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Abstract: The present paper is concerned with the analysis of the static and 
kinematic behaviour of pin-jointed frameworks. In order to achieve the most 
correct analysis an extended formulation of Clerk Maxwell’s rule for stiff 
frames is presented, which can provide us with useful information regarding 
the number of states of independent self-stresses and inextensional 
mechanisms. A brief explanation of mechanism theory is given. Finally 
prestress stability and rigidity conditions are set for first-order infinitesimal 
mechanisms. 
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1. Introduction 
 
A key feature to understanding the 

mechanics of any pin-jointed framework is 
the concept of static and/or kinematic 
determinacy of the analysed assembly. 

Möbius in 1837 was the first to show 
the necessary conditions in order to render 
a bar framework stable. According to his 
findings a general pin-jointed plane 
framework consisting of n joints must 
have at least 2n – 3 bars in order to be 
rigid, while a space framework needs at 
least 3n – 6 [3].  

Couple of decades later Maxwell in an 
attempt to introduce a new method to the 
analysis of bar tensions and nodal 
deflections of frameworks “in the least 
complicated manner… especially in cases 
in which the framework is not simply stiff 
but is strengthened… by additional 
connecting pieces” [4] came to the same 

results as Möbius. Although, at the time of 
publication, Maxwell’s work failed to 
make a great impact, later his statement 
regarding the necessary conditions to 
render a frame simply stiff became the 
long-standing industry standard in the 
design of pin jointed frameworks under the 
name Maxwell’s Rule. However, the 
appearance of novel type structures, such 
as Buckminster Fuller’s Tensegrity 
frameworks, which are rigid without the 
existence of the necessary number of bars, 
make a compelling argument for extending 
Maxwell’s original rule in order to adapt to 
the necessities of the newest discoveries in 
the field of civil engineering. 

  
2. Maxwell’s Rule for the Analysis of 

Pin-Jointed Structures 
 

James Clerk Maxwell in the introductory 
part of his article “On the Calculation of 
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the Equilibrum and Stiffness of Frames” 
enounced the famous statement, which 
became later known in the mechanics of 
frameworks as the rule bearing his name: 
“A frame of s points in space requires in 
general 3s – 6  connecting lines to render 
it stiff”. 

Mathematically Maxwell’s rule for a 
simply stiff frame composed of n nodes, b 
bars and r simple restraints can be 
formulated in the following way: 

 
3n   b + r .   (1) 
 
Analysing the aforementioned 

formulation of Maxwell’s rule - i.e. Eq. (1) 
- one can easily observe the existence of 
three separate cases, which correspond to 
the three fundamental kinematic behaviour 
of structures: 

1.  The case of kinematically 
indeterminate structures, where 3n > b + r. 

2.  The case of simply stiff structures, 
characterized by kinematic and static 
determinacy (3n = b + r). 

3.  The case of statically indeterminate 
structures, when the structure has more 
than the necessary number of bars or 
restraints (3n < b + r).  

Besides the guidance for the 
determination of the necessary number of 
bars and foundation joints Maxwell’s rule 
provides another essential information for 
the static analysis of pin-jointed structures 
by showing the unique determinedness (or 
the lack of it) of the member forces for any 
arbitrary external loading. 

As the years passed the simplicity of 
Maxwell’s rule, being based only on a 
simple counting strategy of the 
comprising elements of a structure, 
quickly made it the most valuable tool for 
the engineering community in the analysis 
of static and kinematic behaviour of 
frameworks. Recently, because of the 
appearance of a special type of pin-jointed 
framework named Tensegrity, the original 

formulation of Maxwell’s rule went over 
a major change. 

 
3. Tensegrity Structures and the 

Extended form of Maxwell’s Rule 
 
In an attempt to create an explanation for 

the mechanics of Robert Buckminster 
Fuller’s Tensegrity structures Calladine [1] 
went back to Maxwell’s paper. He 
analysed a Truncated Tensegrity 
Tetrahedron (Figure 1). The geometrically 
stable, stiff structure is made of 24 bars 
and 12 joints, although according to 
Maxwell’s rule it would need 6 additional 
bars in order to be simple stiff [1]. Thus 
this frame constitutes a paradoxical 
exception to Maxwell’s Rule. 

The brilliance of James Clerk Maxwell 
can be shown by him expecting the 
existence of such “ill-conditioned” frames, 
which are defined by him as follows: “In 
those cases where stiffness can be produced 
with a smaller number of lines, certain 
conditions must be fulfilled, rendering the 
case one of a maximum or a minimum value 
of one or more of its lines.”  

 

 
Fig. 1. The truncated tetrahedron analysed 

by Calladine [3] 
 
The experimental analysis of Fuller’s 

Tensegrity structure from Figure 1 
showed that certain configurations of the 
assembly comprised of bars with 



Sikó, L., et al.: The Extended Rule of Maxwell and Rigidity Conditions for Infinitesimal… 55 

arbitrary length indeed act as a 
mechanism, but when the length of the 
bars reached a certain value (i.e. the 
maximal length mentioned by Maxwell) 
the structure became stiff. This 
behaviour clearly shows that there is a 
limit to the length of the bars and cables 
of Fuller’s structures. Reaching this limit 
length of the comprising members, 
presumably the maximum value Maxwell 
had in mind, renders these structures 
stiff. This behaviour of Fuller’s 
structures seems to match the one of the 
special cases anticipated by Maxwell.  

