
laminate, material properties are:

1 2

12

144 , 9.65 ,

4.14 , 0.3

E GPa E GPa

G GPa

 
  

Frequency (Hz) of the beam in observed example Table 1.

 0 / 30 / 60 / 90
S  0 / 90 / 0 / 90

S  30 / 30 / 30 / 30
S

 

Theory Ansys
Error
% Theory Ansys

Error
% Theory Ansys

Error
%

I 13.475 14.253 5.78 14.968 14.711 1.72 15.079 16.240 7.70

II 47.885 48.105 0.46 55.905 52.616 5.88 47.990 49.032 2.16

6. Conclusion

Principal of virtual displacements is used
for solving system of equations of thin-
walled laminated beams.

Solution is derived for natural frequences
of free harmonic vibrations. Accuracy of

derived solution is confirmed with
numerical example.

Torsional vibrations of simply supported
beam obtained theoretically coincide with
the solution obtained with the software
package Ansys [5] and that confirms
validation of derived solution. Fiber
orientation has influence on the results.
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