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A STUDY OF THE FINITE ELEMENT
MODELING OF AN END LOADED

CANTILEVER BEAM
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Abstract: The beam theory and the elasticity solutions for the deflection
and stresses in an end-loaded cantilever are intensely used to verify and to
evaluate the performances of different finite elements. The finite element
modeling of  the displacement boundary conditions is difficult and in the most
part of cases is not solved correctly, which leads to errors. In this paper a
new solution is given for the modeling of the clamped edge, which is
equivalent with the hypotheses used at the analytical models. The stresses
and the displacements given by this finite element  model are converging to
the theoretical solutions of the idealized cantilever beam.
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1. Introduction

The capability of the finite elements to
approximate complex displacement and
stress fields is often shown by comparison
to problems for which there are known
solutions. One of these problems is the end
loaded cantilever beam [1]. Although this
problem is simple, the finite element
modelling of the loading and boundary
conditions which were at the basis of the
idealized solutions is difficult. Not
respecting these conditions is a source of
errors and the use of such a model is not
appropriate for testing finite elements
capabilities.

In the paper [2] there are given five
solutions for the modeling of the cantilever
beam. The introduction of the vertical load
as a parabolic varying shear traction over
the depth of the free end solves correctly the
problem of loading. The problem of

modeling the clamped edge is more
difficult. In the paper [2] the correct
solution for this problem is solved by
introducing essential boundary conditions at
the fixed end to match the displacements
given by the elasticity solution.

In this paper we use the parabolic shear
loading on the free end and zero mechanical
work conditions of the clamped edge
tensions with the corresponding
displacements. As a result on the clamped
edge the mean displacements are fixed and
the stresses and displacements on the whole
cantilever are converging to the theoretical
solutions for the idealized cantilever.

2. Problem Definition

Figure 1 shows a cantilever beam of depth
D, length L and unit thickness, which is
fully fixed to a support at x=0 and carries a
load P at the free end. The stress field is
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given by the beam theory [1], [3]:
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and the tip displacement is:
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where E is Young's modulus, G is the shear
modulus, and I is the second moment of
area of the cross-section.

Fig. 1. Coordinate system for the
cantilever problem

3. Analysis of the Cantilever Beam

For the numerical calculations we used
the following data: L=24, D=12, E=160,
=1/4, P=40.

Applying equations (1),...(4) results:
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At a first finite element model (i) we used
parabolic load distribution on the section of
the free end and full restrictions of the
displacements of the nodes of the clamped
section. We used a mesh of 6x12 of pairs of
six node triangular elements. The
displacement interpolation functions of
these elements are parabolic, which means
that the strains and the stresses are linear on
each element. The parabolic distributed
loads were concentrated to the nodes using
the relation:
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where
Fi, Fi+1, Fi+2, are the resulting nodal forces
acting in the nodes on the side of an
element;
h is the length of the side of the element;
qi, qi+1, qi+2, are the intensities of the
distributed load in the nodes on the side of
the element.

As it can be observed form Figure 2 and
3, in the clamped section the stresses are
perturbed. Because of the full restraint
provided to the left-hand end, stress
concentrations occur in the top and bottom
lef-hand corners, and the resulting shear
stress distribution exhibits singularities at
the top and bottom corners. The differences
between the finite element solution and the
theortical solution are considerable in the
area x<D/2. These perturbations depend on
the number of divisions of the finite
element mesh. The tip displacement was

41.9)(
max 

iFEv . The error of this

displacement is due to the finite element
approximation and to the clamped end
constraints, which are not allowing the
shear deplanation and the developement of
transversal contraction on this edge.
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Fig. 2. Normal stresses x for the model
"i" of the cantilever beam

Fig. 3. Shear stresses xy for the model "i"
of the cantilever beam

As it can be observed from these results,
it is not correct to model the clamped edge
by constraining all the displacements of the
nodes of the fixed end.

The next model is based on the
observation from [1] that the theoretical
solution "represents an exact solution only
if the shearing forces on the ends are
distributed according to the same parabolic
law as the shearing stress xy and the
intensity of the normal forces at the built
end is proportional to y." This conditions
were enforced using mechanical work
relations and added to the equilibrium
equations with Lagrange multipliers.

The equations are:
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where
K is the stiffness matrix of the free
cantilever;
Vx, Vy and V, are load vectors with nodal
loads resulting from a constant distributed
x load, a parabolic varying shear load and
respectively a linear varying x load acting
on the clamped edge;
a is the vector of the nodal displacements;
λx, λy, λ are the Lagrange multipliers;
F is the load vector.
As a result, on the clamped edge only the
mean displacements are fixed, but the
developement of shear and transversal
contraction displacements are not restricted.
The developement of these displacements
can better be observed on a short cantilever
(L=6), where the effect of bending is
smaller.

Fig. 4. Deformed shape of a short
cantilever (L=6)

The normal and shear stresses in the beam
are presented in Figures 5 and 6. The tip

displacement was 4996.9)(
max iiFEv .
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Despite of the relatively coarse finite
element mesh, it can be observed a good
agreement with the theoretical results.

Fig. 5. Normal stresses x for the model
"ii" of the cantilever beam

Fig. 6. Shear stresses xy for the model "ii"
of the cantilever beam

4. Conclusions

This paper has examined the effect of
boundary conditions on the correct solution

for a cantilever beam problem. Replication
of the solutions of beam theory and
elasticity theory require the implementation
of precise displacement and stress
conditions at the built in end together with
the application of the vertical load as
parabolic varying shear traction over the
depth of the free end.

There are many examples in the literature
where this has been done incorrectly. This
paper illustrates the effect of the complete
constraints on the displacements of the
nodes of the clamped end and introduces a
new model where the zero displacements of
the clamped end are introduced in a
variational manner. This approach allowes
the free development of some shear and
transversal contraction displacements. As a
result, the displacements and the stresses of
this finite element model are converging to
those obtained by the colsed form solutions
of the idealized cantilever beam.
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