Moreover Maxwell is aware that these 
exceptional structures essentially constitute 
a special configuration of kinematically 
indeterminate frames, which have limited 
stiffness, stating that the stiffness of such a 
frame “is of an inferior order, as a small 
disturbing force may produce a 
displacement infinite in a comparison with 
itself” [4]. 

 
3.1. Maxwell’s Extended Rule 

 
In order to illustrate the need for changing 

Maxwell’s original rule let us analyse the 
two pin-jointed frames from Figure 2. They 
are made of the same number of bars (b = 
2), joints (n = 3) and restraints (r = 4). 
Moreover according to Maxwell’s Rule 
they constitute simple stiff structures by 
satisfying the equality ( ). 
However a closer look at the fundamental 
behaviour of these structures shows that the 
looks can be deceiving. 

In the first configuration, Figure 2a), 
the frames are not collinear, hence the 
frame is rigid and capable to bear the 
nodal force P. 

The second structure, Figure 2b), 
consists of three nodes which lie along the 
same line. It can be easily spotted that in 
the case of an external loading normal to 
the plane of junction this frame will suffer 
a vertical displacement v. The stiffness for 
vertical forces of such frame when the 
structure lacks pretension is proportional to 
the third power of the displacement of the 
central joint [1]. This value is very small, 
being in concordance with “the stiffness of 
an inferior order” noted by Maxwell, thus 
rendering the infinitesimal mechanism 
behaviour of the framework.  

As noted in the case of Fuller’s 
Tensegrity structures this framework can 
be rendered stiff by means of adequate pre-
tensioning. The value of the necessary 
prestress needed to be applied to the bars 
yields from the vertical equilibrium at the 
central joint: 

 

l
vtP  04 , (2)  

 
where t0 is the prestressing force applied to 
the bars, l represents the length between 
the restrained joints of the framework.  

Pre-tensioning the two-bar pin-jointed 
assembly with the value determined from 
Eq. (2) stabilises the internal mechanism, 
hence the structure will be able to resist the 
vertical loading P. 

 

 
a)                           b) 

Fig. 2. Pin-jointed Two-bar frameworks 
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Calladine [1] and Pellegrino and 
Calladine [5] proposed a modified 
formulation for Maxwell’s original rule 
which includes all kinds of special cases 
foreseen by Maxwell himself. According 
to the Extended Maxwell’s Rule a 
complete analysis of a pin-jointed 
framework can be made only by 
considering besides the terms from the 
Maxwell’s original Rule the number of the 
independent states of self-stresses s and the 
one of the inextensional mechanisms m: 

 
3n + s  b + r + m. (3) 
 
The number of the independent self-

stresses and the number of infinitesimal 
mechanisms can be derived from the rank 
rA of the equilibrium matrix A and the 
compatibility matrix AT as follows: 

 
m = 3n – rA,  (4.1) 
 
s = b + r  TA

r .  (4.2) 
 
It is worth to note that the values of m 

and s depend not only on the number of 
bars and joints, nor the topology of the 
structure, but on the complete definition of 
the geometry of the pin-jointed framework 
[5]. 

4. Finite Mechanism vs Infinitesimal 
Mechanism 

 
For a better understanding of the 

behaviour of the kinematically indeterminate 
structures let us take a closer look at the 
mechanics of the pin-jointed frameworks 
from Figure 3. 

Although both frames satisfy Maxwell’s 
original rule they actually are statically and 
kinematically indeterminate structures, 
which allow for one state of prestress  
(s = 1) and one inextensional mechanism 
(m = 1). However their kinematic 
behaviour is quantitatively very different. 
The structure from Figure 3a has an 
infinitesimal mechanism, while the one 
from Figure 3b has a finite mechanism.  

As shown in the aforementioned figure 
the common joint of the structure (O) from 
Figure 3a can move in the direction 
perpendicular to the plane of the bars. 
Essentially the comprising bars of the 
structure exhibit deformations which are of 
higher order in terms of the displacement 
of the joint O. 

On the other hand, the second structure 
can suffer large displacement without the 
need of any variation in the length of the 
bars. Thus, the difference between the 
kinematic behaviour of the two frameworks   

 

 
a)                         b) 

Fig. 3. Statically and kinematically indeterminate structures: 
infinitesimal mechanism (a), finite mechanisms (b) 
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can be easily spotted and understood. 
Essentially the movement of the central 
joint can be visualized by intersecting two 
spheres centered at A and C and with equal 
radii (AO = CO). 

In the case of the second structure the 
resultant circle, with a radius of BO, belongs 
to the sphere centered at B and with radius 
equal to the length of the middle bar (BO). 
This characteristic does not prohibit the 
common joint O experiencing large 
movement, in a direction perpendicular to 
the plane of the frames (OAC), along the 
aforementioned circle. In conclusion this 
structure is a finite mechanism.  

On the other hand in the case of the 
framework from Figure 3a) the 
displacement of the common joint O is 
limited by the fact that the sphere centered 
at node B is only tangent to the 
aforementioned two spheres centered at 
joints A and C. Thus only a very limited 
displacement of the common joint can be 
experienced by the structure, hence it has 
only one infinitesimal mechanism. 

Unfortunately classifying the statically 
and kinematically indeterminate structures 
only into finite mechanisms and 
infinitesimal mechanisms is inadequate to 
deal with all the possible existing cases.  

Koiter completed the theory of 
mechanisms by defining “an infinitesimal 
mechanism of the first order by its property 
that any infinitesimal displacement of the 
mechanism is accompanied by second order 
elongations of at least some of the bars. An 
infinitesimal mechanism is called of second 
(or higher) order, if there exists an 
infinitesimal motion such that no bar 
undergoes an elongation of lower than the 
third (or higher) order” [6].  

The mathematical formulation of 
Koiter’s definition has been provided by 
Tarnai in [6]. He analysed the system of 
infinitesimal displacements of the joints of 
a pin-jointed assembly which contains b 
bars. According to Tarnai the elongation of 

a bar (ek) can be produced by the power 
series of the infinitesimal displacement  
of a characteristic joint: 

 
...3

3
2

21  kkkk aaae .  (5) 
 

where k  = 1, 2, …, b. 
Tarnai later completed Koiter’s definition 

by stating: “an infinitesimal mechanism is 
of order n (n  1) if there exists a system of 
infinitesimal displacements of joints such 
that… a1,k = a2,k = … = an,k = 0 for k  = 1, 2, 
…, b, but there exists no system of 
infinitesimal displacement of joints such 
that… an+1,k = 0 for k  = 1, 2, …, b” [6]. In 
other words there exists at least one bar m 
for which an+1,m  0. 

The definition of the finite mechansims 
can be formulated working along the line 
set by Tarnai’s definition of higher order 
rigidity. Given that by their fundamental 
properties the bars of a finite mechansim 
have zero elongation it follows that a finite 
mechanism can be defined as an 
infinitesimal mechanism of infinite order [6]. 

  
5. Rigidity Conditions for First-Order 

Infinitesimal Mechanisms 
 
One of the greatest problems the 

engineering community in our days is to 
create proper configurations of structures 
with the usage of less and less material. In 
order to conquer this great challenge more 
and more engineers try to capitalize the 
beneficial properties of tensioned structures. 
As a great number of these structures are 
statically and kinematically indeterminate 
the most important problem which needs to 
be solved is the answer to the following 
questions: When are the statically and 
kinematically indeterminate structures in 
equilibrium? What conditions need to be 
satisfied by a statically and kinematically 
indeterminate structure in order to be 
rendered stiff by the pre-tensioning forces? 
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Paradoxically the answer to both 
questions did not come from the work of 
some prominent engineers, but from the 
mathematical research of the tensegrity 
structures. The most important result of 
this research was the extension of the 
general theory of rigidity and stability 
undertaken by Connelly and Whiteley in 
[2]. The direct consequence of their work 
is the definition of crucial notions such as 
first- and second order rigidity, prestress 
stability and rigidity [2]. 

The hierarchical classification of the 
aforementioned notions with respect to the 
rigidity properties of frameworks gives us 
the necessary and sufficient condition to 
render a statically and kinematically 
indeterminate structure simply stiff. In 
summary, as shown in Figure 4, first-order 
rigidity implies prestress stability, which 
implies second-order rigidity, which at its 
turn implies global rigidity of structure. It is 
important to note that none of these 
implications are reversible. Thus the 
crucial condition needed to be complied 
with is that a structure must be prestress 
stable in order to render it stiff. 

In concordance with Connelly and 
Whiteley’s findings in [2] the prestress 
stable state of a pin-jointed structure can 
be checked by the analysis of the tangent 
stiffness matrix of the structure, which 
must be positive definite. 

 

 
Fig. 4. Classification of frameworks with 

respect to rigidity properties [2] 
 

6. Conclusions 
 
The existence of the “ill-conditioned” 

frames which comply with Maxwell’s 

original rule, although they are actually 
statically and kinematically indeterminate 
structures makes a compelling argument 
for the reformulation of the well-known 
rule in order to take into account all kinds 
of special configurations. As Calladine and 
Pellegrino showed in [1], [5] this can be 
achieved only by taking into account the 
number of the possible infinitesimal 
mechanisms and the independent states of 
self-stresses capable to stiffen them. 

As the provided mechanism theory 
shows it is imperative that one can 
differentiate prestressable infinitesimal 
mechanism configurations from 
mechanisms of infinite order (finite 
mechanisms), which can not be rendered 
stiff by the means of pretensioning.  
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